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The combined analysis of the BaBar, Belle, and LHCb data on B → Dτν , B → D∗τν and
Bc → J/Ψτν decay observables shows evidence of physics beyond the Standard Model (SM). In
this article, we study all the one and two dimensional scenarios which can be generated by adding
a single new particle to the SM. We put special emphasis on the model-discriminating power of
FL(D∗) and of the τ polarizations, and especially on the constraint from the branching fraction
BR(Bc → τντ ). We critically review this constraint and do not support the aggressive limit of
BR(Bc → τντ ) < 10% used in some analyses. While the impact of FL(D∗) is currently still limited,
the BR(Bc → τντ ) constraint has a significant impact: depending on whether one uses a limit of 60,
30 or 10%, the pull for new physics (NP) in scalar operators changes drastically. More specifically,
for a 60% limit a scenario with scalar operators give the best-fit to data, while for a hypothetical
future 10% limit this scenario is strongly disfavoured and the best-fit is obtained in a scenario in
which only a left-handed vector operator is generated. We find a sum rule for the branching ratios
of B → Dτν, B → D∗τν and Λb → Λcτν which holds for any NP contribution to the Wilson
coefficients. This sum rule entails an enhancement of B(Λb → Λcτν) over its SM prediction by

(24± 6)% for the current R(D(∗)) data.

I. INTRODUCTION

Low-energy precision flavour observables probe new
physics (NP) in a complementary way to direct searches
for new particles at high energies. In this respect, tauonic
B meson decays are an excellent window into NP: in com-
bination with the well-studied B decays to light leptons
(` = µ, e) they test lepton flavour universality (LFU).
Within the Standard Model (SM), LFU is only broken
by the small Higgs Yukawa interactions and it manifests
itself (to a very good approximation) only via the masses
entering the phase space of the different decay modes.

The theory predictions for the individual semileptonic
decay rates suffer from hadronic uncertainties related to
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the form factors and from parametric uncertainties stem-
ming from the errors in the CKM elements (e.g., see
Refs. [1–3] for recent reviews). However, in normalizing
the branching ratios B(B → D(∗)τν) to B(B → D(∗)`ν),
` = µ, e, and analogously also their counterparts for
other b-flavored hadrons,

R(D(∗)) ≡ B(B → D(∗)τν)/B(B → D(∗)`ν) ,

R(J/Ψ) ≡ B(Bc → J/Ψτν)/B(Bc → J/Ψ`ν) ,

R(Λc) ≡ B(Λb → Λcτντ )/B(Λb → Λc`ν`) ,

(1)

the dependence on the CKM elements drops out and the
uncertainties originating from the form factors are signif-
icantly reduced [4–7].

Experimentally, the BaBar collaboration performed an
analysis of R(D) and R(D∗) using the full available data
set [8, 9]. The same ratios were also measured by the
Belle collaboration [10–13], while the LHCb collaboration
has measured R(D∗) [14–16]. Combining these data, the
HFLAV collaboration [17] determines the ratios

R(D) = 0.407± 0.039± 0.024 ,

R(D∗) = 0.306± 0.013± 0.007 .
(2)
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Here, the first error is statistical and the second one is
systematic. Comparing these measurements to the cor-
responding SM predictions [18–21]

RSM(D) = 0.299± 0.003 ,

RSM(D∗) = 0.258± 0.005 ,
(3)

reveals a tension at the level of 3.8σ [17].#1 This is
also consistent with the previous evaluations of R(D)
in Ref. [4, 5, 22, 24, 25] and of R(D∗) in [6].

The observed anomaly receives further support from
the LHCb analysis of R(J/Ψ) [26] which also finds an
experimental value significantly above the SM predic-
tion. Unfortunately, the relevant form factors are poorly
known in this case [27, 28]. Hence we do not include
this measurement in our analysis. For a discussion of NP
effects in R(J/ψ) see Refs. [29, 30].

For later use we further quote the SM prediction for
the ratio R(Λc) [31]:

RSM(Λc) = 0.33± 0.01. (4)

The Belle collaboration has measured the τ polariza-
tion asymmetry along the longitudinal directions of the
τ lepton in B → D∗τν, defined as

Pτ (D∗) =
Γ(B → D∗τλ=+1/2ν)− Γ(B → D∗τλ=−1/2ν)

Γ(B → D∗τν)
,

(5)
where λ denotes the τ helicity, obtaining [12, 13]

Pτ (D∗) =− 0.38± 0.51+0.21
−0.16. (6)

This observable turns out to be interesting for discrimi-
nating NP models, especially if the accuracy will be im-
proved in the future by the Belle II experiment.

Recently, the Belle collaboration has also measured the
longitudinal D∗ polarization in B → D∗τν, defined as

FL(D∗) =
Γ(B → D∗Lτν)

Γ(B → D∗τν)
. (7)

Like the τ polarization, also the D∗ polarization can dis-
tinguish between different Lorentz structures; i.e., NP in
scalar, tensor or vector operators affects the D∗ polar-
ization in a complementary way to the overall rate. The
preliminary Belle result is [32]

FL(D∗) = 0.60± 0.08± 0.035 , (8)

which agrees with the SM prediction of

FL, SM(D∗) = 0.46± 0.04 , (9)

at the 1.5σ level [33]. Nonetheless, this result can still
favor or disfavor specific NP scenarios.

#1 Recent discussions of long-distance electromagnetic effects in
R(D) can be found in Refs. [22, 23].

Similarly, the τ polarization in B → Dτν can provide
information about the Lorentz structure of NP [4, 7].
However, Pτ (D) has not been measured yet. The reason
for this is that the τ is reconstructed in decay modes with
at least one neutrino, and the missing energy blurs the
information on the τ momentum. One can deal with this
problem by considering differential decay distributions
involving only kinematical variables of the visible final
state particles, for instance the D and π energies, and
the angle between the D and π tracks in the decay chain
B → Dντ [→ πν]. These decay distributions have a high
sensitivity to NP [4, 7].

Furthermore, the Bc lifetime has a significant impact
on possible NP solutions [34, 35], because it constrains
the yet unmeasured branching ratio B(Bc → τν). The
lifetime measurement is very precise [36],

τ(Bc) =(0.507± 0.009) ps , (10)

while a theory prediction is quite challenging (we will
return to this issue in detail later).

Even though many model independent analyses in this
context have been performed [33, 34, 37–58], it is im-
portant to reconsider the situation in light of the re-
cent FL(D∗) measurement and to critically revise and
examine the treatment of the Bc lifetime. Furthermore,
we will highlight the future potential of the polarization
observables FL(D∗), Pτ (D∗), and (the yet unmeasured)
Pτ (D) to discriminate between different scenarios of NP.
We will also highlight the interplay among R(D(∗)) and
R(Λc) where R(D(∗)) provides a consistency check of the
measurements.

The paper is organized as follows: In Sec. II, we fix
our notation for the relevant effective Hamiltonian. In
Sec. III, we discuss theoretical and phenomenological as-
pects of BR(Bc → τν) and list compact analytic formulae
for the considered observables. In Sec. IV, we present our
phenomenological studies in scenarios with one and two
non-zero NP Wilson coefficients. The chosen scenarios
correspond to the cases in which the NP coefficients are
generated by the exchange of a single heavy spin-0 or
spin-1 particle. Finally, we conclude.

II. EFFECTIVE FIELD THEORY

We are interested in NP which is realized above the B
meson mass scale. Especially in the case at hand, this
is a reasonable assumption, since modifying a charged
current obviously requires a new charged particle for
which light masses are experimentally excluded. There-
fore, we can integrate out the heavy degrees of freedom,
and the SM as well as the NP physics contributions are
parametrized by the effective Hamiltonian

Heff = 2
√

2GFVcb
[
(1 + CLV )OLV + CRS O

R
S

+CLSO
L
S + CTOT

]
,

(11)
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with

OLV = (c̄γµPLb) (τ̄ γµPLντ ) ,

ORS = (c̄PRb) (τ̄PLντ ) ,

OLS = (c̄PLb) (τ̄PLντ ) ,

OT = (c̄σµνPLb) (τ̄σµνPLντ ) ,

(12)

where we assumed the absence of both (light) right-
handed neutrinos#2 and NP couplings to the light lepton
generations (as studied in Ref. [61]). Note that we have
factored out the SM contribution such that all Wilson co-
efficients CL,RS,V,T originate from NP only. Here we do not
include a vector operator with a right-handed coupling
to quarks, because such an operator (with the desired
LFU violation) does not arise at the dimension-six level
in the SU(2)L-invariant effective theory [62–64].

The Wilson coefficients in Eq. (11) depend on the
renormalization scale. We will quote our results for the
coefficients defined at the scale of the heavy NP parti-
cle, which we take as 1 TeV. The coefficients at the scale
µ = mb are related to those defined at 1 TeV as [65]

CLV (mb) = CLV (1 TeV) , (13)

CRS (mb) = 1.737CRS (1 TeV) ,(
CLS (mb)
CT (mb)

)
=

(
1.752 −0.287
−0.004 0.842

)(
CLS (1 TeV)
CT (1 TeV)

)
.

III. OBSERVABLES

While the theory predictions for R(D(∗)) in Eq. (2) as
well as the polarization observables like FL(D∗) in Eq. (8)
are quite straightforward, the Bc lifetime constraint in
Eq. (10) warrants some discussion. In principle, the de-
cay width of Bc → τν places a powerful constraint on
the scalar operators in Eq. (11). However, the branching
ratio B(Bc → τν) has not been measured yet. Therefore,
one only has the option of comparing the measured Bc
lifetime with the theoretical calculation of Ref. [66]. In
this way the authors of Ref. [35] have set an upper limit
of 30% on the contribution from Bc → τν to the total Bc
decay width. Furthermore, the authors of Ref. [67] even
advocate that the NP contribution to BR(Bc → τντ ) can
be at most 10%.

A. Constraints from BR(Bc → τντ )

For the estimate of BR(Bc → τντ ) < 10% from
Ref. [67] LEP data on a mixture of Bc → τν and
B− → τν decays (with b quarks from Z boson decays)

are used as an input. In order to extract information on
B(Bc → τν) from these data one must know the prob-
abilty fc that a b quark hadronizes into a Bc meson.
fc is a small number, of the order of 10−2 or less. In
Ref. [67] the ratio of the b → Bc and b → Bu fragmen-
tation functions, fc/fu, is extracted from data accumu-
lated at hadron colliders. As a first critical remark, we
recall that fragmentation functions depend on the kine-
matics: naively one expects that the faster the b and b̄
quarks move apart from each other, the less likely the
fragmentation into a Bc meson becomes. In the case of
the b → Bs and b → Bd fragmentation functions the
LHCb collaboration indeed finds evidence for a decrease
of fs/fd with the transverse momentum pT of the Bd,s
meson [68]. The authors of Ref. [67] infer fc/fu from an
average of CMS and LHCb measurements of

R ≡ fc
fu

B(B−c → J/ψπ−)

B(B− → J/ψK−)
. (14)

The individual measurements are [17, 69, 70]

R = (4.8± 0.5± 0.6)× 10−3 [CMS] ,

R = (6.83± 0.18± 0.09)× 10−3 [LHCb] .
(15)

Since CMS data are taken for pT > 15 GeV while LHCb
employs 0 < pT < 20 GeV, the data seemingly support
a decrease of R and thereby of fc/fu with pT , in quali-
tative agreement with the LHCb finding for fs/fd. Fur-
thermore, the p-p collisions at CMS and LHCb produce a
(b, b̄) pair in a different color configuration than Z decays.
We therefore doubt that that values for fc/fu extracted
from Tevatron and LHC data can directly be used for Z
peak analyses.

Furthermore, even the 30% limit from Ref. [35] has to
be taken with a grain of salt. Recall that the dominant
contribution to the Bc decay rate comes from the decay
of the charm quark within the Bc meson. The applica-
bility of the calculational method (expansion in inverse
powers of the heavy quark masses combined with non-
relativistic QCD) to this charm decay is not clear and
the result found in Ref. [66] exhibits a large dependence
on the value of the charm mass, which moreover is not
well-defined in a leading-order QCD calculation. To con-
strain NP effects in the Bc lifetime the upper bound of
the SM prediction 0.4 ps ≤ τ(Bc) ≤ 0.7 ps [66] is rele-
vant, because it corresponds to the smallest possible SM
contribution to the total Bc decay width. Lowering the
charm mass by only 0.05 GeV below the value of 1.4 GeV
used as the lower limit in Ref. [66], the allowed NP con-
tribution to the total Bc width increases to 40%. Taking
into account all uncertainties the assumption of up to
60% room for NP in the Bc decay width is not too con-
servative. Therefore, we will show our results for three
different limits on the Bc → τν branching ratio: 10%,
30%, and 60%.
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B. Numerical formulae

The observables of interest are given by

R(D) ' RSM(D)
{
|1 + CLV |2 + 1.54 Re [(1 + CLV )(CL∗S + CR∗S )] + 1.09|CLS + CRS |2 + 1.04 Re [(1 + CLV )C∗T ]

+0.75|CT |2
}
, (16)

R(D∗) ' RSM(D∗)
{
|1 + CLV |2 + 0.13 Re [(1 + CLV )(CR∗S − CL∗S )] + 0.05|CRS − CLS |2 − 5.0 Re [(1 + CLV )C∗T ]

+16.27|CT |2
}
, (17)

Pτ (D) '
( R(D)

RSM(D)

)−1 {
0.32|1 + CLV |2 + 1.54 Re [(1 + CLV )(CL∗S + CR∗S )] + 1.09|CLS + CRS |2

−0.35 Re [(1 + CLV )C∗T ] + 0.05|CT |2
}
, (18)

Pτ (D∗) '
( R(D∗)

RSM(D∗)

)−1 {
− 0.49|1 + CLV |2 + 0.13 Re [(1 + CLV )(CR∗S − CL∗S )] + 0.05|CRS − CLS |2

+1.67 Re [(1 + CLV )C∗T ] + 0.93|CT |2
}
, (19)

FL(D∗) '
( R(D∗)

RSM(D∗)

)−1 {
0.46|1 + CLV |2 + 0.13 Re [(1 + CLV )(CR∗S − CL∗S )] + 0.05|CRS − CLS |2

−1.98 Re [(1 + CLV )C∗T ] + 3.2|CT |2
}
, (20)

R(Λc) ' RSM(Λc)
{
|1 + CLV |2 + 0.34 Re [(1 + CLV )CL∗S ] + 0.50 Re [(1 + CLV )CR∗S ] + 0.53 Re [CLSC

R∗
S ]

+0.33(|CLS |2 + |CRS |2)− 3.10 Re [(1 + CLV )C∗T ] + 10.44|CT |2
}
, (21)

BR(Bc → τντ ) ' 0.02

(
fBc

0.43 GeV

)2∣∣∣1 + CLV + 4.3 (CRS − CLS )
∣∣∣2, (22)

in terms of the Wilson coefficients defined at the low scale
µ = mb.

The numerical coefficients correspond to the central
values of the form factors. Concerning our choice of the
form factors, we use the average of Ref. [71] (obtained
from two lattice QCD evaluations from [24, 25]) for the
vector and scalar form factors entering B → D transi-
tions. In the case of B → D∗ we have adopted the fit
results from Ref. [17] for V,A1, A2, while for A0 we em-
ploy the result from Ref. [19] using A1 from Ref. [17]
for the normalization. The tensor form factors for both
decay processes are taken from Ref. [19]. We take the
value for the Bc meson decay constant from Ref. [72].
Finally, the complete set of the baryonic form factors for
Λb → Λcτν has recently been provided in Ref. [31, 73],
see also Ref. [74].

#2 For studies of right-handed neutrino effects in R(D(∗)), see [59,
60].

IV. ANALYSIS OF DIFFERENT NP
SCENARIOS

In our statistical analysis we follow the same approach
as outlined in Ref. [75], with a further caveat regarding
the BR(Bc → τντ ) constraint (to be discussed below).
We build the χ2 function as

χ2(Ck) =

Nobs∑
ij

[Oexp
i −Oth

i (Ck)]C−1
ij [Oexp

j −Oth
j (Ck)] ,

(23)

where Oexp(th)
i are the measured (predicted) observables

and Ck are the Wilson coefficients of the effective Hamil-
tonian in Eq. (11). In the covariance matrix C, the cor-
relation of R(D) and R(D∗) [17] is taken into account.
For FL(D∗) and Pτ (D∗) we add the statistical and sys-
tematic errors in quadrature.

The best-fit point is obtained by minimizing the χ2

function in the region of parameter space that is compat-
ible with the BR(Bc → τντ ) constraint. In other words,
this constraint is imposed as a hard cut on the param-
eter space. For this reason, in the scenarios in which a
best-fit point is compatible with the B(Bc → τν) < 60%
constraint, but predicts 10% < B(Bc → τν) < 60%, im-
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FIG. 1. ∆χ2 for the four one-dimensional scenarios in which only a single real Wilson coefficient (at the TeV scale) receives
a NP contribution. The dashed lines show the situation before the FL(D∗) measurement, while the solid lines include the

latter. The dotted vertical lines correspond to the limit on CL,RS from B(Bc → τν) assuming a maximal value of 10%, 30%
and 60% (i.e., the outer side of these lines is excluded by the corresponding Bc lifetime constraint). Thus, only a 10% limit on
BR(Bc → τντ ) can exclude the best-fit point for CRS while for CLS this point is always excluded and only positive values can
provide a good fit to data.

posing the 10% constraint moves the best-fit point to the
boundary of the new allowed region in parameter space.

We quantify the goodness-of-fit as a p-value express-
ing the probability that the remaining differences be-
tween theory and experiment are due to statistical fluc-
tuations. This probability corresponds to the one for
a χ2-distributed random variable (having central values
in the values predicted at the best-fit point) to reach a
higher value than the one obtained from the data, as-
suming as number of degrees of freedom the difference
between the number of observables included in the fit
and the number of free parameters fitted. Namely,

p-value = 1− CDFNobs−Npar
(χ2

min) , (24)

where CDFn stands for the Cumulative Distribution
Function of a χ2-distributed random variable with n de-
grees of freedom, Nobs = 4 is the number of observables
included in the fit, Npar is the number of fitted param-
eters (i.e., N1D

par = 1, N2D
par = 2) and χ2

min is the value of

the χ2 at the best-fit point.
For the SM (Npar = 0) the p-value is

p-valueSM ∼ 7 · 10−5 , (25)

which corresponds to a deviation of data at the 4σ level.
For each scenario, we perform a likelihood ratio test

between the best-fit point and a generic point x in pa-
rameter space under the assumption that the variables
are normally distributed. This test quantifies how much
the best-fit point is favoured over the other points in the

parameter space. In other words, the s-sigma intervals
in the 1D and 2D scenarios to be studied correspond to
the points xs in the parameter space such that

xs : s(xs) =
√

CDF−1
1 (CDFNpar

(χ2(xs)− χ2
min)) , (26)

where Npar = 1, 2 again stands for the number of fitted
parameters. The likelihood ratio test between the best-
fit point and the SM, i.e., the SM-pull, is defined as the
p-value corresponding to χ2

SM − χ2
min, with χ2

SM = χ2(0)
and is then expressed in terms of standard deviations (σ).

The discrepancies of the measured observables in Ta-
bles I and II are defined as the difference between the
predicted value at the best-fit point and data, expressed
as multiples of the experimental error (σO

exp
i ), i.e.,

dOi
=
ONP
i −Oexp

i

σO
exp
i

. (27)

A. One-dimensional scenarios

In a first step, we consider one-dimensional scenarios
(with real Wilson coefficients) which can be generated by
a single new particle added to the SM:

• CL
V : This setup arises in models with vector

leptoquarks (LQs) like the SU(2)L-singlet vec-
tor LQ of the Pati-Salam model (U(1)) [76–95],
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1D hyp. best-fit 1σ range 2σ range p-value (%) pullSM R(D) R(D∗) FL(D∗) Pτ (D∗) Pτ (D) R(Λc)

CLV 0.11 [0.09, 0.13] [0.06, 0.15] 35 4.6
0.371
−0.8σ

0.312
+0.4σ

0.46
−1.6σ

−0.49
−0.2σ

0.32 0.40

CRS |10% 0.15 [0.13, 0.15] [0.08, 0.15] 1.7 3.8
0.440
+0.7σ

0.263
−2.8σ

0.48
−1.4σ

−0.44
−0.1σ

0.53 0.38

CRS |30%,60% 0.16 [0.13, 0.20] [0.08, 0.23] 1.8 3.8
0.460
+1.2σ

0.265
−2.8σ

0.48
−1.3σ

−0.43
−0.1σ

0.55 0.39

CLS 0.12 [0.07, 0.16] [0.01, 0.20] 0.02 2.2
0.412
+0.1σ

0.247
−4.0σ

0.45
−1.8σ

−0.53
−0.3σ

0.50 0.36

CLS = 4CT −0.07 [−0.12, −0.03] [−0.15, 0.02] 0.01 1.6
0.242
−3.6σ

0.280
−1.7σ

0.46
−1.6σ

−0.45
−0.1σ

0.18 0.34

TABLE I. Fit results for the 1D scenarios defined in sub-section IV A including all available data. The best-fit points and
ranges for the Wilson coefficients are quoted for µ = 1 TeV. Note that these results are independent of the choice of the three
different limits on BR(Bc → τντ ). The single exception is the CRS scenario, for which the 10% limit leads to a slightly worse
fit than the other two. The last six columns show the predictions for the corresponding observable at the best-fit point. For
the quantities already measured we list the discrepancy (see Eq. (27)) between the predicted and the experimental value (e.g.
for CLS the predicted value of R(D∗) = 0.247 at the best-fit point is 4.0σ below the measured value). Note that the predicted
observables are at the same time include in the fit.

the scalar SU(2)L-triplet and/or scalar SU(2)L-
singlet LQ [39, 46, 96–102] (with left-handed cou-
plings only) or in models with left-handed W ′

bosons [103–106].

• CR
S : This operator is generated in models with ex-

tra charged scalars. In particular it is the dominant
operator in 2HDMs of type II in the large tanβ re-
gion (see, e.g., Ref. [107] for an early account).

• CL
S : This setup is again motivated by models with

extra charged scalars. However, here a generic
flavour structure is needed to make OLS the domi-
nant operator [108–116].

• CL
S = 4CT : CLS = 4CT at the NP scale is gener-

ated by the scalar SU(2)L-doublet S2 (also called
R2) LQ [117, 118]. However, QCD renormalization-
group (RG) effects from the NP scale down to the
mb scale change this relation. Furthermore, elec-
troweak RG effects mix the left-handed scalar and
tensor operators above the electroweak symmetry
breaking scale [65, 119]. Taking into account these
effects for NP of O(TeV) we use CLS ' 8.1CT at
the scale µ = mb [65].

In Fig. 1, we show the ∆χ2(Ci) ≡ χ2(Ci)− χ2
SM (i.e.,

the difference compared to the χ2 in the SM as a function
of the Wilson coefficient) for these four cases. The dashed
lines correspond to the situation before the FL(D∗) mea-
surement and the solid lines depict the situation once
FL(D∗) is included. One can see from the plot that
while the vector operator still gives the best fit to the
data, FL(D∗) slightly improves the agreement of the CRS
scenario with data in the vicinity of the best-fit point.
The dotted vertical lines delimit the area allowed by dif-
ferent bounds on B(Bc → τν), which is only relevant for
the CLS and CRS scenarios. One observes that even for

the conservative limit BR(Bc → τν) ≤ 60% negative so-
lutions for CLS and CR are disfavored w.r.t. to the SM
point.

Table I summarizes the results for the four 1D scenar-
ios. Here we give the best-fit point, the corresponding 1σ
and 2σ ranges around this point, as well as the p-value
(characterizing the goodness of the fit) and the pull w.r.t.
the SM. The last six columns show the predictions for the
observables under consideration at the best-fit point. In
addition, the discrepancy (defined in Eq. (27)) between
the predicted value for the observables and the current
measurement is given for those observables for which a
measurement is available.

Let us illustrate this with the CLS scenario as an ex-
ample. Here, if the best-fit point CLS = 0.12 is real-
ized in nature, the probability that statistical fluctua-
tions would account for the remaining discrepancy be-
tween theory and data is 0.02%; i.e., the scenario de-
scribes the data poorly. This can be attributed to the
fact that the predicted values of R(D∗) and FL(D∗) are
below their measured values by 4.0 and 1.8 standard de-
viations, respectively. BR(Bc → τντ ) is important for
this scenario because it excludes the otherwise favoured
value CLS ∼ −0.9, as can be seen in Fig. 1, independent
of which of the three limits we choose. The value of the
SM pull, pullSM = 2.2σ, shows that CLS = 0.12 describes
the data only moderately better than CLS = 0.

The hypothesis of NP entering through CLV has a
favourable p-value of 35% and the CLS = 4CT scenario
gives the worst fit. As a caveat, we recall that we have re-
stricted ourselves to real values of the coefficients. There-
fore, if complex values for CLS = 4CT are permitted the
situation changes. However, we will not consider com-
plex values for the Wilson coefficients in the other three
scenarios. For CLV this would not change the predictions
and for CLS and CRS complex values are constrained by
B(Bc → τν).

Note that the results are quite independent on the
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2D hyp. best-fit p-value (%) pullSM R(D) R(D∗) FL(D∗) Pτ (D∗) Pτ (D) R(Λc)

(CLV , C
L
S = −4CT ) (0.08, 0.05) 22.0 4.2

0.394
−0.3 σ

0.308
+0.2σ

0.45
−1.7 σ

−0.50
−0.2 σ

0.40 0.41

(
CRS , C

L
S )

∣∣
60%

(−0.19,−0.74)
(0.34,−0.22)

68.5 4.5
0.412
+0.1σ

0.299
−0.5 σ

0.54
−0.7 σ

−0.27
+0.2σ

0.50 0.40

(
CRS , C

L
S )

∣∣
30%

(−0.30,−0.64)
(0.24,−0.11)

11.8 4.1
0.423
+0.4σ

0.280
−1.8 σ

0.51
−1.0 σ

−0.35
0.0 σ

0.51 0.39

(
CRS , C

L
S )

∣∣
10%

(0.14, 0.00)
(−0.40,−0.55)

0.6 3.4
0.433
+0.6σ

0.263
−2.9 σ

0.48
−1.4 σ

−0.44
−0.1σ

0.53 0.38

(CLV , C
R
S ) (0.09, 0.06) 30.8 4.3

0.413
+0.1σ

0.305
−0.1 σ

0.47
−1.5 σ

−0.47
−0.2 σ

0.41 0.42

(Re[CLS = 4CT ], Im[CLS = 4CT ])
∣∣
60,30%

(−0.06,±0.40) 22.0 4.2
0.404
−0.1 σ

0.306
0.0 σ

0.45
−1.7σ

−0.39
0.0σ

0.50 0.41

(Re[CLS = 4CT ], Im[CLS = 4CT ])
∣∣
10%

(−0.02,±0.24) 0.3 3.2
0.339
−1.5 σ

0.274
−2.2 σ

0.46
−1.7 σ

−0.45
−0.1 σ

0.40 0.36

TABLE II. Results of the fit for the Wilson coefficients (given at the matching scale approximately 1 TeV) in the 2D scenarios
defined in sub-section IV B including all available data with B(Bc → τν) < 60%, B(Bc → τν) < 30% and B(Bc → τν) < 10%,
respectively. In case there is no label for the constraint on BR(Bc → τντ ) used, the fit is valid for all three benchmark scenarios.

bound used for the contribution to BR(Bc → τντ ). The
significance of the four 1-dimensional scenarios does not
change depending on whether one uses the conservative
bound of 60% or the most commonly used one of 30%
for BR(Bc → τντ ). Furthermore, only the CRS scenario
is slightly affected once the hypothetical future limit of
10% is used; the p-value changes slightly from 1.8% to
1.7%. Also note that in the CLV -scenario polarization
observables FL(D∗), Pτ (D∗) and Pτ (D) are unchanged
with respect to the SM. Therefore, a significant devia-
tion in these observables would automatically disfavour
(or potentially exclude) this scenario.

B. Two-dimensional scenarios

Let us now consider several two-dimensional hypothe-
ses. Again, we consider only scenarios which can be gen-
erated by adding a single new field to the SM particle
content.

• (CL
V , CL

S = −4CT ): This setup is obtained
in models with an SU(2)L-singlet scalar LQ (S1).
Here the relation CLS = −4CT is again assumed
at the NP scale. Through the RG running men-
tioned above, starting from an O(TeV) matching
scale, the relation becomes CLS ' −8.5CT at the
low scale [65].

• (CR
S , CL

S ): As for the 1D cases, this scenario is
motivated by charged Higgs exchange.

• (CL
V , CR

S ): This setup is generated by models with
vector LQs like the SU(2)L-singlet LQ U1.

• (Re[CL
S = 4CT ], Im[CL

S = 4CT ]) : At the
high scale, this relation is generated by the scalar
SU(2)L-doublet S2 LQ. As in the 1D case, RG ef-
fects modify this relation to CLS ' 8.1CT at the

scale µ = mb. Here we consider complex cou-
plings because, as seen in the previous sub-section,
real parameters do not give a good fit to the data.
On the other hand, as shown in Ref. [118], com-
plex Wilson coefficients are able to reproduce the
R(D(∗)) data.

The results of these fits are given in Table II, for a
limit on BR(Bc → τντ ) of 60%, 30% and 10%, re-
spectively. We treat again the BR(Bc → τντ ) con-
straint as a hard limit. Note that the BR(Bc → τντ )
constraint has no impact on the best-fit points of the
(CLV , C

L
S = −4CT ) and (CLV , C

R
S ) scenarios. For the

(Re[CLS = 4CT ], Im[CLS = 4CT ]) scenario, only the hy-
pothetical future bound of 10% significantly reduces the
goodness of the fit (from 22% to 0.3%). The impact on
the (CRS , C

L
S ) scenario is very significant: While for the

most conservative limit of 60% this scenario gives the
best fit among all the scenarios considered, the agree-
ment with data is only moderate for the 30% limit and
even very bad for the 10% one.

The content of Table II translates to the plots shown in
Fig. 2. Here, one can see that if the overall best-fit point
is excluded by the BR(Bc → τντ ) limit, the point with
the minimum χ2 compatible with this bound is taken in-
stead. Thus, the new best-fit point lies on the boundary
of the region excluded by BR(Bc → τντ ), and is sur-
rounded by the corresponding confidence region. There-
fore, different limits for BR(Bc → τντ ) lead to different
preferred regions, and the best-fit points are also distinct
concerning the overall goodness (the p-value) of the fit.
In the last six columns of Table II we give again the pre-
dictions of the observables and their discrepancy (defined
in Eq. (27)) with the experimental value.
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FIG. 2. Results of the fits in the two-dimensional NP scenarios, with Wilson coefficients given at the NP scale of approximately
1 TeV. The p-values of the best fit are given in Table II. The dashed ellipses show the situation before the FL(D∗) measurement
at 2σ level, while the coloured regions include the FL(D∗). We impose either a 60% or a 10% limit on BR(Bc → τντ ). The
scenarios shown in the upper plots (orange color coding) are not affected by either of these constraints. In the scenarios shown
in the lower plots the best-fit points and the corresponding σ-regions move when we consider a 10% (green colour coding)
constraint instead of the 60% one.

V. CORRELATIONS BETWEEN
OBSERVABLES

Let us now assess the future discriminatory power of
the various b→ cτν observables and evaluate the correla-
tions among the observables within our two-dimensional
scenarios of Sec. IV B.

Let us start with the correlations among R(D(∗)) and
R(Λc) as shown in Fig. 3. The colored regions in the
R(D(∗))–R(Λc) plane are allowed at the 1σ level as ob-
tained by the fit (see Fig. 2). In addition, the differ-
ent bounds from B(Bc → τντ ) are shown. As seen
in the previous section, this bound is irrelevant for the
(CLV , C

L
S = −4CT ) and (CLV , C

R
S ) scenarios and also does

not affect the complex (CLS = +4CT ) scenario, unless the
hypothetical future bound of 10% is used. However, for
the (CRS , C

L
S ) scenario it puts a stringent upper bound

on R(Λc) depending on R(D).

Interestingly, we find very similar patterns for R(Λc)
in all scenarios and always predict an enhancement of
R(Λc) over its SM value. We trace this behaviour back
to a sum rule, which can be derived from the expressions
in Eqs. (16), (17) and (22):

R(Λc)

RSM(Λc)
= 0.262

R(D)

RSM(D)
+ 0.738

R(D∗)

RSM(D∗)
+x, (28)
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where the small remainder x is well approximated by

x ' − Re
[
(1 + CLV )(0.32C∗T + 0.03CL∗S )

]
(29)

+ 1.76 |CT |2 − 0.0075|CLS |2 − 0.033 Re (CLSC
R∗
S ),

with all coefficients evaluated at µ = mb. The conse-
quences of this sum rule are best visible in Fig. 6, where
theR(Λc) contours are essentially the same straight lines.
Evolving the best-fit points of Tab. II to µ = mb with
Eq. (13) (and using the exact formula for x) we find
x = 6 ·10−4, x = 1 ·10−2, x = −1 ·10−4, and x = 5 ·10−3

for the four scenarios. Even beyond the considered sce-
narios and permitting more than two coefficients to be
non-zero one finds |x| < 0.05 if the coefficients are chosen
to explainR(D) andR(D∗). SoR(Λc) must be enhanced
over the SM value if R(D) and R(D∗) are. The existence
of the sum rule in Eq. (28), which holds in any model of
new physics, implies that a future measurement of R(Λc)
will serve as a check of the measurements of R(D) and
R(D∗) and of the form factor calculations. For all of our
four 2-dimensional scenarios we predict

R(Λc) =RSM(Λc) (1.24± 0.06)

=0.41± 0.02± 0.01,
(30)

where the first error stems from the experimental errors
in R(D(∗)) in Eq. (2) and the second error in Eq. (30)
reflects the present uncertainties of the form factor ratios.

Fig. 4 reveals interesting correlations between polar-
ization observables, including the yet unmeasured tau
polarization in the B → D decay mode. These cor-
relations provide a strong tool to discriminate between
different NP scenarios, especially in the cases in which
the predicted regions shrink effectively to a line (i.e.
exhibit direct correlations). In the case of the correla-
tion between Pτ (D∗) and FL(D∗) considered within the
(CRS , C

L
S ) scenario (plot in the third row on the left) this

follows trivially since both observables are affected by the
pseudoscalar combination CRS − CLS only. The tight cor-
relations in the other cases are are however non-trivially
enforced by the results of the fits, i.e. they are squashed
ellipses. However, it is very important to keep in mind
that these correlations are obtained for vanishing uncer-
tainties of the form factors. Therefore, they represent
the correlations which can only in principle be obtained
in a given scenario. Therefore, for exploiting such cor-
relations future improvements on the theory predictions
for form factors are imperative.

Let us now turn to future predictions and impact of
the polarization observables. Here, we consider again
the four two-dimensional scenarios of Sec. IV B. How-
ever, this time we do not use FL(D∗), the tau polariza-
tions as inputs for the fit, but rather predict them as a
function of R(D) and R(D∗). This is shown in Figs. 5
and 6. While the current experimental data for Pτ (D∗)
do not significantly discriminate between the different
scenarios, the preliminary FL(D∗) measurement shows
a tension in the scenarios (CLV , C

L
S = −4CT ) and com-

plex CLS = 4CT . Furthermore, future measurements of

FL(D∗) can be used to differentiate between different sce-
narios. This can be seen from the different slopes of the
contour lines and the quite different values associated to
them comparing the four scenarios scenarios.

VI. CONCLUSIONS

Tauonic B meson decays are excellent probes of physics
beyond the SM (complementary to the direct searches at
the LHC) since they are sensitive to lepton flavor univer-
sality violation in the tau sector, e.g. to Higgs bosons,
W ′ bosons and leptoquarks. In order to distinguish dif-
ferent models, it is very important to be able to assess
the presence of scalar and/or tensor operators: While
Higgs bosons only generate scalar operators, LQs gen-
erate vector operators and possibly also scalar or tensor
ones, while W ′ bosons give only rise to vector operators.
Thus, on the one hand, establishing the presence of scalar
operators would rule out (pure) W ′ explanations while
the presence of vector operators would exclude (pure)
charged Higgs models. On the other hand, the combina-
tion of vector operators with scalar and/or tensor ones
would be a strong indication for LQs.

In this respect, the current Belle measurement of
FL(D∗) is very important and the limit on the NP con-
tribution to BR(Bc → τντ ) is crucial to establish or dis-
prove scalar contributions. Together with the measure-
ments of the ratios R(D), R(D∗), R(J/Ψ), these observ-
ables can be used in the future to identify the Lorentz
structure of NP.

In this article we studied four one-dimensional sce-
narios (all with real Wilson coefficients) CLV , CRS , CLS ,
and CLS = 4CT and the four two-dimensional scenarios
(CLV , C

L
S = −4CT ), (CRS , C

L
S ), (CLV , C

R
S ) and (Re[CLS =

4CT ], Im[CLS = 4CT ]). For all these scenarios have in
common that they can be generated by the exchange of
a single new particle. The fit results are shown in Table I
and Table II, respectively.

For these scenarios we reconsidered critically the limits
on the NP contribution to the Bc lifetime via Bc → τν.
Here we stress that the 10% limit [67] on BR(Bc → τντ )
from Z → bb̄ decays at LEP suffers from uncertainties re-
lated to the hadronization probability of a b quark into a
Bc meson and should not be taken at face value. Further-
more, also the more conservative 30% limit of Ref. [35]
is not strict since the error of the theory calculation of
the Bc lifetime has not been fully taken into account.
Therefore, a conservative limit of 60% seems reasonable.
Concerning the one-dimensional scenarios we found that
the impact of the choice of the limit on BR(Bc → τντ )
on the fit is very limited; only the CRS scenario (which
does not give a good fit to data anyway) is slightly af-
fected if the hypothetical future bound of 10% is chosen
while the CLV scenario always gives by far the best-fit.
However, on the two-dimensional scenarios the choice of
the BR(Bc → τντ ) limit has a significant impact. Using
the conservative 60% limit the (CRS , C

L
S ) scenario gives
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FIG. 3. Preferred 1σ regions in the four two-dimensional scenarios in the R(D(∗))–R(Λc) plane for BR(Bc → τντ ) < 60%.
The regions of the plot in the left panel correspond to the scenarios (CLV , C

L
S = −4CT ) (red) and (CRS , C

L
S ) (blue), while the

plots on the right side correspond to (CLV , C
R
S ) (purple) and (CLS = 4CT ) (orange). The solid, dashed and dotted lines refer to

a limit on BR(Bc → τντ ) of 60%, 30% and 10%, respectively. The stars represent the SM predictions.

the best fit to data while enforcing the 30% limit the
agreement with data is significantly worse and for the
10% limit this scenario is even strongly disfavoured.

Next we studied the predictions for R(Λc) finding a
sum rule relating this ratio to R(D) and R(D∗), in-
dependent of any NP scenario up to small corrections.
This implies that R(Λc) does not provide additional in-
formation on the Lorentz structure of NP but provides
an important consistency check of the R(D) and R(D∗)
measurements.

Finally, we considered the correlations among polar-
ization observables and predicted them as functions of
R(D) and R(D∗). Here we found strong correlations
among the polarization observables, depending on the
scenario chosen (see Fig. 4). Disregarding the form fac-
tor uncertainties, even direct correlations are found. In
the (CRS , C

L
S ) scenario this is due to the equal dependence

of the observables on the Wilson coefficients while in the

other cases the correlation is non-trivially enforced by
the fit. Furthermore, the polarization observables show
a unique dependence on R(D) and R(D∗) for the differ-
ent observables (see Figs. 5 and 6).

Therefore, future measurements of polarization observ-
ables together with R(D) and R(D∗) will be able to de-
termine the Lorentz structure of NP while R(Λc) will
serve as a consistency check. In this way different models
(e.g. W ′, leptoquark and charged Higgs) can in principle
be distinguished. However, for this exciting perspective
also improved theory predictions for the form factors and
B(Bc → τν) are crucial.
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FIG. 5. Contour lines of the τ polarization and the longitudinal D∗ polarization for our two-dimensional scenarios in the R(D)–
R(D∗) plane. The coloured regions (bounded by dashed lines) are allowed by the 10%, 30% and 60% limits on BR(Bc → τντ ),
where any area that would fill the entire plot is not shown for convenience. The contours show the predicted values for the
various observables (for vanishing form-factors uncertainties). The thin lines carrying no labels depict the arithmetic means of
the neighbouring thick lines. The grey regions are currently preferred by data at the 1 and 2σ levels. The coloured, hatched
regions are excluded in the specific scenarios. Interestingly, the different scenarios exhibit distinct correlations among the
observables, manifesting themselves in the different slopes of the contours and the different values associated with them.
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don, and R. Watanabe, JHEP 01, 015 (2017),
arXiv:1609.09078 [hep-ph].

[83] D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca,
JHEP 11, 044 (2017), arXiv:1706.07808 [hep-ph].

[84] J. Kumar, D. London, and R. Watanabe, (2018),
arXiv:1806.07403 [hep-ph].

[85] N. Assad, B. Fornal, and B. Grinstein, Phys. Lett.
B777, 324 (2018), arXiv:1708.06350 [hep-ph].

[86] L. Di Luzio, A. Greljo, and M. Nardecchia, Phys. Rev.
D96, 115011 (2017), arXiv:1708.08450 [hep-ph].

[87] L. Calibbi, A. Crivellin, and T. Li, (2017),
arXiv:1709.00692 [hep-ph].

[88] M. Bordone, C. Cornella, J. Fuentes-Martin,
and G. Isidori, Phys. Lett. B779, 317 (2018),
arXiv:1712.01368 [hep-ph].

[89] R. Barbieri and A. Tesi, Eur. Phys. J. C78, 193 (2018),
arXiv:1712.06844 [hep-ph].

[90] M. Blanke and A. Crivellin, Phys. Rev. Lett. 121,
011801 (2018), arXiv:1801.07256 [hep-ph].

[91] A. Greljo and B. A. Stefanek, Phys. Lett. B782, 131
(2018), arXiv:1802.04274 [hep-ph].

[92] M. Bordone, C. Cornella, J. Fuentes-Mart́ın, and
G. Isidori, (2018), arXiv:1805.09328 [hep-ph].

[93] S. Matsuzaki, K. Nishiwaki, and K. Yamamoto, (2018),
arXiv:1806.02312 [hep-ph].

[94] A. Crivellin, C. Greub, F. Saturnino, and D. Muller,
(2018), arXiv:1807.02068 [hep-ph].

[95] L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardec-
chia, and S. Renner, (2018), arXiv:1808.00942 [hep-
ph].

[96] N. G. Deshpande and A. Menon, JHEP 01, 025 (2013),
arXiv:1208.4134 [hep-ph].

[97] Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watan-
abe, Phys. Rev. D88, 094012 (2013), arXiv:1309.0301
[hep-ph].

[98] M. Bauer and M. Neubert, Phys. Rev. Lett. 116, 141802
(2016), arXiv:1511.01900 [hep-ph].

[99] Y. Cai, J. Gargalionis, M. A. Schmidt, and R. R.
Volkas, JHEP 10, 047 (2017), arXiv:1704.05849 [hep-
ph].

[100] A. Crivellin, D. Muller, and T. Ota, JHEP 09, 040
(2017), arXiv:1703.09226 [hep-ph].

[101] W. Altmannshofer, P. Bhupal Dev, and A. Soni, Phys.
Rev. D96, 095010 (2017), arXiv:1704.06659 [hep-ph].

[102] D. Marzocca, JHEP 07, 121 (2018), arXiv:1803.10972
[hep-ph].

[103] X.-G. He and G. Valencia, Phys. Rev. D87, 014014
(2013), arXiv:1211.0348 [hep-ph].

[104] A. Greljo, G. Isidori, and D. Marzocca, JHEP 07, 142
(2015), arXiv:1506.01705 [hep-ph].

[105] S. M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vi-
cente, and J. Virto, Phys. Lett. B760, 214 (2016),
arXiv:1604.03088 [hep-ph].

[106] X.-G. He and G. Valencia, Phys. Lett. B779, 52 (2018),

http://dx.doi.org/10.1103/PhysRevD.94.094021
http://dx.doi.org/10.1103/PhysRevD.94.094021
http://arxiv.org/abs/1602.07671
http://dx.doi.org/10.1007/JHEP01(2017)125
http://dx.doi.org/10.1007/JHEP01(2017)125
http://arxiv.org/abs/1610.03038
http://dx.doi.org/10.1103/PhysRevD.95.075012
http://dx.doi.org/10.1103/PhysRevD.95.075012
http://arxiv.org/abs/1611.04605
http://dx.doi.org/ 10.1007/JHEP09(2018)152
http://arxiv.org/abs/1710.04127
http://arxiv.org/abs/1710.04127
http://arxiv.org/abs/1710.00351
http://arxiv.org/abs/1805.03209
http://arxiv.org/abs/1809.06229
http://arxiv.org/abs/1808.03565
http://arxiv.org/abs/1810.06597
http://arxiv.org/abs/1810.04939
http://arxiv.org/abs/1806.10155
http://arxiv.org/abs/1808.08179
http://dx.doi.org/10.1007/JHEP09(2018)169
http://arxiv.org/abs/1804.04642
http://arxiv.org/abs/1807.04753
http://arxiv.org/abs/1801.01112
http://arxiv.org/abs/1801.01112
http://dx.doi.org/10.1016/0550-3213(86)90262-2
http://dx.doi.org/10.1016/0550-3213(86)90262-2
http://dx.doi.org/10.1007/JHEP10(2010)085
http://arxiv.org/abs/1008.4884
http://arxiv.org/abs/1008.4884
http://dx.doi.org/10.1007/JHEP05(2016)037
http://arxiv.org/abs/1512.02830
http://dx.doi.org/10.1016/j.physletb.2017.07.003
http://arxiv.org/abs/1706.00410
http://arxiv.org/abs/1706.00410
http://dx.doi.org/10.1103/PhysRevD.53.4991
http://dx.doi.org/10.1103/PhysRevD.53.4991
http://arxiv.org/abs/hep-ph/9601249
http://dx.doi.org/10.1103/PhysRevD.96.075011
http://dx.doi.org/10.1103/PhysRevD.96.075011
http://arxiv.org/abs/1708.04072
http://dx.doi.org/ 10.1007/JHEP04(2013)001
http://arxiv.org/abs/1301.5286
http://dx.doi.org/10.1007/JHEP01(2015)063
http://arxiv.org/abs/1410.5729
http://dx.doi.org/ 10.1103/PhysRevLett.114.132001
http://dx.doi.org/ 10.1103/PhysRevLett.114.132001
http://arxiv.org/abs/1411.2943
http://dx.doi.org/10.1140/epjc/s10052-016-4509-7
http://arxiv.org/abs/1607.00299
http://dx.doi.org/10.1103/PhysRevD.86.074503
http://arxiv.org/abs/1207.0994
http://dx.doi.org/ 10.1007/JHEP08(2017)131
http://dx.doi.org/ 10.1007/JHEP08(2017)131
http://arxiv.org/abs/1702.02243
http://arxiv.org/abs/1808.09464
http://dx.doi.org/10.1007/JHEP06(2016)092
http://arxiv.org/abs/1510.04239
http://dx.doi.org/10.1007/JHEP10(2015)184
http://dx.doi.org/10.1007/JHEP10(2015)184
http://arxiv.org/abs/1505.05164
http://dx.doi.org/10.1103/PhysRevLett.115.181801
http://dx.doi.org/10.1103/PhysRevLett.115.181801
http://arxiv.org/abs/1506.02661
http://dx.doi.org/10.1016/j.physletb.2016.02.018
http://arxiv.org/abs/1511.06024
http://dx.doi.org/10.1140/epjc/s10052-016-3905-3
http://dx.doi.org/10.1140/epjc/s10052-016-3905-3
http://arxiv.org/abs/1512.01560
http://dx.doi.org/10.1140/epjc/s10052-016-4578-7
http://dx.doi.org/10.1140/epjc/s10052-016-4578-7
http://arxiv.org/abs/1611.04930
http://dx.doi.org/10.1007/JHEP12(2016)027
http://dx.doi.org/10.1007/JHEP12(2016)027
http://arxiv.org/abs/1609.08895
http://dx.doi.org/ 10.1007/JHEP01(2017)015
http://arxiv.org/abs/1609.09078
http://dx.doi.org/10.1007/JHEP11(2017)044
http://arxiv.org/abs/1706.07808
http://arxiv.org/abs/1806.07403
http://dx.doi.org/10.1016/j.physletb.2017.12.042
http://dx.doi.org/10.1016/j.physletb.2017.12.042
http://arxiv.org/abs/1708.06350
http://dx.doi.org/10.1103/PhysRevD.96.115011
http://dx.doi.org/10.1103/PhysRevD.96.115011
http://arxiv.org/abs/1708.08450
http://arxiv.org/abs/1709.00692
http://dx.doi.org/10.1016/j.physletb.2018.02.011
http://arxiv.org/abs/1712.01368
http://dx.doi.org/10.1140/epjc/s10052-018-5680-9
http://arxiv.org/abs/1712.06844
http://dx.doi.org/10.1103/PhysRevLett.121.011801
http://dx.doi.org/10.1103/PhysRevLett.121.011801
http://arxiv.org/abs/1801.07256
http://dx.doi.org/10.1016/j.physletb.2018.05.033
http://dx.doi.org/10.1016/j.physletb.2018.05.033
http://arxiv.org/abs/1802.04274
http://arxiv.org/abs/1805.09328
http://arxiv.org/abs/1806.02312
http://arxiv.org/abs/1807.02068
http://arxiv.org/abs/1808.00942
http://arxiv.org/abs/1808.00942
http://dx.doi.org/10.1007/JHEP01(2013)025
http://arxiv.org/abs/1208.4134
http://dx.doi.org/10.1103/PhysRevD.88.094012
http://arxiv.org/abs/1309.0301
http://arxiv.org/abs/1309.0301
http://dx.doi.org/10.1103/PhysRevLett.116.141802
http://dx.doi.org/10.1103/PhysRevLett.116.141802
http://arxiv.org/abs/1511.01900
http://dx.doi.org/10.1007/JHEP10(2017)047
http://arxiv.org/abs/1704.05849
http://arxiv.org/abs/1704.05849
http://dx.doi.org/10.1007/JHEP09(2017)040
http://dx.doi.org/10.1007/JHEP09(2017)040
http://arxiv.org/abs/1703.09226
http://dx.doi.org/10.1103/PhysRevD.96.095010
http://dx.doi.org/10.1103/PhysRevD.96.095010
http://arxiv.org/abs/1704.06659
http://dx.doi.org/10.1007/JHEP07(2018)121
http://arxiv.org/abs/1803.10972
http://arxiv.org/abs/1803.10972
http://dx.doi.org/10.1103/PhysRevD.87.014014
http://dx.doi.org/10.1103/PhysRevD.87.014014
http://arxiv.org/abs/1211.0348
http://dx.doi.org/10.1007/JHEP07(2015)142
http://dx.doi.org/10.1007/JHEP07(2015)142
http://arxiv.org/abs/1506.01705
http://dx.doi.org/10.1016/j.physletb.2016.06.067
http://arxiv.org/abs/1604.03088
http://dx.doi.org/10.1016/j.physletb.2018.01.073


16

arXiv:1711.09525 [hep-ph].
[107] W.-S. Hou, Phys. Rev. D48, 2342 (1993).
[108] A. Crivellin, C. Greub, and A. Kokulu, Phys. Rev.

D86, 054014 (2012), arXiv:1206.2634 [hep-ph].
[109] A. Crivellin, A. Kokulu, and C. Greub, Phys. Rev.

D87, 094031 (2013), arXiv:1303.5877 [hep-ph].
[110] A. Celis, M. Jung, X.-Q. Li, and A. Pich, JHEP 01,

054 (2013), arXiv:1210.8443 [hep-ph].
[111] P. Ko, Y. Omura, and C. Yu, JHEP 03, 151 (2013),

arXiv:1212.4607 [hep-ph].
[112] A. Crivellin, J. Heeck, and P. Stoffer, Phys. Rev. Lett.

116, 081801 (2016), arXiv:1507.07567 [hep-ph].
[113] L. Dhargyal, Phys. Rev. D93, 115009 (2016),

arXiv:1605.02794 [hep-ph].

[114] C.-H. Chen and T. Nomura, Eur. Phys. J. C77, 631
(2017), arXiv:1703.03646 [hep-ph].

[115] S. Iguro and K. Tobe, Nucl. Phys. B925, 560 (2017),
arXiv:1708.06176 [hep-ph].

[116] R. Martinez, C. F. Sierra, and G. Valencia, (2018),
arXiv:1805.04098 [hep-ph].

[117] D. Bečirević, S. Fajfer, N. Košnik, and O. Sumensari,
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Faroughy, and O. Sumensari, Phys. Rev. D98, 055003
(2018), arXiv:1806.05689 [hep-ph].

[119] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott,
JHEP 04, 159 (2014), arXiv:1312.2014 [hep-ph].

http://arxiv.org/abs/1711.09525
http://dx.doi.org/10.1103/PhysRevD.48.2342
http://dx.doi.org/10.1103/PhysRevD.86.054014
http://dx.doi.org/10.1103/PhysRevD.86.054014
http://arxiv.org/abs/1206.2634
http://dx.doi.org/10.1103/PhysRevD.87.094031
http://dx.doi.org/10.1103/PhysRevD.87.094031
http://arxiv.org/abs/1303.5877
http://dx.doi.org/ 10.1007/JHEP01(2013)054
http://dx.doi.org/ 10.1007/JHEP01(2013)054
http://arxiv.org/abs/1210.8443
http://dx.doi.org/ 10.1007/JHEP03(2013)151
http://arxiv.org/abs/1212.4607
http://dx.doi.org/10.1103/PhysRevLett.116.081801
http://dx.doi.org/10.1103/PhysRevLett.116.081801
http://arxiv.org/abs/1507.07567
http://dx.doi.org/10.1103/PhysRevD.93.115009
http://arxiv.org/abs/1605.02794
http://dx.doi.org/10.1140/epjc/s10052-017-5198-6
http://dx.doi.org/10.1140/epjc/s10052-017-5198-6
http://arxiv.org/abs/1703.03646
http://dx.doi.org/10.1016/j.nuclphysb.2017.10.014
http://arxiv.org/abs/1708.06176
http://arxiv.org/abs/1805.04098
http://dx.doi.org/10.1103/PhysRevD.94.115021
http://arxiv.org/abs/1608.08501
http://arxiv.org/abs/1608.08501
http://dx.doi.org/ 10.1103/PhysRevD.98.055003
http://dx.doi.org/ 10.1103/PhysRevD.98.055003
http://arxiv.org/abs/1806.05689
http://dx.doi.org/10.1007/JHEP04(2014)159
http://arxiv.org/abs/1312.2014

	Impact of polarization observables and  Bc on new physics explanations of the bc  anomaly
	Abstract
	I Introduction
	II Effective Field Theory
	III Observables
	A Constraints from BR(Bc)
	B Numerical formulae

	IV Analysis of different NP scenarios 
	A One-dimensional scenarios
	B Two-dimensional scenarios

	V Correlations between observables
	VI Conclusions
	 References


