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Abstract

We analytically compute the four-loop QCD corrections for the colour structure
(dabcdF )2 to the massless non-singlet quark form factor. The computation involves
non-trivial non-planar integral families which have master integrals in the top sector.
We compute the master integrals by introducing a second mass scale and solving
differential equations with respect to the ratio of the two scales. We present details of
our calculational procedure. Analytical results for the cusp and collinear anomalous
dimensions, and the finite part of the form factor are presented. We also provide
analytic results for all master integrals expanded up to weight eight.
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1 Introduction

Form factors are indispensable vertex functions which enter a number of quantities in
precision physics. Most prominent examples are the virtual corrections to the Drell-Yan
process or inclusive Higgs boson production. Form factors are furthermore the simplest
Green’s function with a non-trivial infrared structure. In fact, from the pole parts of the
form factors it is possible to extract universal quantities, like the cusp or collinear anoma-
lous dimension. They enter general formulae which predict the infrared pole structure of
massless on-shell multi-loop multi-leg QCD amplitudes [1, 2].

In this paper we consider the quark-anti-quark-photon form factor with massless quarks
which is obtained from the corresponding vertex function Γµ

q via

Fq(q
2) = −

1

4(1− ǫ)q2
Tr
(

q2/ Γµ
q q1/ γµ

)

, (1)

where we work in d = 4−2ǫ space-time dimensions, q = q1+q2, and q1 (q2) is the incoming
quark (anti-quark) momentum.

Two-loop corrections to Fq have been computed for the first time more than twenty
years ago [3–6] and the three-loop terms are available since about ten years [7–10] (for the
computation of master integrals see also Ref. [11]). Only two years ago first four-loop result
for Fq became available: In a first step the large-Nc limit has been considered, where only
planar Feynman diagrams contribute, and the fermionic and non-fermionic corrections
have been computed in Refs. [12] and [13], respectively. Fermionic corrections with three
closed quark loops have been computed in Ref. [14]; the complete terms proportional to
n2
f are available from [15].

Important information about QCD amplitudes is already obtained from the pole part of
the form factor. Of particular interest in this respect is the cusp anomalous dimension,
γcusp [16], which can be extracted from the 1/ǫ2 pole of Fq. At three-loop order first results
for γcusp have been computed from the asymptotic behaviour of splitting functions [17]
where the fractional hadron momentum tends to 1. The results have been confirmed
afterwards by a dedicated calculation of the pole parts of the form factor [18]. Also at
four-loop order there are two approaches to obtain γcusp: The n3

f terms of γcusp has been
obtained in Refs. [14, 19, 20] and analytic results in the large-Nc limit and for the (com-
plete) n2

f contributions have been obtained in Refs. [12, 13, 15] and [21] from the explicit
calculation of the form factor and the splitting functions in the threshold limit, respec-
tively. The approach used in [21] could be extended to all colour structures; numerical
results are presented in Refs. [22, 23]. Recently the abelian four-loop contribution of the
linear nf term to γcusp has been computed analytically in Ref. [24]. The main focus of [24]
is the cusp anomalous dimension for massive fermions in QED. The abelian nf term for
massless quarks is obtained as a by-product.
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(a) (b)

Figure 1: Non-singlet (a) and singlet (b) sample diagrams contributing to the colour
structure (dabcdF )2 of the photon-quark form factor. The gray blob indicates the external
vector current.

We define the expansion of Fq in terms of the bare strong coupling constant as

Fq = 1 +
∑

n≥1

(

α0
s

4π

)n(
µ2

−q2 − i0

)nǫ

F (n)
q , (2)

The universal quantities γcusp and γq are conveniently extracted from the pole part of
log(Fq) after renormalization of αs (see, e.g., Refs. [2,8,16]). We define the corresponding
n-loop coefficients as follows

γx =
∑

n≥0

(

αs(µ
2)

4π

)n

γn
x , (3)

with x = cusp or x = q. In order to fix the normalization we provide the one-loop results
which read γ0

cusp = 4 and γ0
q = −3CF (with CF = (N2

c − 1)/(2Nc)).

In this work, we provide analytic four-loop results for γcusp, γq and Fq for the colour
structure (dabcdF )2 which for a SU(Nc) group is given by

(dabcdF )2

NA

=
N4

c − 6N2
c + 18

96N2
c

, (4)

with NA = N2
c − 1. Such colour factors arise from diagrams where four gluons connect

the two external fermion lines, see Fig. 1(a). Note that there are also singlet diagrams
with colour factor proportional to (dabcdF )2, see Fig. 1(b). In this work we only consider
non-singlet contributions.

2 Calculation

There are 18 Feynman diagrams with a closed fermion loop which is connected to the
external fermion line via four gluons. A representative diagram is shown in Fig. 1(a); all
other diagrams are obtained by the various possibilities to connect the four gluons to the
external fermion lines.
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Figure 2: Planar (top row) and non-planar (bottom row) integral families. The numbers
n next to the lines correspond to the indices of the propagators, i.e. to the nth integer
argument of the functions representing the integrals. In addition to the 12 propagators we
have for each family six linear independent numerator factors. However, the corresponding
indices are always zero for our master integrals.

We can map the 18 (six planar and twelve non-planar) diagrams to six integral families,
two planar and four non-planar ones. They are illustrated in Fig. 2 where thin solid lines
represent massless propagators.1 The thick external line carries the virtuality q2. The
planar families have been studied in Refs. [12,13] where in particular all master integrals
have been computed. Results for the non-planar families in Fig. 2 are not yet available
in the literature. In the following we concentrate our discussion on them.

With the help of a suitably chosen projector to obtain Fq (introduced in Eq. (1)) we
can express the amplitude as a linear combination of scalar functions, which correspond
to the family definitions of Fig. 2. All of them have 18 indices each, twelve for the
propagators and six for irreducible numerators. We use FIRE [25–27] in combination
with LiteRed [28, 29] for the reduction to master integrals. In Tab. 1 we present some
information about the individual (non-planar) families. Altogether we have to compute
about 50 000 integrals which can be reduced to almost 200 master integrals. We refrain
from minimizing the master integrals among the various families since our approach (see
below) is applied to a whole family and provides simultaneous results for all master
integrals. We nevertheless establish relations between master integrals of different families
and use them as cross checks for our results. For example, 36 of the 41 master integrals
from df2-5 can be mapped to master integrals of df2-2. Note that we have performed the

1For convenience we use the internal numeration of the families also in the paper.

4



non-planar # 1-scale # 2-scale number of size of tables
family MIs MIs integrals (MB) (1-scale)
df2-2 71 337 14156 98
df2-3 45 244 15278 50
df2-5 41 92 11620 23
df2-6 35 78 11531 18

Table 1: Information about the non-planar families.

calculation in Feynman gauge.

For the computation of the master integrals we use the idea suggested in [30] and used in
our previous works for the planar [12, 13] and n2

f calculation [15]: we introduce a second
mass scale q22 = xq2 as the virtuality of one of the external quarks. This increases, of
course, the complexity of the problem. We encounter a more difficult reduction problem
and there are significant more master integrals present in the individual families (compare
“# 1-scale MIs” and “# 2-scale MIs” in Tab. 1). However, the introduction of the second
mass scale has the advantage that we can use the powerful method of differential equations.
In fact, the basic idea is to choose x = 1 in order to fix the boundary conditions, since in
this limit one has to compute massless two-point functions which are well studied in the
literature [31, 32]. The differential equations are then used to transport the information
to the point x = 0.

The method has been described in some details in Ref. [15] where for the first time non-
planar four-loop families have been considered. For the integral families considered in this
paper the method had to be further refined. Note that in Ref. [15] no non-planar master
integrals had to be computed in the top sector where the indices of all twelve propagators
are positive.

For each family we can introduce a system of differential equations of the form2

∂xj(x) = m(x)j(x) , (5)

where j(x) is a vector of (two-scale) master integrals in the primary basis chosen by FIRE

and m(x) is a square matrix. We use the idea suggested in Refs. [33, 34] to turn to
a so-called ǫ or canonical basis where the right-hand side of the differential equations is
proportional to ǫ and singularities with respect to the variables of the differential equations
are Fuchsian, i.e., of the form 1/(x − a). To arrive at a canonical basis, we use the
algorithm of Ref. [35]3 and its private implementation. We apply this procedure to each
family separately and arrive at an ǫ form given by

∂xJ(x) = ǫM(x)J(x) , (6)

2In the following we do not explicitly show the ǫ dependence of the functions in the arguments.
3Meanwhile there are two public computer implementations of this algorithm, see Refs. [36–39]. A

somewhat different approach to the same problem can be found in Ref. [40].
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where J are the master integrals in the canonical basis, which are connected to the ones in
the primary basis via j(x) = T (x)J(x). The matrix M(x) only has a simple dependence
on x

M(x) =
∑

a

Ma

x− a
, (7)

with constant matrices Ma. In our case the sum only includes two terms, a = 0 and a = 1,
which correspond to the physical point and the point where we want to fix the boundary
conditions, respectively. Next, we introduce, as in [15], the path-ordered exponent

U(x, x0) = P exp



ǫ

x
∫

x0

dξM(ξ)



 , (8)

and define the quantities (with a slight abuse of notation)4

U(x, 0) = lim
x0→0

U(x, x0)x
ǫA0

0 ,

U(x, 1) = lim
x0→1

U(x, x0)(1− x0)
ǫA1 , (9)

which have the properties

U(x, 0)
x→0
−→ xǫA0 ,

U(x, 1)
x→1
−→ (1− x)ǫA1 . (10)

Note that U(x, 0) and U(x, 1) can be obtained in a straightforward way as an expansion
in ǫ in terms of Harmonic polylogarithms (HPLs) [41] with arguments (1 − x) and x,
respectively. Furthermore, both U(x, 0) and U(x, 1) solve the system (7) and are thus
related by a matrix U01 which only depends on ǫ but not on x:

U(x, 1) = U(x, 0)U01 . (11)

We will call the matrix U01 ≡ U01(ǫ) the associator. It can be constructed by multiplying
Eq. (11) by x−ǫA0 from the left and taking the limit x → 0 which leads to

U01 = lim
x→0

x−ǫA0U(x, 1) . (12)

In practice, the right-hand side of Eq. (12) is evaluated by extracting all log(x) terms
contained in U(x, 1) with the help of shuffle relations to eliminate the leading letter “1”
from the HPLs.5 They have to cancel against the log(x) terms from x−ǫA0 such that the
limit x → 0 can be taken.

4Note that U(x, 0) and U(x, 1) as defined in Eq. (8) are divergent and thus confusion with Eq. (9) is
excluded.

5Note that the program package HPL [42] has a build-in command which can be used for this step.
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Let us in a next step discuss the boundary conditions which we compute for x = 1. Note
that in this limit our integrals are analytical and thus we do not have contributions of the
form x−kǫ with k 6= 0. In the canonical basis we can thus write

J(x) = U(x, 1)C1 , (13)

where C1 is a vector with ǫ-dependent components. Similarly we have

J(x) = U(x, 0)C0 . (14)

Note that in this limit the integrals in J have a logarithmic dependence on x. We are only
interested in the so-called hard part which means that from the various contributions of
the form x−kǫ we only take those with k = 0.

Next we want to relate the constants C0 and C1 to coefficients of integrals from the
primary basis evaluated near x = 0 and x = 1, respectively. These relations have the
form

C0 = L0c0 ,

C1 = L1c1 , (15)

where L0,1 are matrices depending on ǫ, and c0,1 are the column vectors of the specific
coefficients in the asymptotics x → 0 and x → 1, respectively. Note that the vector c1 is
obtained from the boundary conditions, and the aim of our calculation is the hard part of
c0. In the following we present details about how we determine which set of coefficients
c0 suffices and calculate the matrix L0. L1 and c1 are calculated in analogy.

We start with the generalized series expansion of T (x, ǫ)U (x, 0) which can be cast in the
form

T (x, ǫ)U (x, 0) =
∑

α,k

u (α, k)xα logk x , (16)

where α = n1 + ǫn2 with integer n1 and n2, and u (α, k) are matrices which depend on ǫ.
The key point is that, using the approach of Ref. [43], we can calculate plenty of terms in
the above expression, keeping the exact ǫ dependence. After applying Eq. (16) to C0 we
have

j(x) =
∑

α,k

c (α, k)xα logk x , (17)

where

c (α, k) = u (α, k)C0 . (18)

Each c (α, k) is a column vector of the form (c1 (α, k) , . . . , cN (α, k))⊺, where N is the
number of two-scale master integrals of the considered family.
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In a next step we select from the coefficients ci (α, k) (for various i, α, and k) the minimal
set, which is sufficient to determine all constants in C0 = (C01, . . . C0N)

⊺. Let this set be

ci1 (α1, k1) =

N
∑

j=1

ui1j (α1, k1)C0j,

...

ciM (αM , kM) =
N
∑

j=1

uiM j (αM , kM)C0j . (19)

Here sufficient refers to the rank of the matrix

R =







ui11 (α1, k1) . . . ui1N (α1, k1)
...

. . .
...

uiM1 (αM , kM) . . . uiMN (αM , kM)






(20)

which has to be greater or equal to the number of master integrals N , and minimal means
that M = N . In other words, R is a square matrix, which is invertible and we have

c0 = (ci1 (α1, k1) , . . . , ciN (αN , kN))
⊺ ,

L0 = R−1. (21)

Of course, this procedure does not lead to unique quantities c0 and L0, which, however,
is not a problem since the arbitrariness cancels after performing the matching to the one-
scale master integrals. As a rule of thumb we first try to pick coefficients only among the
leading coefficients of the asymptotic expansion of the integrals j(x) and then extend the
search to subleading terms in x, if necessary.

Using Eqs. (11), (13), (14) and, (15) we finally arrive at

c0 = L−1
0 U01L1c1 , (22)

which is used to obtain the coefficients at x = 0 from the ones at x = 1. Note that L0

and L1 are exact in ǫ but U01 is usually known as an expansion for ǫ → 0.

The number of components of c0 is the number of the two-scale master integrals. For
example, for df2-2, it is 337. Our goal is the determination of the coefficients in the naive
part of the expansion, i.e. the part of the expansion with non-negative integer powers
of x. For df2-2, c0 contains 116 coefficients corresponding to the naive limit. One can
expect that this number is equal to the number of one-scale master integrals, which is,
however, not the case. The reason is the additional symmetry of the one-scale integrals,
related to the permutation of two massless legs. This symmetry reduces the number of
one-scale master integrals to 71. Therefore, there are 116− 71 = 45 redundant relations
which we use as a check once we have satisfied 71 relations using explicit results for
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the one-scale master integrals. In practice, most of the one-scale master integrals have
the same indices as the corresponding two-scale master integrals so that the results for
these one-scale master integrals are obtained directly from the naive part of the two-scale
master integrals. For the remaining one-scale master integrals (where an index equal to
two is chosen in another place), results are obtained after solving simple linear systems
of equations.

Let us stress that the basic ideas of the described procedure have already been discussed in
Ref. [15], However, the approach presented here is more algorithmic and has now reached
a state where it can be applied to highly non-trivial non-planar integral families, as it is
demonstrated in this paper.

Note that in our case, we had to expand U01 up to ǫ9 (weight 9) for df2-2 and df2-3
since the property of uniform transcendentality is destroyed when mapping the two-scale
master integrals to one-scale master integrals in the limit x → 0. In the final result for the
form factor all weight-nine constants drop out. This happens separately for each family.
In principle it is possible to adapt the basis of the one-scale master integrals such that
only an expansion of U01 up to ǫ8 is necessary. However, our approach is powerful enough
such that an expansion up to ǫ9 did not pose any serious technical problems. For df2-5
and df2-6 an expansion up to weight eight is sufficient.

The reduction of one-scale as well as of two-scale integrals, needed for the derivation of
differential equations for the (two-scale) master integrals, took several months for each of
the four non-planar families. Using the standard version of FIRE we have failed to reduce
the two-scale integrals of family df2-2 in the top sector. However, following the ideas
of Ref. [14], based on modular arithmetics, we managed to improve the performance of
FIRE [44]. The new version can be used in a massive parallel mode on supercomputers
which allows us to obtain the missing reductions.

In Ref. [45] many (planar and non-planar) four-loop vertex integrals have been computed
numerically. Among them are uniformly trancendental integrals in the top sectors of df2-2
and df2-3. Reducing these integrals to our primary bases and using our analytic results
we can confirm the results (A.4)–(A.7) of Ref. [45].

Let us finally mention that we have performed numerical cross checks of all master inte-
grals of families df2-2, df2-3, df2-5 and df2-6 with up to ten positive indices expanded up
to order ǫ0 using FIESTA [46].

Analytic results for all master integrals can be downloaded in electronic form from [47].
For illustration we show for families df2-2 and df2-3 the master integrals with twelve lines
in the Appendix. Families df2-5 and df2-6 have no twelve-line master integrals.
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3 Results

After inserting the analytic results for the master integrals into the amplitude for the
form factor we observe that all poles higher than 1/ǫ2 cancel. This is expected since the
coefficients of the 1/ǫ8, . . . , 1/ǫ3 poles are determined by lower-loop contributions. Since
the colour structure (dabcdF )2 appears for the first time at four-loop order it can at most
have 1/ǫ2 poles. For the same reason there are no renormalization contributions to the
(dabcdF )2 contribution.

Our result for F
(4)
q (see Eq. (2)) reads

F (n)
q

∣

∣

∣

(dabcd
F

)2
= nf

(dabcdF )2

NF

{

1

ǫ2

[

40ζ5
3

+
8ζ3
3

−
4π2

3

]

+
1

ǫ

[

−
148π6

8505
−

152ζ23
3

−
8π2ζ3
3

+
2720ζ5

9
+

10π4

27
+

664ζ3
9

−
284π2

9
+ 48

]

− 1240ζ7 −
988π4ζ3
135

+
496π2ζ5

9
+

10405π6

10206
+

680ζ23
9

+
95098ζ5

27
+

46π2ζ3
9

+
1888π4

405

−
13414ζ3

27
−

10783π2

27
+

3190

3

}

, (23)

where NF = Nc = 3 and ζn is Riemann’s zeta function evaluated at n.

The cusp and collinear anomalous dimension can be extracted from the 1/ǫ2 and 1/ǫ
poles, respectively. For convenience of the reader we present the corresponding results
separately. They are given by

CFγ
3
cusp

∣

∣

∣

(dabcd
F

)2
= nf

(dabcdF )2

NF

(

−
1280

3
ζ5 −

256

3
ζ3 +

128

3
π2

)

≈ nf

(dabcdF )2

NF

(−123.894910 . . .) , (24)

γ3
q

∣

∣

∣

(dabcd
F

)2
= nf

(dabcdF )2

NF

(

−
592π6

8505
−

608ζ23
3

+
10880ζ5

9
−

32π2ζ3
3

+
40π4

27
+

2656ζ3
9

−
1136π2

9
+ 192

)

. (25)

In Refs. [22, 23] the quark and gluon splitting functions at four-loop order have been
considered. As a by-product numerical results for cusp anomalous dimensions have been
obtained, in particular for CFγ

3
cusp|(dabcdF

)2 as given in Eq. (24). The numerical result from

Tab. 2 of [22] reads −123.90 ± 0.2 and agrees well with the numerical evaluation of our
analytic expression.

The results for γ3
q and the finite part of the form factor in Eqs. (25) and (23) are new.
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4 Conclusions

We perform the next step towards the computation of massless four-loop form factors
and compute the contribution of the quartic colour structure (dabcdF )2 to the photon-quark
form factor. We have to consider two planar and four non-planar integral families which
are shown in Fig. 2. We want to stress that this is the first time that master integrals
with twelve propagators corresponding to non-planar graphs have to be considered. Our
main results are shown in Eqs. (23), (24) and (25). Furthermore, we provide analytic
results for all master integrals in a supplementary file to this paper.

We have used this calculation to further refine our method, which is used to obtain
analytic results for the master integrals. The new element is the construction of the so-
called associator which directly relates the coefficients in the boundary condition to the
coefficients of the integrals in the physical limit. We are confident that the remaining
contributions can be computed along the same lines. However, one has to keep in mind
that much more families have to be considered and that the reductions to master integrals
(both with one and two mass scales) require a significant amount of CPU time.
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Appendix: Explicit results for twelve-line non-planar

master integrals

In this appendix we present explicit results for the most complicated master integrals
of the families df2-2 and df2-3 with twelve lines. We provide the ǫ expansion up to the
constant term. Our results read

G
(df2-2)
111111111111 =

+
1

ǫ8

[

1

144

]

+
1

ǫ7

[

73

576

]

+
1

ǫ6

[

331

1152
−

7π2

216

]

+
1

ǫ5

[

−
311ζ3
216

−
245π2

576
−

1765

1152

]

+
1

ǫ4

[

−
1103ζ3
54

−
37π4

1440
−

917π2

1728
+

2297

576

]

+
1

ǫ3

[

4021π2ζ3
648

−
42053ζ3
1728

−
22667ζ5
360

11



−
31327π4

51840
+

2615π2

864
−

59

36

]

+
1

ǫ2

[

10784ζ23
81

+
13595π2ζ3

216
+

293837ζ3
1728

−
268139ζ5

360

−
4901π6

38880
−

40973π4

103680
−

347π2

96
−

21161

288

]

+
1

ǫ

[

1960259ζ23
1296

+
1037π4ζ3

160
+

117521π2ζ3
1296

−
490831ζ3

864
+

508661π2ζ5
2160

−
2028557ζ5

2880
−

10749139ζ7
4032

−
3561371π6

2177280
+

110171π4

34560

−
20797π2

432
+

222407

288

]

−
4937s8a

6
−

582209π2ζ23
1944

+
8605981ζ23

5184
+

2064401ζ5ζ3
270

+
3543269π4ζ3

77760
−

876841π2ζ3
1296

+
325039ζ3

216
+

87229π2ζ5
48

+
2528065ζ5

576
−

8894555ζ7
504

−
17509π8

1088640
+

579329π6

2177280
−

547763π4

51840
+

126427π2

216
−

1754951

288
+O(ǫ) , (26)

G
(df2-2)
111111111112 =

+
1

ǫ8

[

−
1

72

]

+
1

ǫ7

[

−
83

288

]

+
1

ǫ6

[

9163

5184
+

7π2

108

]

+
1

ǫ5

[

203ζ3
108

+
857π2

864
+

408031

15552

]

+
1

ǫ4

[

7109ζ3
216

+
59π4

720
−

49285π2

7776
−

101431

1728

]

+
1

ǫ3

[

1703π2ζ3
324

−
3601769ζ3

7776
−

8113ζ5
180

+
15673π4

6480
−

66752π2

729
−

36323851

139968

]

+
1

ǫ2

[

29089ζ23
162

+
9137π2ζ3

81
−

119403089ζ3
23328

−
28579ζ5
120

−
18167π6

68040
−

1566377π4

155520
−

1085407π2

11664
+

13540370

6561

]

+
1

ǫ

[

2292335ζ23
648

−
50413π4ζ3

2160
+

2537869π2ζ3
1458

+
32307611ζ3

7776
+

388549π2ζ5
1080

−
155919821ζ5

12960

−
2985239ζ7

2016
−

69407π6

38880
−

466151π4

2880
+

192951265π2

209952
−

1928298269

209952

]

−
150569s8a

15
−

801973

972
π2ζ23 +

1602372409ζ23
23328

−
751148ζ5ζ3

135
−

2514809π4ζ3
9720

+
412729031π2ζ3

34992
+

6680310761ζ3
209952

+
7821953π2ζ5

1080
−

3525176537ζ5
38880

−
101624527ζ7

2016

+
62792629π8

27216000
−

14403373π6

979776
+

7488623π4

87480
−

2098797893π2

629856
+

33048481297

944784
+O(ǫ) , (27)

G
(df2-3)
111111111111 =

+
1

ǫ8

[

1

144

]

+
1

ǫ7

[

5

48

]

+
1

ǫ6

[

125

576
−

5π2

108

]

+
1

ǫ5

[

−
401ζ3
216

−
175π2

288
−

235

288

]

12



+
1

ǫ4

[

−
1567ζ3
72

+
19π4

576
−

853π2

1728
+

143

64

]

+
1

ǫ3

[

13151π2ζ3
1296

−
13711ζ3
864

−
16277ζ5
360

+
5489π4

17280
+

5905π2

1728
−

289

32

]

+
1

ǫ2

[

248513ζ23
1296

+
40319π2ζ3

432
+

46481ζ3
432

−
3751ζ5
12

+
751π6

9720
−

15833π4

103680
−

21929π2

1728
+

58997

1152

]

+
1

ǫ

[

388001ζ23
216

−
653π4ζ3
180

+
731π2ζ3
2592

−
111755ζ3

288
+

37751π2ζ5
216

+
26203ζ5
288

−
2796859ζ7

4032
+

6767π6

5376
−

138163π4

103680
+

181931π2

3456

−
230063

768

]

−
39277s8a

60
−

378593

486
π2ζ23 −

246895ζ23
2592

+
5465129ζ5ζ3

1080
−

110419π4ζ3
25920

−
390271π2ζ3

1296
+

29821ζ3
18

+
193657π2ζ5

144
+

12305ζ5
18

−
7097513ζ7

1344
+

64370083π8

163296000

+
2545177π6

4354560
+

586303π4

103680
−

1737749π2

6912
+

7659073

4608
+O(ǫ) , (28)

G
(df2-3)
111111111112 =

+
1

ǫ8

[

−
1

48

]

+
1

ǫ7

[

−
5

8

]

+
1

ǫ6

[

5π2

36
−

9101

1728

]

+
1

ǫ5

[

401ζ3
72

+
104π2

27
−

2683

648

]

+
1

ǫ4

[

21469ζ3
144

−
19π4

192
+

64867π2

2592
+

1890005

31104

]

+
1

ǫ3

[

−
13151

432
π2ζ3 +

2688043ζ3
2592

+
16277ζ5
120

−
73759π4

51840
+

52943π2

3888
−

3191177

23328

]

+
1

ǫ2

[

−
248513ζ23

432
−

52100π2ζ3
81

+
1838789ζ3

3888
+

103027ζ5
48

−
751π6

3240
+

82751π4

38880
−

10340263π2

93312
+

7939145

139968

]

+
1

ǫ

[

−
3037421ζ23

216
+

653π4ζ3
60

−
27028351π2ζ3

7776
−

328391611ζ3
46656

−
37751π2ζ5

72

+
53255227ζ5

4320
+

2796859ζ7
1344

−
1650113π6

145152
−

10799π4

1215
+

42718393π2

139968
+

1755738287

1679616

]

+

[

39277s8a
20

+
378593

162
π2ζ23 −

327874441ζ23
3888

−
5465129ζ5ζ3

360
−

3251225π4ζ3
15552

−
12190039π2ζ3

5832
+

5299330289ζ3
279936

−
19735721π2ζ5

2160
+

33557879ζ5
6480

+
13021045ζ7

672

−
64370083π8

54432000
−

70615283π6

1088640
−

834281549π4

5598720
−

1101059033π2

1679616
−

72028514245

10077696

]

13



+O(ǫ) . (29)

The subscripts denote the exponents of the propagators, where the order is defined in
Fig. 2. The six indices for the numerators are not shown; they are zero. Furthermore, we
have

s8a = ζ8 + ζ5,3 ≈ 1.0417850291827918834 . (30)

ζm1,...,mk
are multiple zeta values given by

ζm1,...,mk
=

∞
∑

i1=1

i1−1
∑

i2=1

· · ·

ik−1−1
∑

ik=1

k
∏

j=1

sgn(mj)
ij

i
|mj |
j

. (31)

Note that s8a cancels in the combination of the master integrals which leads to the (dabcdF )2

part of the photon quark form factor, see Eq. (23).
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