
TTP-19-002
7 January 2019

The width difference in the Bs−Bs system: towards NNLO
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The width difference ∆Γ among the two mass eigenstates of the Bs−Bs system is
measured with a precision of 7%. The theory prediction has a larger uncertainty which
mainly stems from unknown perturbative higher-order QCD corrections. I discuss the
subset of next-to-next-to-leading order diagrams proportional to α2

s Nf , where Nf = 5
is the number of quark flavours. The results are published in [1].
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Figure 1: Box diagram describing Bs−Bs mixing. A second diagram is obtained by a 90◦ rotation.

1 Bs−Bs mixing and ∆Γ

The box diagram of Fig. 1 describes Bs−Bs mixing, which is a transition changing the beauty
quantum number B by two units. As a consequence of Bs−Bs mixing, the flavour eigenstates
Bs and B̄s are not equal to the mass eigenstates BH and BL which obey simple exponential decay
laws. Denoting masses and decay widths of BH,L by MH,L and ΓH,L (with the subscripts denoting
“heavy” and “light”), the mixing problem involves five observables:

M =
ML +MH

2
, Γ =

ΓL + ΓH
2

, ∆m = MH −ML, ∆Γ = ΓL − ΓH , (1)

and the CP asymmetry in flavour-specific decays, afs, which quantifies CP violation in mixing and is
typically measured in semileptonic decays. The mass difference ∆m = (17.757± 0.021) ps−1 [2]
has been determined very precisely from the Bs−Bs oscillation frequency [3,4]. The experimental
value of the width difference [2],

∆Γexp = (0.088± 0.006) ps−1, (2)

is an average of measurements by LHCb [5, 6], ATLAS [7], CMS [8], and CDF [9].
∆Γ is calculated from the absorptive part of the box diagram in Fig. 1, which is the piece of

this diagram involving the imaginary part of the loop integral. Only the contributions with light
u and c quarks contribute to ∆Γ. In order to include strong-interaction effects one exploits that
the bottom mass mb is much larger than the fundamental scale of QCD, ΛQCD, and employs an
operator product expansion, the heavy quark expansion (HQE) [10–13]. This procedure results in
a systematic expansion of ∆Γ in powers of ΛQCD/mb ≈ 0.1 and αs(mb) ≈ 0.2. At the energy
scale mb, relevant for Bs decays, W exchange can be described by point-like interactions. The
corresponding effective |∆B| = 1 hamiltonian for the b→ s transitions of our interest reads

H∆B=1
eff =

GF√
2
V ∗csVcb

{
6∑
i=1

CiOi + C8O8

}
+ H.c., (3)

with

O1 = (s̄icj)V−A (c̄jbi)V−A, O2 = (s̄ici)V−A (c̄jbj)V−A,

O8 =
gs

8π2
mbs̄iσ

µν(1− γ5)T aijbjG
a
µν . (4)
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Figure 2: Left and middle: LO diagrams for ∆Γ corresponding to the box diagrams of Fig. 1. The
crosses represent the operators O1 or O2 from H∆B=1

eff in Eq. (3). Right: Effective |∆B| = 2
operator.

The numerically less important four-quark penguin operators Q3−6 are not shown. GF is the Fermi
constant, i, j are colour indices, V ±A = γµ(1± γ5), and Vcs and Vcb are elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. Note that the doubly Cabibbo-suppressed contributions with
u quarks have been neglected. The chromagnetic operator O8 encodes a b-s-gluon and a b-s-gluon-
gluon coupling. The Wilson coefficients Cj in Eq. (3) comprise the short-distance QCD effects of
the energy scale of theW mass and above. They are known to next-to-next-to-leading order (NNLO)
of QCD [14,15]. The leading-order (LO) contribution to ∆Γ in both expansion parameters αs(mb)
and ΛQCD/mb is shown in the left two diagrams of Fig. 2. ∆Γ can be understood to come from the
interference of all Bs → f and B̄s → f decays, where f is any final state common to Bs and B̄s
decays. The Cabibbo-favoured contribution to ∆Γ stems from b → cc̄s decays. The final state is
indicated by the dashed line in Fig. 2. The results of the left and middle diagrams in Fig. 2 determine
the LO coefficients of the effective |∆B| = 2 operators, depicted at right in Fig. 2. At leading order
of ΛQCD/mb (“leading power”) one needs two such operators:

Q = (s̄ibi)V−A (s̄jbj)V−A, Q̃S = (s̄ibj)S−P (s̄jbi)S−P .

Here S − P = 1 − γ5. Higher-order QCD corrections are calculated from diagrams involving
gluons added to the diagrams of Fig. 2, penguin diagrams, and diagrams involving Q8. Finally,
non-perturbative QCD effects are contained in the |∆B| = 2 matrix elements:

〈Bs|Q(µ2)|Bs〉 =
8

3
M2
Bs
f2
Bs
B(µ2)

〈Bs|Q̃S(µ2)|Bs〉 =
1

3
M2
Bs
f2
Bs
B̃′S(µ2). (5)

Here MBs and fBs are mass and decay constant of the Bs meson, respectively, and µ2 = O(mb) is
the renormalisation scale at which the matrix elements are calculated. The dimensionless quantities
B(µ2) and B̃′S(µ2) parametrise the matrix elements. The leading-power result can be written as

∆Γ =
G2
Fm

2
b

12πMBs

|V ∗csVcb|2
∣∣∣G′ 〈Bs|Q|B̄s〉 + G̃S 〈Bs|Q̃S |B̄s〉

∣∣∣ (6)

with perturbative coefficients G′,G̃S . These coefficients are bilinear in the Cj’s of H∆B=1
eff and are

known to next-to-leading order (NLO) in αs(mb) [17–20]. The Wilson coefficientsCj depend on an
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unphysical renormalisation scale µ1 = O(mb). The dependence of G′,G̃S on µ1 diminishes order-
by-order in αs and serves as an estimate of the accuracy of the perturbative calculation. Also the
dependence on the chosen renormalisation scheme decreases with higher orders of αs. For instance,
we can trade the pole mass mb in Eq. (6) for the MS mass m̄b and replace e.g. G̃S by

G̃MS
S ≡

mpole 2
b

m̄2
b

G̃S ,

expanded in αs to the order in which ∆Γ is calculated. Corrections to ∆Γ of order ΛQCD/mb

involve additional operators and have been calculated in Ref. [16].
Including all known corrections one has

∆Γ =
(

0.091± 0.020scale ± 0.006
B,B̃S

± 0.017ΛQCD/mb

)
GeV (pole)

∆Γ =
(

0.104± 0.008scale ± 0.007
B,B̃S

± 0.015ΛQCD/mb

)
GeV (MS) (7)

These numbers are found from the expressions in Ref. [20] with present-day lattice-QCD results
for the matrix elements in Eq. (5) taken from Ref. [21]. The uncertainties from different sources
are indicated in Eq. (7). The size of the missing α2

s corrections to the diagrams in Fig. 2 can
be estimated from the µ1-dependence, denoted with “scale”, or from the difference between the
central values in the two schemes. This perturbative error is larger than the uncertainty stemming
from the lattice-QCD calculation denoted with “B, B̃S” and also exceeds the experimental error in
Eq. (2). Also the last error related to the power corrections originates mostly from the unknown
NLO corrections to coefficients of the subleading-power operators. The matrix elements of these
subleading operators have been estimated with QCD sum rules [22] and lattice-QCD calculations
are making progress [23]. Thus perturbative uncertainties are dominant and call for the calculation
of the NNLO corrections to the leading power contribution. Also NLO corrections to the ΛQCD/mb

piece are needed. The phenomenology of ∆Γ within and beyond the Standard Model is dicussed in
Refs. [20, 24, 25].

2 Towards NNLO

The NNLO calculation involves three-loop diagrams with loop integrals depending on one external
momentum p with p2 = m2

b , i.e. these are propagator-type integrals. mb and the charm mass mc

appear on internal lines. The calculation in Ref. [1] has addressed the subset of diagrams with
a closed quark loop, shown in Fig. 3. These diagrams are a gauge-invariant subset of all NNLO
diagrams and grow with the number Nf of active quark flavours. (In b decays one has Nf =
5.) Note that diagrams involving O8 have less than three loops, because the definition of O8 in
Eq. (4) involves one power of the strong coupling gs. We have also calculated the contributions
with penguin operators O3−6 [1], counting their small Wilson coefficients as O(αs) [17], so that
also here only one-loop and two-loop diagrams are needed.

In the calculation one can neglect the charm mass on the lines attached to aO1,2 vertex, because
the associated error is of orderm2

c/m
2
b , i.e. 5% of the expectedO(15%) NNLO correction. A charm

quark running in the closed quark loop in the gluon propagator, however, leads to a term linear in
mc/mb, so that we have kept a non-zero charm mass there.
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Figure 3: Diagrams with O1,2 or O8 contributing to the O(α2
sNf ) corrections to ∆Γ.

For illustration we show the charm-loop contribution to the coefficient multiplying C2
2 in the

NNLO correction to G̃S :

F
(2),NV

S,22 (z) =− 9.01785 log
µ1

mb
− 11.8519 log

µ2

mb
− 14.2222 log

µ1

mb
log

µ2

mb
+ 10.6667 log2 µ1

mb

+ 7.11111 log2 µ2

mb
− 42.0084 + 105.276

mc

mb
+O

(
m2
c

m2
b

)
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Displaying only the error from the µ1 dependence, our NLO and large-Nf NNLO results read

∆ΓNLO = (0.091± 0.020scale) GeV (pole)

∆ΓNLO = (0.104± 0.015scale) GeV (MS) (8)

∆ΓNNLO = (0.108± 0.021scale) GeV (pole)

∆ΓNNLO = (0.103± 0.015scale) GeV (MS) (9)

Note that we have used a different implementation of the MS scheme here: In Eq. (7) the prefactor
in Eq. (6) is chosen with m̄2

b(µ1) and the µ1 dependence of this factor nicely cancels with the one in
G′ and G̃S , and this feature seems to be accidental. If one chooses m̄2

b(m̄b) instead (with properly
adjusted µ1 terms in G′ and G̃S), one finds the larger µ1 dependence of Eq. (8). Our partial NNLO
correction is sizable in the pole scheme and lifts the result closer to the MS result. In the MS
scheme instead our large-Nf correction is very small and unlikely to be the dominant piece of the
full NNLO result.

The large Nf limit of QCD spoils asymptotic freedom, because the β function changes sign for
sufficiently large values of Nf . One may remedy this by “naive non-Abelianisation (NNA)”, which
means to trade Nf for the leading coefficient β0 = 11 − 2/3Nf of the QCD β function [26, 27].
This procedure flips the sign of the NNLO correction leading to

∆ΓNNA = (0.071± 0.020scale) GeV (pole)

∆ΓNNA = (0.099± 0.012scale) GeV (MS). (10)

In applications like ours, in which the size of the NNLO correction depends on the chosen renor-
malisation scheme for the Wilson coefficients, it is not clear whether NNA improves the result. E.g.
in Ref. [28] it has been found that the α2

sβ0 term is not a good approximation to the full NNLO
result to the calculated quantity.

3 Conclusions

The calculation of the α2
sNf terms of the NNLO correction to ∆Γ has reduced the renormalisation

scheme dependence of the theory prediction and has moved the pole scheme result close to the MS
result. But there is no progress in the reduction of the dependence on the renormalisation scale and
the correction found in the MS scheme is too small to be the dominant part of the full NNLO result.
Therefore a complete NNLO calculation is needed. In the meantime, we advocate for the use of the
MS result with a conservative perturbative error [1]:

∆Γ =
(

0.104± 0.015scale ± 0.007
B,B̃S

± 0.015ΛQCD/mb

)
GeV (MS). (11)
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