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Abstract

We analytically compute the four-loop QCD corrections for the colour structure
(d2e?)2 to the massless non-singlet quark form factor. The computation involves
non-trivial non-planar integral families which have master integrals in the top sector.
We compute the master integrals by introducing a second mass scale and solving
differential equations with respect to the ratio of the two scales. We present details of
our calculational procedure. Analytical results for the cusp and collinear anomalous
dimensions, and the finite part of the form factor are presented. We also provide
analytic results for all master integrals expanded up to weight eight.
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1 Introduction

Form factors are indispensable vertex functions which enter a number of quantities in
precision physics. Most prominent examples are the virtual corrections to the Drell-Yan
process or inclusive Higgs boson production. Form factors are furthermore the simplest
Green’s function with a non-trivial infrared structure. In fact, from the pole parts of the
form factors it is possible to extract universal quantities, like the cusp or collinear anoma-
lous dimension. They enter general formulae which predict the infrared pole structure of
massless on-shell multi-loop multi-leg QCD amplitudes [11,2].

In this paper we consider the quark-anti-quark-photon form factor with massless quarks
which is obtained from the corresponding vertex function 'l via

FA) = g @) ()

where we work in d = 4 —2¢ space-time dimensions, ¢ = ¢;+¢2, and ¢; (gz) is the incoming
quark (anti-quark) momentum.

Two-loop corrections to F, have been computed for the first time more than twenty
years ago [3H6] and the three-loop terms are available since about ten years [7HI0] (for the
computation of master integrals see also Ref. [T1]). Only two years ago first four-loop result
for Fj, became available: In a first step the large- N, limit has been considered, where only
planar Feynman diagrams contribute, and the fermionic and non-fermionic corrections
have been computed in Refs. [I12] and [13], respectively. Fermionic corrections with three
closed quark loops have been computed in Ref. [I4]; the complete terms proportional to
n} are available from [13].

Important information about QCD amplitudes is already obtained from the pole part of
the form factor. Of particular interest in this respect is the cusp anomalous dimension,
Yeusp [16], which can be extracted from the 1/€e? pole of F,. At three-loop order first results
for yeusp have been computed from the asymptotic behaviour of splitting functions [17]
where the fractional hadron momentum tends to 1. The results have been confirmed
afterwards by a dedicated calculation of the pole parts of the form factor [I§]. Also at
four-loop order there are two approaches to obtain veusp: The n?} terms of Yeusp has been
obtained in Refs. [14L19,20] and analytic results in the large-N. limit and for the (com-
plete) n7 contributions have been obtained in Refs. [I2,I3,15] and [2I] from the explicit
calculation of the form factor and the splitting functions in the threshold limit, respec-
tively. The approach used in [2I] could be extended to all colour structures; numerical
results are presented in Refs. [22,23]. Recently the abelian four-loop contribution of the
linear ny term to 7Yeusp has been computed analytically in Ref. [24]. The main focus of [24]
is the cusp anomalous dimension for massive fermions in QED. The abelian n; term for
massless quarks is obtained as a by-product.
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Figure 1: Non-singlet (a) and singlet (b) sample diagrams contributing to the colour
structure (d%°4)? of the photon-quark form factor. The gray blob indicates the external
vector current.

We define the expansion of Fj, in terms of the bare strong coupling constant as

OéO n ,U2 ne )
F, =1 —= — | FE" 2

- (5) () )

The universal quantities 7.usp and 7, are conveniently extracted from the pole part of

log(F,) after renormalization of a (see, e.g., Refs. [2[8,[16]). We define the corresponding
n-loop coefficients as follows

Yo = Z(asif))nvﬁ, (3)

n>0

with x = cusp or z = ¢. In order to fix the normalization we provide the one-loop results
which read 79,,, = 4 and 7y = —3Cp (with Cp = (N7 —1)/(2N,)).
In this work, we provide analytic four-loop results for veusp, 7, and F, for the colour
structure (d%?)? which for a SU(N,) group is given by
(dged)® NP —6N2+18 (4)
Ny 96 N? ’

with Ny = N? — 1. Such colour factors arise from diagrams where four gluons connect
the two external fermion lines, see Fig. [[[a). Note that there are also singlet diagrams
with colour factor proportional to (d%4)? see Fig. M(b). In this work we only consider
non-singlet contributions.

2 Calculation

There are 18 Feynman diagrams with a closed fermion loop which is connected to the
external fermion line via four gluons. A representative diagram is shown in Fig. [i(a); all
other diagrams are obtained by the various possibilities to connect the four gluons to the
external fermion lines.
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Figure 2: Planar (top row) and non-planar (bottom row) integral families. The numbers
n next to the lines correspond to the indices of the propagators, i.e. to the n'® integer
argument of the functions representing the integrals. In addition to the 12 propagators we
have for each family six linear independent numerator factors. However, the corresponding
indices are always zero for our master integrals.

We can map the 18 (six planar and twelve non-planar) diagrams to six integral families,
two planar and four non-planar ones. They are illustrated in Fig. Rl where thin solid lines
represent massless propagatorsﬂ The thick external line carries the virtuality ¢>. The
planar families have been studied in Refs. [I2L[I3] where in particular all master integrals
have been computed. Results for the non-planar families in Fig. [2 are not yet available
in the literature. In the following we concentrate our discussion on them.

With the help of a suitably chosen projector to obtain Fj (introduced in Eq. () we
can express the amplitude as a linear combination of scalar functions, which correspond
to the family definitions of Fig. All of them have 18 indices each, twelve for the
propagators and six for irreducible numerators. We use FIRE [25-27] in combination
with LiteRed [2829] for the reduction to master integrals. In Tab. [l we present some
information about the individual (non-planar) families. Altogether we have to compute
about 50000 integrals which can be reduced to almost 200 master integrals. We refrain
from minimizing the master integrals among the various families since our approach (see
below) is applied to a whole family and provides simultaneous results for all master
integrals. We nevertheless establish relations between master integrals of different families
and use them as cross checks for our results. For example, 36 of the 41 master integrals
from df2-5 can be mapped to master integrals of df2-2. Note that we have performed the

'For convenience we use the internal numeration of the families also in the paper.



non-planar | # 1-scale | # 2-scale | number of | size of tables
family MIs MIs integrals | (MB) (1-scale)
df2-2 71 337 14156 98
df2-3 45 244 15278 50
df2-5 41 92 11620 23
df2-6 35 78 11531 18

Table 1: Information about the non-planar families.

calculation in Feynman gauge.

For the computation of the master integrals we use the idea suggested in [30] and used in
our previous works for the planar [I2)I3] and n? calculation [I5]: we introduce a second
mass scale g5 = x¢* as the virtuality of one of the external quarks. This increases, of
course, the complexity of the problem. We encounter a more difficult reduction problem
and there are significant more master integrals present in the individual families (compare
“# l-scale MIs” and “# 2-scale MIs” in Tab. [I]). However, the introduction of the second
mass scale has the advantage that we can use the powerful method of differential equations.
In fact, the basic idea is to choose x = 1 in order to fix the boundary conditions, since in
this limit one has to compute massless two-point functions which are well studied in the
literature [31.32]. The differential equations are then used to transport the information
to the point z = 0.

The method has been described in some details in Ref. [I5] where for the first time non-
planar four-loop families have been considered. For the integral families considered in this
paper the method had to be further refined. Note that in Ref. [I5] no non-planar master
integrals had to be computed in the top sector where the indices of all twelve propagators
are positive.

For each family we can introduce a system of differential equations of the formf3

Ouj(x) = mlx)j(z), ()

where j(x) is a vector of (two-scale) master integrals in the primary basis chosen by FIRE
and m(x) is a square matrix. We use the idea suggested in Refs. [33/[34] to turn to
a so-called € or canonical basis where the right-hand side of the differential equations is
proportional to € and singularities with respect to the variables of the differential equations
are Fuchsian, i.e., of the form 1/(x — a). To arrive at a canonical basis, we use the
algorithm of Ref. ﬂ?ﬂﬁ and its private implementation. We apply this procedure to each
family separately and arrive at an e form given by

O J(x) = eM(x)J(x), (6)

2In the following we do not explicitly show the e dependence of the functions in the arguments.
3Meanwhile there are two public computer implementations of this algorithm, see Refs. [36139]. A
somewhat different approach to the same problem can be found in Ref. [40].



where J are the master integrals in the canonical basis, which are connected to the ones in
the primary basis via j(z) = T'(z).JJ(z). The matrix M (z) only has a simple dependence
on x

M) = 3 @

a

with constant matrices M,. In our case the sum only includes two terms, a = 0 and a = 1,
which correspond to the physical point and the point where we want to fix the boundary
conditions, respectively. Next, we introduce, as in [15], the path-ordered exponent

T

U(x,zg) = Pexp e/dﬁM(g) , (8)

x0

and define the quantities (with a slight abuse of notation)ﬁ

_ : €A
U(z,0) = xl;goU(at,xo):Bo ,
Ulz,1) = lim Uz, 20)(1 — x0) | (9)
ro—1

which have the properties

U(z,0) s zho
Ulz,1) 23 (1—a)h . (10)

Note that U(z,0) and U(x, 1) can be obtained in a straightforward way as an expansion
in € in terms of Harmonic polylogarithms (HPLs) [41] with arguments (1 — z) and =,
respectively. Furthermore, both U(x,0) and U(x, 1) solve the system (7)) and are thus
related by a matrix Uy; which only depends on € but not on x:

We will call the matrix Uy = Up;(€) the associator. It can be constructed by multiplying
Eq. () by x=¢“ from the left and taking the limit  — 0 which leads to

I —eAo
Un = 9161_%3: Uz, 1). (12)
In practice, the right-hand side of Eq. (IZ2) is evaluated by extracting all log(x) terms
contained in U(z, 1) with the help of shuffle relations to eliminate the leading letter “1”
from the HPLsd They have to cancel against the log(x) terms from x~¢4¢ such that the
limit x — 0 can be taken.

4Note that U(z,0) and U(x,1) as defined in Eq. () are divergent and thus confusion with Eq. (@) is
excluded.
®Note that the program package HPL [42] has a build-in command which can be used for this step.
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Let us in a next step discuss the boundary conditions which we compute for z = 1. Note
that in this limit our integrals are analytical and thus we do not have contributions of the
form 7% with k£ # 0. In the canonical basis we can thus write

J(x) = Ulz,1)Cy, (13)
where (' is a vector with e-dependent components. Similarly we have
J(x) = U(z,0)Cy. (14)

Note that in this limit the integrals in J have a logarithmic dependence on z. We are only
interested in the so-called hard part which means that from the various contributions of
the form "¢ we only take those with k& = 0.

Next we want to relate the constants Cy and C to coefficients of integrals from the
primary basis evaluated near x = 0 and x = 1, respectively. These relations have the
form

Co = Lo,
Cy = Lic, (15)

where Lj; are matrices depending on €, and ¢p; are the column vectors of the specific
coefficients in the asymptotics x — 0 and x — 1, respectively. Note that the vector ¢; is
obtained from the boundary conditions, and the aim of our calculation is the hard part of
co. In the following we present details about how we determine which set of coefficients
o suffices and calculate the matrix Ly. L, and ¢; are calculated in analogy.

We start with the generalized series expansion of T' (z, €) U (z,0) which can be cast in the
form

T(x,e)U(x,0) = Zu(a,k‘):ﬂalogkm, (16)

a,k

where oo = ny + eny with integer ny and ns, and u («, k) are matrices which depend on e.
The key point is that, using the approach of Ref. [43], we can calculate plenty of terms in
the above expression, keeping the exact ¢ dependence. After applying Eq. (I8) to Cy we
have

jlx) = Zc(a, k) z®log" z (17)

a,k
where
cla,k) = u(ak)Cy. (18)

Each ¢ (a, k) is a column vector of the form (¢; (a, k), ..., en (o, k)T, where N is the
number of two-scale master integrals of the considered family.
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In a next step we select from the coefficients ¢; (o, k) (for various i, «r, and k) the minimal
set, which is sufficient to determine all constants in Cy = (Cyy,...Con)". Let this set be

N
ciy (o, ky) =) iy (on, kr) Coy,

J=1

N
Cing (Qar bar) =) iy (aas, kar) Coy - (19)

j=1
Here sufficient refers to the rank of the matrix

uill(alakl) UilN(a17k1>
R = : : (20)

Ujpr1 (OéM, kM) coo Uiy N (CYM> k‘M)

which has to be greater or equal to the number of master integrals NV, and minimal means
that M = N. In other words, R is a square matrix, which is invertible and we have

Co = (Cil (al? kl) y oo Ciy (aNa kN))T )
Lo=R". (21)

Of course, this procedure does not lead to unique quantities ¢y and Ly, which, however,
is not a problem since the arbitrariness cancels after performing the matching to the one-
scale master integrals. As a rule of thumb we first try to pick coefficients only among the
leading coefficients of the asymptotic expansion of the integrals j(z) and then extend the
search to subleading terms in z, if necessary.

Using Eqgs. (1), (I3), (Id) and, (I5) we finally arrive at
Co = LSIU(]lLlCl, (22)

which is used to obtain the coefficients at = = 0 from the ones at z = 1. Note that L
and L are exact in € but Uy, is usually known as an expansion for e — 0.

The number of components of ¢y is the number of the two-scale master integrals. For
example, for df2-2, it is 337. Our goal is the determination of the coefficients in the naive
part of the expansion, i.e. the part of the expansion with non-negative integer powers
of x. For df2-2, ¢y contains 116 coefficients corresponding to the naive limit. One can
expect that this number is equal to the number of one-scale master integrals, which is,
however, not the case. The reason is the additional symmetry of the one-scale integrals,
related to the permutation of two massless legs. This symmetry reduces the number of
one-scale master integrals to 71. Therefore, there are 116 — 71 = 45 redundant relations
which we use as a check once we have satisfied 71 relations using explicit results for



the one-scale master integrals. In practice, most of the one-scale master integrals have
the same indices as the corresponding two-scale master integrals so that the results for
these one-scale master integrals are obtained directly from the naive part of the two-scale
master integrals. For the remaining one-scale master integrals (where an index equal to
two is chosen in another place), results are obtained after solving simple linear systems
of equations.

Let us stress that the basic ideas of the described procedure have already been discussed in
Ref. [I5], However, the approach presented here is more algorithmic and has now reached
a state where it can be applied to highly non-trivial non-planar integral families, as it is
demonstrated in this paper.

Note that in our case, we had to expand Uy up to € (weight 9) for df2-2 and df2-3
since the property of uniform transcendentality is destroyed when mapping the two-scale
master integrals to one-scale master integrals in the limit x — 0. In the final result for the
form factor all weight-nine constants drop out. This happens separately for each family.
In principle it is possible to adapt the basis of the one-scale master integrals such that
only an expansion of Uy; up to €® is necessary. However, our approach is powerful enough
such that an expansion up to €’ did not pose any serious technical problems. For df2-5
and df2-6 an expansion up to weight eight is sufficient.

The reduction of one-scale as well as of two-scale integrals, needed for the derivation of
differential equations for the (two-scale) master integrals, took several months for each of
the four non-planar families. Using the standard version of FIRE we have failed to reduce
the two-scale integrals of family df2-2 in the top sector. However, following the ideas
of Ref. [I4], based on modular arithmetics, we managed to improve the performance of
FIRE [44]. The new version can be used in a massive parallel mode on supercomputers
which allows us to obtain the missing reductions.

In Ref. [45] many (planar and non-planar) four-loop vertex integrals have been computed
numerically. Among them are uniformly trancendental integrals in the top sectors of df2-2

and df2-3. Reducing these integrals to our primary bases and using our analytic results
we can confirm the results (A.4)—(A.7) of Ref. [45].

Let us finally mention that we have performed numerical cross checks of all master inte-
grals of families df2-2, df2-3, df2-5 and df2-6 with up to ten positive indices expanded up
to order €” using FIESTA [46].

Analytic results for all master integrals can be downloaded in electronic form from [47].
For illustration we show for families df2-2 and df2-3 the master integrals with twelve lines
in the Appendix. Families df2-5 and df2-6 have no twelve-line master integrals.



3 Results

After inserting the analytic results for the master integrals into the amplitude for the
form factor we observe that all poles higher than 1/€? cancel. This is expected since the
coefficients of the 1/e®,...,1/€® poles are determined by lower-loop contributions. Since
the colour structure (d%?)? appears for the first time at four-loop order it can at most
have 1/€% poles. For the same reason there are no renormalization contributions to the
(d%b?)? contribution.

Our result for Fq(4) (see Eq. (@) reads

- (dabed)2 [ 1 [40¢; 8¢ 4x?| 1| 1487 152¢2  8m2(s
F! = ny e e — —
(dabedy2 Ny €| 3 3 3 € 8505 3 3
2720¢; 10t 664¢; 28472 9887¢y
— 48| — 12406, —
T Tar Ty 9 G 135
4967%Cs  104057°  680C2  95098(;  46w2(; 1888w
T TTi206 T 9 T2 79 T Tam
13414¢; 1078372 3190
_ _ 923
27 7 T3 } (23)

where Np = N, = 3 and (,, is Riemann’s zeta function evaluated at n.

The cusp and collinear anomalous dimension can be extracted from the 1/¢? and 1/e
poles, respectively. For convenience of the reader we present the corresponding results
separately. They are given by

dabed)? 1280 256 128
C 3 — ( F o ey - 2
FVCusp (d%bcd)Q ny NF 3 C5 3 C3 + 3 s
( abcd)2
~ nffvi(—123.894910...), (24)
F
3 _ . (@) [ 592x°  608¢; N 10880¢s  32m%¢y
9 (qpeaye 7 Np 8505 3 9 3
407 2656¢; 113673
— 192 ] . 25
7 T 9 (25)

In Refs. [22,23] the quark and gluon splitting functions at four-loop order have been
considered. As a by-product numerical results for cusp anomalous dimensions have been
obtained, in particular for CF’)/gusp|(d%bcd)2 as given in Eq. (24]). The numerical result from
Tab. 2 of [22] reads —123.90 £ 0.2 and agrees well with the numerical evaluation of our
analytic expression.

The results for 77 and the finite part of the form factor in Eqs. (23)) and (23) are new.
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4 Conclusions

We perform the next step towards the computation of massless four-loop form factors
and compute the contribution of the quartic colour structure (d%°?)? to the photon-quark
form factor. We have to consider two planar and four non-planar integral families which
are shown in Fig. We want to stress that this is the first time that master integrals
with twelve propagators corresponding to non-planar graphs have to be considered. Our
main results are shown in Eqs. 23)), 24) and @25). Furthermore, we provide analytic
results for all master integrals in a supplementary file to this paper.

We have used this calculation to further refine our method, which is used to obtain
analytic results for the master integrals. The new element is the construction of the so-
called associator which directly relates the coefficients in the boundary condition to the
coefficients of the integrals in the physical limit. We are confident that the remaining
contributions can be computed along the same lines. However, one has to keep in mind
that much more families have to be considered and that the reductions to master integrals
(both with one and two mass scales) require a significant amount of CPU time.
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Appendix: Explicit results for twelve-line non-planar
master integrals
In this appendix we present explicit results for the most complicated master integrals

of the families df2-2 and df2-3 with twelve lines. We provide the ¢ expansion up to the
constant term. Our results read

) B
111111111111 —
1] 1 1|73 10331 7x%| 1| 311G 2457% 1765
== sl 2| - — —
S |144| " €|576| T 6|1152  216| &| 216 576 1152
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= 54 1440 1728 ' 576 | €| 648 1728 360
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+ O(e). (29)

The subscripts denote the exponents of the propagators, where the order is defined in
Fig. Bl The six indices for the numerators are not shown; they are zero. Furthermore, we
have

Ssa = s+ (5.3~ 1.0417850291827918834 . (30)

Cma....m, are multiple zeta values given by

oo i1—1 ip—1—1

..... = >> X Hsg“\Zj‘f (31)

i1=112=1 =1 j=1

Note that sg, cancels in the combination of the master integrals which leads to the (d%?)?
part of the photon quark form factor, see Eq. (23]).
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