
KEK–TH–2078
TTP18–032

November 2018

SMEFT top-quark effects on ∆F = 2 observables

Motoi Endo(a,b), Teppei Kitahara(c,d,e,f,g), Daiki Ueda(b,c)

(a)Theory Center, IPNS, KEK, Tsukuba, Ibaraki 305-0801, Japan

(b)The Graduate University of Advanced Studies (Sokendai),
Tsukuba, Ibaraki 305-0801, Japan

(c)Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,
Engesserstraße 7, D-76128 Karlsruhe, Germany

(d)Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology,
Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

(e)Institute for Advanced Research, Nagoya University, Furo-cho Chikusa-ku, Nagoya,
Aichi, 464-8602 Japan

(f)Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,
Nagoya University, Nagoya 464-8602, Japan

(g)Physics Department, Technion–Israel Institute of Technology, Haifa 3200003, Israel

Abstract

We investigate model independent top-quark corrections to ∆F = 2 processes
within the framework of the Standard Model Effective Field Theory. Dimension-six
∆F = 1 operators contribute to them through renormalization group evolutions and
matching conditions. We provide a complete one-loop matching formula from the top
quarks for ∆F = 2 transitions. We also demonstrate these corrections on ∆MBs in the
left-right symmetric model, which are compared with the conventional calculation.
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1 Introduction

Flavor-changing neutral currents (FCNCs) are sensitive to physics at high energy scales.
New particles predicted by new physics (NP) models could contribute to FCNCs in addition
to the weak boson and the heavy quarks in the Standard Model (SM).

FCNCs are absent in the SM Lagrangian at the renormalizable level; they are represented
by higher dimensional operators. When the NP scale is much higher than the scale of the
electroweak symmetry breaking (EWSB), the NP contributions to FCNCs are encoded in
the Standard Model Effective Field Theory (SMEFT) [1–3] above the EWSB scale. Here,
the higher dimensional operators are invariant under the SM gauge symmetries, SU(3)C×
SU(2)L× U(1)Y , and all the SM particles, particularly the electroweak bosons (W,Z,H) and
the top quark (t), are dynamical degrees of freedom. By integrating out W,Z,H and t at
the EWSB scale, the SMEFT effective operators are matched to operators in the low energy
effective Hamiltonian; they are eventually compared with experimental data, and let us call
them the “low-scale” effective operators.

In a class of the NP models, both of NP and SM particles appear simultaneously in a loop
diagram. The NP particles are likely to be heavier than the SM ones, since absent discoveries
of new particles at the LHC push the NP scale higher than the EWSB one [4]. Then, the
fixed-order perturbative calculations are inappropriate. When there is a large mass hierarchy
among the particles in a loop diagram, higher order corrections of the perturbation cannot
be negligible. In particular, it is uncertain in which energy scale the model parameters are
evaluated.

Corrections of the dynamical top quark to the low-scale effective operators can be rele-
vant. This is not surprising because the top quark has a large Yukawa coupling and mass,
and it is charged under the SU(3)C symmetry. In FCNC amplitudes, heavy particle con-
tributions tend to be sizable due to “the GIM mechanism” in analogy to the SM case [5].
When the GIM suppression is broken by the up-type quark masses in a NP loop diagram
analogously to the SM case, the top quark contribution could be dominant, depending on
flavor structures of NP couplings. Then, the above problem is rephrased as “in which energy
scale the top quark mass (or the top Yukawa coupling) is evaluated.” This is resolved by
means of the renormalization group equations (RGEs). It is necessary to solve RGEs in the
SMEFT.

In a conventional approach, however, the NP diagrams are matched directly to the low-
scale effective operators, and the SMEFT effects, i.e., corrections from the dynamical t
(and also W,Z,H), are discarded. Such an approximation is broken down and the scale
uncertainty becomes larger, as the NP scale becomes higher than the EWSB scale. In this
letter, we study the SMEFT corrections above the EWSB scale, paying particular attention
to the dynamical top quark.#1

We focus on ∆F = 2 processes of the down-type quarks, i.e., the K0–K0 and B0
q–B

0
q

#1 It is straightforward to extend our study to the lighter quarks such as the up- or charm-quarks. In
this case, however, the one-loop matching formula at the EWSB scale discussed below is irrelevant, and
long-distance effects should be taken into account.
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(q = d, s) oscillations. The top quark contributions must be treated carefully. Above the
EWSB scale, there exist ∆F = 1 effective operators which subsequently contribute to the
low-scale ∆F = 2 operators through W and H exchanges. For instance, the ∆F = 1 SMEFT

quark–Higgs operators, e.g., (q̄iγ
µPRqj)(H

†i
←→
D µH), have been studied in Ref. [6] (see also

Ref. [7]). It is noticed that the one-loop matching corrections at the EWSB can be sizable
in a certain class of NP models. This is because the corrections are generated with the
top-quark mass or Yukawa coupling as well as the CKM matrix, and also because FCNCs
are induced at loop levels in many models. In this letter, we provide a complete one-loop
formula for the ∆F = 1 contributions to the low-scale ∆F = 2 operators with the top
Yukawa couplings.#2 As a demonstration, we study the left-right symmetric models [10–14],
where a new W boson and heavy Higgs bosons induce ∆F = 1 effective operators at the NP
scale.

2 Formula

In this section, we provide the formula for the SMEFT corrections at the one-loop level which
contribute to the ∆F = 2 processes in a low-energy scale. In the SMEFT, it is assumed
that NP models do not break the electroweak symmetry explicitly. After integrating out the
heavy NP particles at the NP scale, which is assumed to be much higher than the EWSB
scale, ∆F = 1 and ∆F = 2 effects are encoded into higher dimensional operators in the
SMEFT, which are defined as [2]

Leff = LSM +
∑
i

CiOi, (2.1)

where the first term is the SM Lagrangian at the renormalizable level, and the second term
represents the higher dimensional operators. The dimension-six operators relevant for the
low-scale ∆F = 2 processes are shown as

(O(1)
qq )ijkl = (qiγµq

j)(qkγµq
l), (2.2)

(O(3)
qq )ijkl = (qiγµτ

Iqj)(qkγµτ Iql), (2.3)

(O(1)
qd )ijkl = (qiγµq

j)(d
k
γµdl), (2.4)

(O(8)
qd )ijkl = (qiγµT

Aqj)(d
k
γµTAdl), (2.5)

(Odd)ijkl = (d
i
γµd

j)(d
k
γµdl), (2.6)

(O(1)
Hq)ij = (H†i

←→
DµH)(qiγµqj), (2.7)

(O(3)
Hq)ij = (H†i

←→
DI
µH)(qiγµτ Iqj), (2.8)

#2 A part of the one-loop matching formula is shown in Ref. [8]. We found that its result is inadequate,
and thus, inconsistent with the SMEFT RGEs [9]. Also, the formula related to the SMEFT quark–Higgs
operators are given in Ref. [6] (see also Ref. [7]); the result is included in this letter.
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(OHd)ij = (H†i
←→
DµH)(d

i
γµdj), (2.9)

with the derivative,

H†
←→
DI
µH = H†τ IDµH − (DµH)† τ IH, (2.10)

where q is the SU(2)L quark doublet, d the right-handed down-type quark, and TA the
SU(3)C generator with quark-flavor indices i, j, k, l and an SU(2)L [SU(3)C ] index I (A). We
focus on the top-Yukawa and QCD interactions. The above operators are relevant in the
limit of the first leading logarithm when the RGEs are solved. When the limit is not taken,
e.g., to study NP effects at the higher energy scales, the following dimension-six operators
have to be additionally included:

(O(1)
qu )ijkl = (qiγµq

j)(ukγµul), (2.11)

(O(8)
qu )ijkl = (qiγµT

Aqj)(ukγµTAul), (2.12)

(Ouu)ijkl = (uiγµu
j)(ukγµul), (2.13)

(O(1)
ud )ijkl = (uiγµu

j)(d
k
γµdl), (2.14)

(O(8)
ud )ijkl = (uiγµT

Auj)(d
k
γµTAdl), (2.15)

(OHu)ij = (H†i
←→
DµH)(uiγµuj), (2.16)

(OH�)ij = (H†H)�(H†H), (2.17)

(OHD)ij = (H†DµH)∗(H†DµH), (2.18)

where u is the right-handed up-type quark. These operators contribute to the ∆F = 2
observables through the operator mixings during the RG evolutions and the matching con-
ditions at the EWSB scale (see below). Once they are set at the NP scale, the SMEFT RGEs
are solved at the one-loop level. The SMEFT RGEs relevant to the ∆F = 2 observables are
listed in Appendix A. We keep the anomalous dimension terms which depend on the top
Yukawa or QCD couplings.

The SM heavy degrees of freedom, W,Z,H and t, are integrated out at the EWSB scale.
The SMEFT operators are matched to the effective operators in the low-energy scale. The
low-scale ∆F = 2 operators are defined as [15]

H∆F=2
eff = (C1)ij(diγ

µPLdj)(diγµPLdj)

+ (C2)ij(diPLdj)(d̄iPLdj) + (C3)ij(d
α

i PLd
β
j )(d

β

i PLd
α
j )

+ (C4)ij(diPLdj)(diPRdj) + (C5)ij(d
α

i PLd
β
j )(d

β

i PRd
α
j )

+ (C ′1)ij(diγ
µPRdj)(diγµPRdj)

+ (C ′2)ij(diPRdj)(d̄iPRdj) + (C ′3)ij(d
α

i PRd
β
j )(d

β

i PRd
α
j ), (2.19)

where i, j (i 6= j) are flavor indices, and α, β are color ones.
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Figure 1. Feynman diagrams for the one-loop matchings onto the ∆F = 2 operators (i 6= j).

At the tree level, they are related to the SMEFT operators as

(C1)tree
ij = −

[
(C(1)

qq )ijij + (C(3)
qq )ijij

]
, (2.20)

(C ′1)tree
ij = −(Cdd)ijij, (2.21)

(C4)tree
ij = (C

(8)
qd )ijij, (2.22)

(C5)tree
ij = 2(C

(1)
qd )ijij −

1

Nc

(C
(8)
qd )ijij, (2.23)

where the Wilson coefficients in the left-handed side are defined in the low-scale basis,
Eq. (2.19), and those in the right-handed side are defined in the SMEFT, Eq. (2.1). Both
of them are evaluated as a weak scale, µ = µW . The other low-scale ∆F = 2 coefficients are
zero at this level.

Radiative corrections from the top quark can be sizable because of the large Yukawa
coupling. Combined with the SM bosons, they contribute to flavor-changing (FC) transitions
of the down-type quarks. In particular, the SMEFT ∆F = 1 operators can induce the
∆F = 2 amplitudes through the RGEs and the one-loop matchings at the weak scale, which
are exhibited in Fig. 1. The one-loop matching conditions in the Feynman-’t Hooft gauge
are obtained as

(C1)1–loop
ij =

αλijt
4πs2

W

[(
−2 +

2

Nc

)
(C(8)

qu )ij33 − 4(C(1)
qu )ij33 + 4(C

(1)
Hq)ij

]
I1(xt, µW )

− 2αλijt
πs2

W

[
(C(1)

qq )ij33 + (C(1)
qq )33ij − (C(3)

qq )ij33 − (C(3)
qq )33ij + 2(C(3)

qq )3ji3 + 2(C(3)
qq )i33j

]
J(xt)
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+
α

2πs2
W

3∑
m=1

[
λimt

(
(C(1)

qq )mjij + (C(1)
qq )ijmj + (C(3)

qq )mjij + (C(3)
qq )ijmj

)
+ λmjt

(
(C(1)

qq )imij + (C(1)
qq )ijim + (C(3)

qq )imij + (C(3)
qq )ijim

)]
K(xt, µW )

− αλijt
πs2

W

(C
(3)
Hq)ijI2(xt, µW ) +

αλijt
4πs2

W

3∑
m=1

[
λimt (C

(3)
Hq)mj + (C

(3)
Hq)imλ

mj
t

]
S0(xt), (2.24)

(C4)1–loop
ij =

αλijt
πs2

W

(C
(8)
ud )33ijI1(xt, µW ) +

2αλijt
πs2

W

(C
(8)
qd )33ijJ(xt)

− α

2πs2
W

3∑
m=1

[
λimt (C

(8)
qd )mjij + λmjt (C

(8)
qd )imij

]
K(xt, µW ), (2.25)

(C5)1–loop
ij =

2αλijt
πs2

W

[
(C

(1)
ud )33ij −

1

2Nc

(C
(8)
ud )33ij − (CHd)ij

]
I1(xt, µW )

+
4αλijt
πs2

W

[
(C

(1)
qd )33ij −

1

2Nc

(C
(8)
qd )33ij

]
J(xt)

− α

πs2
W

3∑
m=1

[
λimt

(
(C

(1)
qd )mjij −

1

2Nc

(C
(8)
qd )mjij

)
+ λmjt

(
(C

(1)
qd )imij −

1

2Nc

(C
(8)
qd )imij

)]
K(xt, µW ), (2.26)

where the parameters are defined as

xt ≡
m2
t

M2
W

, λijt ≡ V ∗tiVtj. (2.27)

Here, Vij is the CKM matrix, and sW = sin θW with the Weinberg angle θW . The loop
functions are given as

I1(x, µ) =
x

8

[
ln

µ

MW

− x− 7

4(x− 1)
− x2 − 2x+ 4

2(x− 1)2
lnx

]
, (2.28)

I2(x, µ) =
x

8

[
ln

µ

MW

+
7x− 25

4(x− 1)
− x2 − 14x+ 4

2(x− 1)2
lnx

]
, (2.29)

J(x) =
x

16

(
1− 2 lnx

x− 1

)
, (2.30)

K(x, µ) =
x

8

[
ln

µ

MW

+
3(x+ 1)

4(x− 1)
− x(x+ 2)

2(x− 1)2
lnx

]
, (2.31)

S0(x) =
x

4

[
x2 − 11x+ 4

(x− 1)2
+

6x2

(x− 1)3
lnx

]
. (2.32)
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In the result, the Wilson coefficients in the left-handed side are in the low-scale basis, and
those in the right-handed side are in the SMEFT. Both of them are evaluated at the weak
scale, µ = µW . The other low-scale ∆F = 2 operators do not receive one-loop corrections
through the top quark decoupling.

The contributions from O(1,8)
qu and O(1,8)

ud , in which the W and NG bosons that couple to
virtual top quarks are exchanged, are shown in Fig. 1(a) and give a loop function I1(x, µ).

Those from O(1,3)
qq and O(1,8)

qd are shown in Fig. 1(b) and give J(x). Those with the K(x, µ)
function come from FC self-energy corrections to the down-type quarks in the effective
operators [Fig. 1(c)], where the top quark is exchanged. The results for the quark–Higgs

operators, O(1,3)
Hq and OHd [Fig. 1(d–f)], are consistent with those in Refs. [6,7] and give loop

functions I1(x, µ), I2(x, µ) and S0(x). The loop functions, I1(x, µ), I2(x, µ) and K(x, µ),
depend on the matching scale µ explicitly, whereas J(x) seems to be independent of it.
The scale-dependent term associated with Fig. 1(b) is proportional to O(g2) and neglected
in our approximation.#3 We checked that this logarithmic dependence is consistent with
the anomalous dimensions in Ref. [16–18]. As a result, the logarithmic dependence on µW
cancels out by taking account of the RGEs in the first-leading-logarithmic limit.#4 This is
expected because this dependence in the matching conditions has the same origin as the
beta functions in calculating loop diagrams (see Ref. [7]).#5 #6

After matching onto the low-scale operators, they are evolved by the RGEs as usual.
Then, the results are compared with the experimental data, i.e., the K0–K0 and B0

q–B
0
q

(q = d, s) oscillations.

3 Left-right symmetric models

In this section, let us study left-right symmetric models to demonstrate the SMEFT correc-
tions of the dynamical top quark as explored in Sec. 2. In particular, we focus on the effects
of the SMEFT ∆F = 1 operators for the ∆F = 2 transitions.

The left-right extension of the SM implements the parity violation in the weak interaction
by spontaneously breaking the SU(3)C×SU(2)L×SU(2)R×U(1)B−L gauge symmetries [10–
14]. The new right-handed W boson generates FC charged currents in addition to the SM

#3 Such a divergence is canceled in the SM due to the GIM mechanism. In Fig. 1(b), the GIM mechanism

does not work because O(1,3)
qq and O(1,8)

qd depend on the up-type quark flavor.
#4 Focusing on the top-Yukawa terms, we checked the following relations in the first-leading-logarithmic

limit,

d(C1,4,5)ij
d lnµW

=
d(C1,4,5)treeij

d lnµW
+
d(C1,4,5)1-loopij

d lnµW
= 0. (2.33)

#5 The logarithmic scale dependence in Eqs. (4.24)–(4.26) of Ref. [8] is inconsistent with that in the RGEs.
#6 In Appendix D, we also checked that double-penguin contributions to ∆F = 2 operators vanish when

the gauge bosons of the SM unbroken gauge symmetries are exchanged. This justifies our one-loop matching
conditions.
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left-handed W boson. The quark interactions of the left- and right-handed W bosons are

Lint =
gL√

2
(VL)ijūiγµPLdjW

µ
L +

gR√
2

(VR)ijūiγµPRdjW
µ
R + h.c., (3.1)

where the first term is for the SM W boson. The right-handed W boson, WR, is obtained
by replacing L↔ R, in the second term. Here, the new coupling gR and the mixing matrix
VR are introduced for WR similarly to WL.

The gauge symmetries are broken to SU(3)C × U(1)em by Higgs vacuum expectation
values (VEVs). In the minimal setup, the VEV of the Higgs field, ∆R, whose charges are
(SU(2)L, SU(2)R,U(1)B−L) = (1, 3, 2), breaks the left-right symmetry, SU(2)L × SU(2)R ×
U(1)B−L, to SU(2)L × U(1)Y . The VEV of the Higgs bi-doublet, Φ ∈ (2, 2, 0), enables
EWSB. On the other hand, the VEV of ∆L ∈ (3, 1, 2) is assumed to be suppressed. Their
components are expressed as

∆i =

[
∆+
i /
√

2 ∆++
i

∆0
i −∆+

i /
√

2

]
(i = L,R), Φ =

[
φ0

1 φ+
2

φ−1 φ0
2

]
. (3.2)

The spontaneous symmetry breaking is achieved by the VEVs,

〈∆L,R〉 =
1√
2

[
0 0
vL,R 0

]
, 〈Φ〉 =

1√
2

[
v cos β 0

0 v sin β eiα

]
. (3.3)

We impose a hierarchy among the Higgs VEVs, vR � v cos β, v sin β � vL, in order to be
consistent with observed phenomena and to avoid fine-tunings in the scalar potential [19,20].
An angle α is a spontaneous CP -violating phase. In addition to the QCD θ term, α induces
the strong CP phase [21]#7, which is severely constrained by the neutron electric dipole
moment [25]. As we will see below, the following analysis is independent of α. The masses
of the left and right-handed W bosons are approximately given by

M2
WL
' g2

L

4
v2, M2

WR
' g2

R

2
v2
R, (3.4)

for vR � v with v ' 246 GeV.
In addition to the W bosons, heavy Higgs bosons, H0 and H±, have FC couplings as

−Lint '
√

2

v cos 2β

[
d̄(V †LMuVR)PRdH

0 + d̄(V †RMuVL)PLd (H0)∗

+ ū(MuVR)PRdH
+ + d̄(V †RMu)PLuH

−
]
, (3.5)

with H0 = cos βφ0
2−sin βeiα (φ0

1)
∗

and H+ = cos βφ+
2 +sin βeiαφ+

1 . Here, vR � v is assumed,
and the up-type quark masses is Mu = diag(mu,mc,mt). The masses of the heavy Higgs
bosons, MH , are almost proportional to vR. The Higgs potential in the limit of vR � v is
given in Appendix B.

#7 See discussions in Refs. [22–24] for the strong CP problem with a generalized parity invariance P.
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The right-handed W boson and the heavy neutral Higgs boson, as well as the SM (left-
handed) W boson, induce ∆F = 2 transitions [26,27]. They are severely constrained by the
observed meson oscillations. First of all, let us briefly overview the conventional approach.
In literature, the Wilson coefficients of the low-scale operators in Eq. (2.19) are set by
integrating out WR and H0 as well as WL and the up-type quarks [28,29]:

(C4)H–tree
ij = −2

√
2GF

cos2 2β

∑
k,l

mukmul

M2
H

(λLR)ijk (λRL)ijl , (3.6)

(C4)WL–WR
ij =

g2
Lg

2
R

16π2

∑
k,l

mukmul

M2
WL
M2

WR

(λLR)ijk (λRL)ijl FA(xk, xl, β), (3.7)

(C4)H–s.e.
ij = − g2

Lg
2
R

128π2

∑
k,l

mukmul

M2
WL
M2

WR

(λLR)ijk (λRL)ijl FB(τL, τR), (3.8)

(C4)H–vert.
ij = −g

2
Lg

2
R

16π2

∑
k,l

mukmul

M2
WL
M2

WR

(λLR)ijk (λRL)ijl FC(τk, τl, τL, τR), (3.9)

where the parameters are defined as

(λLR)ijk ≡ (V ∗L )ki(VR)kj, xk ≡
m2
uk

M2
WL

,

β ≡
M2

WL

M2
WR

, τL ≡
M2

WL

M2
H

, τR ≡
M2

WR

M2
H

, τk ≡
m2
uk

M2
H

, (3.10)

and (λRL)ijk is given by replacing L ↔ R in (λLR)ijk . Here, the indices k, l are the up-type
quark flavor, and the definitions of the loop functions FA, FB and FC are summarized in
Appendix C.#8

Among the Wilson coefficients, the tree-level contribution, (C4)H–tree, is obtained by
exchanging the heavy neutral Higgs boson. The one-loop contributions, (C4)H–s.e. and
(C4)H–vert., are given by self-energy (s.e.) and vertex (vert.) corrections to the tree-level
heavy neutral Higgs diagram, respectively. Here, the on-shell renormalization scheme is
applied [28]. On the other hand, the one-loop contribution (C4)WL–WR comes from a box
diagram where both the left- and right-handed W bosons as well as the up-type quarks
are exchanged.#9 It is impoartant that (C4)WL–WR itself depends on a choice of the gauge
fixing. Here and hereafter, the Feynman-’t Hooft gauge is used. The gauge invariance of
the transition amplitude is guaranteed by adding the one-loop neutral Higgs contributions,
(C4)H–s.e. and (C4)H–vert. [28, 30–32].

In the conventional calculation (Ref. [29] as a representative case), after the above Wil-
son coefficients are set, the RGEs for the low-scale operators are solved [33]. However, it

#8 Our results in Eqs. (3.8) and (3.9) are smaller than the result of Ref. [29] by a factor of 2.
#9 If WR and H are sufficiently heavier than WL, the WR–WR box contribution is much smaller than the

WL–WR box one.
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µ = µLR

µ = MWL

µ = MWL

�F = 1

�F = 1

= + + = + + . . .

�F = 2

�F = 2 �F = 2

�F = 2 RGE

H�F=2
e↵

H�F=2
e↵

tree-level matching
one-loop matching

SMEFT RGE

µ = µ
low

Figure 2. Schematic figure for the SMEFT framework in the left-right symmetric model.

is noticed that the one-loop diagrams include the left-handed W boson and the up-type
quarks, which are much lighter than the right-handed W and heavy Higgs bosons for, e.g.,
the LHC constraints [4, 34]. Hence, it is uncertain in which energy scale the Wilson coeffi-
cients should be input. Moreover, the heavy charged Higgs boson contributes to the ∆F = 2
transitions through box diagrams with the SM W boson and the up-type quarks. Although
the contribution is often neglected in the literature (see Ref. [32] for an early work), it may
be comparable to (C4)H–s.e. and (C4)H–vert.. Since the SM W boson and the up-type quarks
are much lighter than the heavy charged Higgs boson, the scale uncertainty problem arises
similarly to the above. In the following, we study the ∆F = 2 processes in left-right sym-
metric models by the procedure explored in Sec. 2.

In this letter, we focus on the top quark contribution as mentioned in Sec. 1. First of all,
let us summarize the analysis procedure in Fig. 2. At the decoupling scale of the left-right
symmetry (µLR), the Wilson coefficients in the SMEFT are evaluated. In addition to the
∆F = 2 operators (the red colored diagrams in Fig. 2), there are ∆F = 1 top-quark operators
which eventually contribute to the ∆F = 2 transitions (the blue colored diagrams). After
solving the SMEFT RGEs, they are matched onto the low-scale operators at the EWSB
scale, where we need to take account of the one-loop level matching condition. Below the
EWSB scale, we follow the standard procedure for the ∆F = 2 observables.
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First, let us consider the matching condition of the SMEFT at µ = µLR (the first line in
the Fig. 2). At the tree level, one obtains the following ∆F = 1 SMEFT operators at the
dimension six after integrating out WR,

(C
(8)
ud )tree

33ij = − g2
R

M2
WR

(V †R)i3(VR)3j, (3.11)

(C
(1)
ud )tree

33ij =
1

2Nc

(C
(8)
ud )33ij. (3.12)

In addition, by exchanging the heavy neutral and charged Higgs bosons, we obtain the
following ∆F = 1 operators,

(C
(8)
qd )tree

33ij = −2
√

2GF

cos2 2β

m2
t

M2
H

(V †R)i3(VR)3j, (3.13)

(C
(1)
qd )tree

33ij =
1

2Nc

(C
(8)
qd )33ij. (3.14)

The details of the calculations are found in Appendix B. On the other hand, the ∆F = 2
SMEFT operators are derived at the tree level from the exchange of the heavy neutral Higgs
bosons as

(C
(8)
qd )tree

ijij = −2
√

2GF

cos2 2β

m2
t

M2
H

(λLR)ijt (λRL)ijt , (3.15)

(C
(1)
qd )tree

ijij =
1

2Nc

(C
(8)
qd )ijij. (3.16)

All the above tree-level Wilson coefficients are evaluated at µ = µLR.
As for the one-loop level matching, the self-energy and vertex corrections of the heavy

neutral Higgs discussed above contribute to the ∆F = 2 Wilson coefficients. Besides, in
discussing the WL–WR box contributions, one needs to avoid double counting from the one-
loop contribution with (C

(8)
ud )33ij, where the top-quark loop is enclosed by the SM W boson.

The result is obtained as

(C
(8)
qd )1–loop

ijij =
g2
Lg

2
Rm

2
t

16π2M2
WL
M2

WR

(λLR)ijt (λRL)ijt

[
FA(xt, xt, β)− 1

8
FB(τL, τR)−FC(τt, τt, τL, τR)

]
+

g2
Lg

2
R

4π2M2
WR

(λLR)ijt (λRL)ijt I1(xt, µLR), (3.17)

(C
(1)
qd )1–loop

ijij =
1

2Nc

(C
(8)
qd )ijij, (3.18)

where the second term of C
(8)
qd stands for the subtraction to avoid the double counting.

We can see that the µLR dependence in (C
(8)
qd )1–loop

ijij is dropped when the scale is set to be
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Figure 3. The low-scale Wilson coefficients C4(MWL
) (left) and C5(MWL

) (right) for ∆MBs in
comparison with the conventional results. In the conventional approach, the Wilson coefficients,
(3.6)–(3.9), are input at µ = MWR

(blue) and mt (magenta). The dashed lines do not include the
contribution from the heavy charged Higgs boson.

µLR = MWR
. In addition, the one-loop matching condition that comes from the H± and WL

box diagrams is obtained as

(C
(8)
qd )1-loop

ijij =

√
2GF

π2

g2
L

cos2 2β

m2
t

M2
H

(λLR)ijt (λRL)ijt

[
1

16
FD (xt, xt, τL) + J(xt)

]
, (3.19)

(C
(1)
qd )1-loop

ijij =
1

2Nc

(C
(8)
qd )ijij, (3.20)

where the loop function FD defined in Appendix C comes from H±–WL box diagrams, whose
result is consistent with that in Ref. [32]. The contribution J(xt) is from the subtraction to
avoid the double counting in similar to the WR case. All the above Wilson coefficients for
the one-loop level matching conditions are evaluated at µ = µLR.

After setting the Wilson coefficients for the dimension-six SMEFT operators at the scale
µ = µLR, the SMEFT RGEs are solved to the EWSB scale, for which we choose µ = MWL

(the second line in the Fig. 2). The one-loop level RGEs are summarized in Appendix A. At
the EWSB scale, the SMEFT operators are matched onto the low-scale ones (the third line).
The tree-level and one-loop level matching conditions are found in Eqs. (2.20)–(2.23) and
Eqs. (2.24)–(2.26), respectively. After the EWSB matching, the calculations are performed
as usual, i.e., in the same way as the conventional approach.

The differences of our analysis from the conventional one are the SMEFT top-quark
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Figure 4. ∆MBs in comparison with the conventional results at µ = MWR
(blue) and mt (magenta).

The dashed lines do not include the contribution from the heavy charged Higgs boson.

effects and the heavy charged Higgs boson contributions. In order to investigate their effects
quantitatively, we consider the ∆B = 2 process, ∆MBs . Let us define the difference as

difference (X) ≡ XSMEFT −Xconventional

XSMEFT
for X = Ci(MWL

), ∆MBs , (3.21)

where Ci(MWL
) is the low-scale Wilson coefficients at the EWSB scale for ∆MBs , i.e., i =

3 and j = 2 in Eq. (2.19). In the numerical analysis, we take tan β = mb/mt, which
naturally gives the fermion mass hierarchy mt � mb. The mass and scale are set as MH =
6MWR

and µLR = MWR
, respectively. Also, we impose a generalized charge conjugation

symmetry C, which leads to gR = gL and VR = KuV
∗
LKd and Ku = diag(eiθu , eiθc , eiθt),

Kd = diag(eiθd , eiθs , eiθb) [21,29,34]. In the evaluation of ∆MBs , the latest lattice results [35]
are applied for B-parameters. We also use the RunDec program [36] for evaluating the
running top quark masses.

In Fig. 3(a), the difference of C4(MWL
) is shown. The magenta and blue solid lines

correspond to the cases of the conventional approach with different choices of the input scale
of the Wilson coefficients. Since it is uncertain in which energy scale the Wilson coefficients
should be input, we set Eqs. (3.6)–(3.9) at µ = MWR

(blue) or at µ = mt (magenta), and
then, perform the low-scale RGEs to the lower scale. For instance, µ = mt is chosen in

12



Ref. [29]. It is found that the difference is less than three percents below µLR = 100 TeV.
Although µ = mt seems to be favored for the conventional result, the deviation is enhanced
as µLR increases.

Our analysis includes both the top-quark effect and the heavy charged Higgs boson con-
tribution. In order to investigate them individually, we show the results without introducing
the latter contribution (dashed lines). Hence, in Fig. 3(a), the deviations of the dashed lines
from zero are due to the SMEFT top-quark effects explored in Sec. 2. It is found that the
effects are less than four percents for µLR < 100 TeV. Also, the difference between the solid
and dashed lines comes from the the heavy charged Higgs contribution. We confirm that it
is about one percent level and is comparable to the one-loop contributions, (C4)H–s.e. and
(C4)H–vert., in the Feynman-’t Hooft gauge. The difference between the lines is insensitive
to MWR

, because the box contribution in Eq. (3.19), i.e., the FD term, dominates the total
charged Higgs effects.

In Fig. 3(b), C5(MWL
) is displayed. The magenta and blue solid lines correspond to

µ = MWR
and µ = mt for the conventional approach, respectively. In this case, C5 is zero at

the input scale and generated by C4 through the RGEs down to µ = MWL
. The dependence

of C5 on MWR
is thus from that of C4. The conventional analyses are compared with our

SMEFT and H± results (green). The difference between the solid and dashed lines comes
from the heavy charged Higgs boson, which is shown to be sub-leading similarly to the above
case of C4. We found that C5(MWL

) depends heavily on MWR
and can be deviated from the

conventional results by hundred percents.
In Fig. 4, the difference of ∆MBs is shown. Since it is dominated by C4 at lower scales

quantitatively, the result becomes similar to the one in Fig. 3(a). It is seen that the SMEFT
and charged Higgs effects are less than five percents for µLR < 100 TeV and are enhanced
in larger µLR. We also checked that these results are unchanged by a choice of θq. Also, we
can derive the same conclusions for ∆MBd

as ∆MBs .
Before closing this section, let us comment on the charm-quark contribution. In the

analysis, we focused on the top-quark contributions in the box diagrams and kept the charm-
quark ones aside. This approximation is appropriate in the Bs,d meson system. However,
they are dominant in the K meson system, e.g., for εK in the left-right symmetric model [29].
Then, the SMEFT and charged Higgs corrections explored in this letter become necessary,
and long-distance effects should be taken into account. This topic will be studied in the
future.

4 Conclusions

Since the experimental constraints push the NP scale higher, the NP particle masses are
likely to be much larger than the SM ones, i.e., the EWSB scale. Then, FCNC amplitudes
should be investigated in the framework of the SMEFT rather than the “low-scale” one. In
a class of the NP models, both of the NP and SM particles contribute to a loop diagram
simultaneously. In order to reduce the uncertainty of the input scale of the Wilson coefficients
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particularly in such models, we studied the SMEFT corrections, paying attention to the top-
quark effects. For the FCNC observables, the operator matching needs to be performed
at the one-loop level. We provide the complete one-loop matching formula for ∆F = 2
transitions at O(y2

t ).
We also investigated ∆MBs in the left-right symmetric models. The right-handed W

boson generates the flavor transitions similarly to the left-handed one in the SM. The SMEFT
corrections are studied and compared with the conventional results. We found that the
Wilson coefficient C4 is affected by O(1)% and C5 by O(100)%. Since the observable ∆MBs

is dominated by the former quantitatively, the SMEFT effects for ∆MBs become comparable
to the result in C4. In addition to the SMEFT effects, we discussed the contribution of the
heavy charged Higgs boson. Although it can be comparable to the one-loop corrections to
the heavy neutral Higgs boson contribution, which are necessary for the gauge invariance, the
effect has often been neglected in the literature. It was found that the relative contribution
is about one percent level and almost independent of MWR

.
Although the difference between our and conventional results becomes smaller if µ = mt

is chosen for ∆MBs in the left-right symmetric models, the deviation becomes enhanced as
µLR increases. In order to clarify in which energy scale the Wilson coefficients should be
input, it is important to take account of the SMEFT RGEs and matching conditions for the
NP models in high scales.
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A Renormalization group equations

In this appendix, we summarize the SMEFT RGEs which are relevant for the ∆F = 2
observables at the one-loop level. We focus on the anomalous dimensions which depend on
the top-Yukawa or QCD couplings. In the following expressions, we define

Ċa ≡ (4π)2 dCa
d lnµ

, Xt ≡
πα

s2
W

xt. (A.1)

The anomalous dimensions at O(y2
t ) and O(g2

s) are obtained as (see Refs. [16–18] for the
complete one-loop formula of the SMEFT RGEs):

(Ċ
(1)
Hq)pr = Xt

[
λprt (CH� + CHD)− 2λprt (CHu)33 + 3λptt (C

(1)
Hq)tr + 3λtrt (C

(1)
Hq)pt

− 9λptt (C
(3)
Hq)tr − 9λtrt (C

(3)
Hq)pt
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+ 2λtst

(
6(C(1)

qq )prst + 6(C(1)
qq )stpr + (C(1)

qq )ptsr + (C(1)
qq )srpt + 3(C(3)

qq )ptsr + 3(C(3)
qq )srpt

)
− 12λkkt (C(1)

qu )pr33 + 12λkkt (C
(1)
Hq)pr + λptt (C

(1)
Hq)tr + λtrt (C

(1)
Hq)pt

]
, (A.2)

(Ċ
(3)
Hq)pr = Xt

[
− λprt CH� − 3λptt (C

(1)
Hq)tr − 3λtrt (C

(1)
Hq)pt + λptt (C

(3)
Hq)tr + λtrt (C

(3)
Hq)pt

− 2λtst

(
6(C(3)

qq )prst + 6(C(3)
qq )stpr + (C(1)

qq )ptsr + (C(1)
qq )srpt − (C(3)

qq )ptsr − (C(3)
qq )srpt

)
+ 12λkkt (C

(3)
Hq)pr + λptt (C

(3)
Hq)tr + λtrt (C

(3)
Hq)pt

]
, (A.3)

(ĊHd)pr = Xt

[
− 12λkkt (C

(1)
ud )33pr + 12λtst (C

(1)
qd )stpr + 12λkkt (CHd)pr

]
, (A.4)

(ĊHu)pr = Xt

[
− 2λkkt δp3δ3r(CH� + CHD)− 4λtst δp3δ3r(C

(1)
Hq)st + 6λkkt δp3(CHu)3r + 6λkkt δ3r(CHu)p3

− 4λkkt

(
3(Cuu)pr33 + 3(Cuu)33pr + (Cuu)p33r + (Cuu)3rp3

)
+ 12λtst (C(1)

qu )stpr + 12λkkt (CHu)pr + 2λkkt δp3(CHu)3r + 2λkkt δr3(CHu)p3

]
, (A.5)

ĊH� = Xt

[
− 2
(
− 6λsrt (C

(1)
Hq)rs + 18λsrt (C3

Hq)rs + 6λkkt (CHu)33

)
+ 24λkkt CH�

]
, (A.6)

ĊHD = Xt

[
− 2
(
− 24λsrt (C

(1)
Hq)rs + 24λkkt (CHu)33

)
+ 24λkkt CHD

]
, (A.7)

(Ċuu)prst = Xt

[
− 2λkkt δp3δ3r(CHu)st − 2λkkt δs3δ3t(CHu)pr

− 2λwvt δr3δp3(C(1)
qu )vwst − 2λwvt δt3δs3(C(1)

qu )vwpr

+
1

3
λwvt δp3δr3(C(8)

qu )vwst +
1

3
λwvt δs3δt3(C(8)

qu )vwpr

− λwvt δs3δ3r(C
(8)
qu )vwpt − λwvt δt3δp3(C(8)

qu )vwsr

+ 2λkkt δp3(Cuu)3rst + 2λkkt δs3(Cuu)pr3t + 2λkkt δr3(Cuu)p3st + 2λkkt δt3(Cuu)prs3

]
+ 4παs

[
1

3
(C(8)

qu )wwptδrs +
1

3
(C(8)

qu )wwsrδpt −
1

3Nc

(C(8)
qu )wwstδpr −

1

3Nc

(C(8)
qu )wwprδst

+
1

3
(Cuu)pwwtδrs +

1

3
(Cuu)swwrδpt +

1

3
(Cuu)wtpwδrs +

1

3
(Cuu)wrswδpt

− 1

3Nc

(Cuu)pwwrδst −
1

3Nc

(Cuu)swwtδpr −
1

3Nc

(Cuu)wrpwδst

− 1

3Nc

(Cuu)wtswδpr +
1

6
(C

(8)
ud )ptwwδrs +

1

6
(C

(8)
ud )srwwδpt −

1

6Nc

(C
(8)
ud )prwwδst
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− 1

6Nc

(C
(8)
ud )stwwδpr + 6(Cuu)ptsr −

6

Nc

(Cuu)prst

]
, (A.8)

(Ċ
(1)
ud )prst = Xt

[
− 4λkkt δp3δ3r(CHd)st − 4λwvt δp3δr3(C

(1)
qd )vwst + 2λkkt δp3(C

(1)
ud )3rst + 2λkkt δr3(C

(1)
ud )p3st

]
+ 3

(
N2
c − 1

N2
c

)
4παs(C

(8)
ud )prst, (A.9)

(Ċ
(8)
ud )prst = Xt

[
− 4λwvt δr3δp3(C

(8)
qd )vwst + 2λkkt δp3(C

(8)
ud )3rst + 2λkkt δr3(C

(8)
ud )p3st

]
+ 4παs

[
4

3
(Cuu)pwwrδst +

4

3
(Cuu)wrpwδst +

4

3
(Cdd)swwtδpr +

4

3
(Cdd)wtswδpr

+
4

3
(C(8)

qu )wwprδst +
4

3
(C

(8)
qd )wwstδpr

+
2

3
(C

(8)
ud )prwwδst +

2

3
(C

(8)
ud )wwstδpr − 12

1

Nc

(C
(8)
ud )prst + 12(C

(1)
ud )prst

]
, (A.10)

(Ċ(1)
qu )prst = Xt

[
4

3
λwrt δs3

(
(C(1)

qu )pw3t +
4

3
(C(8)

qu )pw3t

)
+

4

3
λpvt δt3

(
(C(1)

qu )∗rv3s +
4

3
(C(8)

qu )∗rv3s

)
+ 2λprt (CHu)st − 4λkkt δs3δ3t(C

(1)
Hq)pr +

1

3

(
2λpvt δs3(C(1)

qu )vr3t + 2λvrt δ3t(C
(1)
qu )pvs3

)
− 1

9

(
λpvt δs3(C(8)

qu )vr3t + λvrt δ3t(C
(8)
qu )pvs3

)
− 2

3

(
λvwt δs3δ3t(C

(1)
qq )pvwr + λwvt δs3δ3t(C

(1)
qq )pwvr + λprt (Cuu)3ts3 + λprt (Cuu)3ts3

)
− 2
(
λvwt δs3δ3t(C

(3)
qq )pvwr + λwvt δs3δ3t(C

(3)
qq )pwvr

)
+
(
λpvt δs3(C(8)

qu )vr3t + λvrt δ3t(C
(8)
qu )pvs3

)
− 8λwvt δs3δ3t(C

(1)
qq )prvw − 4λprt (Cuu)33st

+ λpvt (C(1)
qu )vrst + 2λkkt δs3(C(1)

qu )pr3t + λvrt (C(1)
qu )pvst + 2λkkt δt3(C(1)

qu )prs3

]
− 3

(
N2
c − 1

N2
c

)
4παs(C

(8)
qu )prst, (A.11)

(Ċ(8)
qu )prst = Xt

[
8λwrt δs3

(
(C(1)

qu )pw3t +
4

3
(C(8)

qu )pw3t

)
+ 8λpvt δt3

(
(C(1)

qu )∗rv3s +
4

3
(C(8)

qu )∗rv3s

)
− 2

3

(
λpvt δs3(C(8)

qu )vr3t + λvrt δ3t(C
(8)
qu )pvs3

)
− 4
(
λvwt δs3δ3t(C

(1)
qq )pvwr + λwvt δs3δ3t(C

(1)
qq )pwvr − λpvt δs3(C(1)

qu )vr3t − λvrt δ3t(C
(1)
qu )pvs3

)
− 4
(
λprt (Cuu)3ts3 + λprt (Cuu)3ts3

)
− 12

(
λvwt δs3δ3t(C

(3)
qq )pvwr + λwrt δs3δ3t(C

(3)
qq )pwvr

)
+ λpvt (C(8)

qu )vrst + 2λkkt δs3(C(8)
qu )pr3t + λvrt (C(8)

qu )pvst + 2λkkt δt3(C(8)
qu )prs3

]
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+ 4παs

[
4

3
(C(1)

qq )pwwrδst +
4

3
(C(1)

qq )wrpwδst + 4(C(3)
qq )pwwrδst + 4(C(3)

qq )wrpwδst

+
2

3
(C(8)

qu )prwwδst +
2

3
(C

(8)
qd )prwwδst +

4

3
(C(8)

qu )wwstδpr

+
2

3
(C

(8)
ud )stwwδpr +

4

3
(Cuu)swwtδpr +

4

3
(Cuu)wtswδpr

− 6

(
Nc −

2

Nc

)
(C(8)

qu )prst − 12(C(1)
qu )prst

]
, (A.12)

(Ċ(1)
qq )prst = Xt

[
λprt (C

(1)
Hq)st + λstt (C

(1)
Hq)pr

+
1

6

(
λprt (C(8)

qu )st33 + λstt (C(8)
qu )pr33

)
− 1

4

(
λptt (C(8)

qu )sr33 + λsrt (C(8)
qu )pt33

)
− λprt (C(1)

qu )st33 − λstt (C(1)
qu )pr33

+ λpvt (C(1)
qq )vrst + λsvt (C(1)

qq )prvt + λvrt (C(1)
qq )pvst + λvtt (C(1)

qq )prsv

]
+ 4παs

[
3(C(1)

qq )ptsr + 9(C(3)
qq )ptsr −

6

Nc

(C(1)
qq )prst

+
1

6
(C(1)

qq )swwrδpt +
1

6
(C(1)

qq )pwwtδrs +
1

6
(C(1)

qq )wrswδpt +
1

6
(C(1)

qq )wtpwδrs

− 1

3Nc

(C(1)
qq )pwwrδst −

1

3Nc

(C(1)
qq )swwtδpr −

1

3Nc

(C(1)
qq )wrpwδst −

1

3Nc

(C(1)
qq )wtswδpr

+
1

2
(C(3)

qq )swwrδpt +
1

2
(C(3)

qq )pwwtδrs +
1

2
(C(3)

qq )wrswδpt +
1

2
(C(3)

qq )wtpwδrs

− 1

Nc

(C(3)
qq )pwwrδst −

1

Nc

(C(3)
qq )swwtδpr −

1

Nc

(C(3)
qq )wrpwδst −

1

Nc

(C(3)
qq )wtswδpr

+
1

12
(C(8)

qu )srwwδpt +
1

12
(C(8)

qu )ptwwδrs −
1

6Nc

(C(8)
qu )prwwδst −

1

6Nc

(C(8)
qu )stwwδpr

+
1

12
(C

(8)
qd )srwwδpt +

1

12
(C

(8)
qd )ptwwδrs −

1

6Nc

(C
(8)
qd )prwwδst −

1

6Nc

(C
(8)
qd )stwwδpr

]
,

(A.13)

(Ċ(3)
qq )prst = Xt

[
− λprt (C

(3)
Hq)st − λ

st
t (C

(3)
Hq)pr −

1

4

(
λptt (C(8)

qu )sr33 + λsrt (C(8)
qu )pt33

)
+ λpvt (C(3)

qq )vrst + λsvt (C(3)
qq )prvt + λvrt (C(3)

qq )pvst + λvtt (C(3)
qq )prsv

]
+ 4παs

[
− 3(C(3)

qq )ptsr −
6

Nc

(C(3)
qq )prst + 3(C(1)

qq )ptsr

+
1

6
(C(1)

qq )pwwtδrs +
1

6
(C(1)

qq )swwrδpt +
1

6
(C(1)

qq )wtpwδrs +
1

6
(C(1)

qq )wrswδpt

+
1

2
(C(3)

qq )pwwtδsr +
1

2
(C(3)

qq )swwrδpt +
1

2
(C(3)

qq )wtpwδrs +
1

2
(C(3)

qq )wrswδpt
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+
1

12
(C(8)

qu )ptwwδrs +
1

12
(C(8)

qu )srwwδpt +
1

12
(C

(8)
qd )ptwwδrs +

1

12
(C

(8)
qd )srwwδpt

]
,

(A.14)

(Ċdd)prst = 4παs

[
6(Cdd)ptsr −

6

Nc

(Cdd)prst

+
1

3
(Cdd)pwwtδrs +

1

3
(Cdd)wtpwδrs +

1

3
(Cdd)wrswδpt −

1

3Nc

(Cdd)pwwrδst

− 1

3Nc

(Cdd)swwtδpr −
1

3Nc

(Cdd)wtswδpr −
1

3Nc

(Cdd)wrpwδst

+
1

3
(C

(8)
qd )wwsrδpt +

1

3
(C

(8)
qd )wwptδrs −

1

3Nc

(C
(8)
qd )wwprδst −

1

3Nc

(C
(8)
qd )wwstδpr

+
1

6
(C

(8)
ud )wwptδrs +

1

6
(C

(8)
ud )wwsrδpt −

1

6Nc

(C
(8)
ud )wwprδst −

1

6Nc

(C
(8)
ud )wwstδpr

]
,

(A.15)

(Ċ
(1)
qd )prst = Xt

[
2λprt (CHd)st − 2λprt (C

(1)
ud )33st + λpvt (C

(1)
qd )vrst + λvrt (C

(1)
qd )pvst

]
− 3

(
N2
c − 1

N2
c

)
4παs(C

(8)
qd )prst, (A.16)

(Ċ
(8)
qd )prst = Xt

[
− 2λprt (C

(8)
ud )33st + λpvt (C

(8)
qd )vrst + λvrt (C

(8)
qd )pvst

]
+ 4παs

[
4

3
(C(1)

qq )pwwrδst +
4

3
(C(1)

qq )wrpwδst + 4(C(3)
qq )pwwrδst + 4(C(3)

qq )wrpwδst

+
2

3
(C(8)

qu )prwwδst +
2

3
(C

(8)
qd )prwwδst +

4

3
(C

(8)
qd )wwstδpr +

2

3
(C

(8)
ud )wwstδpr

+
4

3
(Cdd)swwtδpr +

4

3
(Cdd)wtswδpr − 6

(
Nc −

2

Nc

)
(C

(8)
qd )prst − 12(C

(1)
qd )prst

]
.

(A.17)

B Higgs sector in left-right symmetric models

In this section, we briefly review the Higgs sector in the left-right symmetric models. After
the left-right symmetry is broken, the scalar potential with vL = 0 [20] is

V = − µ2
1Tr
(
Φ†Φ

)
− µ2

2

[
Tr
(

Φ̃Φ†
)

+ Tr
(

Φ̃†Φ
)]

+ λ1

[
Tr
(
Φ†Φ

)]2
+ λ2

{[
Tr
(

Φ̃Φ†
)]2

+
[
Tr
(

Φ̃†Φ
)]2
}

+ λ3Tr
(

Φ̃Φ†
)

Tr
(

Φ̃†Φ
)

+ λ4Tr
(
Φ†Φ

) [
Tr
(

Φ̃Φ†
)

+ Tr
(

Φ̃†Φ
)]

+ α1Tr
(
Φ†Φ

)
Tr
(
〈∆†R〉〈∆R〉

)
+ α2

[
eiδTr

(
Φ̃†Φ

)
+ e−iδTr

(
Φ̃Φ†

)]
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+ α3Tr
(

Φ†Φ〈∆R〉〈∆†R〉
)
, (B.1)

where Φ̃ = σ2Φ∗σ2. Under this scalar potential, the Higgs bi-doublet Φ obtains complex
VEVs as Eq. (3.3) and the spontaneous CP -violating phase α emerges at the EWSB vacuum.

In the limit of vR � v, the following linear combinations diagonalize the neutral and
charged Higgs mass matrices,

H0 = cos βφ0
2 − sin βeiαφ0∗

1 , (B.2)

h0 = sin βe−iαφ0
2 + cos βφ0∗

1 , (B.3)

H+ = cos βφ+
2 + sin βeiαφ+

1 , (B.4)

G+ = sin βφ+
2 − cos βeiαφ+

1 , (B.5)

where H0 (H+) is the heavy neutral (charged) Higgs, G+ the NG boson, and h0 includes
SM Higgs and NG boson components. The heavy Higgs masses are obtained as

M2
H0 = M2

H± =
α3v

2
R

2 cos 2β
≡M2

H . (B.6)

The Yukawa interactions in the gauge eigenstate basis are

−LY = QL

(
Y Φ + Ỹ Φ̃

)
QR + h.c.

⊃ ULS
u
LMUS

u†
R UR +DLS

d
LMDS

d†
R DR + h.c.

≡ uLMUuR + dLMDdR + h.c., (B.7)

with the mass matrices,

SuLMUS
u†
R =

v√
2

(
Y cos β + Ỹ sin βe−iα

)
, (B.8)

SdLMDS
d†
R =

v√
2

(
Y sin βeiα + Ỹ cos β

)
. (B.9)

Here, uL,R and dL,R represent the quark mass eigenstates with MU = diag(mu,mc,mt) and

MD = diag(md,ms,mb). The unitary matrices Su,dL,R satisfy

VL = Su†L S
d
L, VR = Su†R S

d
R. (B.10)

From Eq. (B.8) and (B.9), Y and Ỹ are written as

Y =

√
2

v cos 2β

(
cos βSuLMUS

u†
R − sin βe−iαSdLMDS

d†
R

)
,

Ỹ =

√
2

v cos 2β

(
− sin βeiαSuLMUS

u†
R + cos βSdLMDS

d†
R

)
. (B.11)
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Then, the Yukawa interactions are represented in the mass eigenstate basis as

−LY =QL

(
Y Φ + Ỹ Φ̃

)
QR + h.c.

=uLS
u†
L

(
Y φ0

1 + Ỹ φ0∗
2

)
SuRuR + dLS

d†
L

(
Y φ0

2 + Ỹ φ0∗
1

)
SdRdR

+ uLS
u†
L

(
Y φ+

2 − Ỹ φ+
1

)
SdRdR + dLS

d†
L

(
Y φ−1 − Ỹ φ−2

)
SuRuR + h.c.

=

√
2

v
uLS

u†
L

[
SuLMUS

u†
R h
∗ +

1

cos 2β

(
SdLMDS

d†
R − sin 2βeiαSuLMUS

u†
R

)
H0∗

]
SuRuR

+

√
2

v
dLS

d†
L

[
SdLMDS

d†
R h+

1

cos 2β

(
SuLMUS

u†
R − sin 2βe−iαSdLMDS

d†
R

)
H0

]
SdRdR

+

√
2

v
uLS

u†
L

[
e−iαSdLMDS

d†
R G

+ +
1

cos 2β

(
SuLMUS

u†
R − sin 2βe−iαSdLMDS

d†
R

)
H+

]
SdRdR

+

√
2

v
dLS

d†
L

[
−eiαSuLMUS

u†
R G

− − 1

cos 2β

(
SdLMDS

d†
R − sin 2βeiαSuLMUS

u†
R

)
H−
]
SuRuR + h.c.

=

√
2

v
uL

[
MUh

∗ +
1

cos 2β

(
VLMDV

†
R − sin 2βeiαMU

)
H0∗

]
uR

+

√
2

v
dL

[
MDh+

1

cos 2β

(
V †LMUVR − sin 2βe−iαMD

)
H0

]
dR

+

√
2

v
uL

[
e−iαVLMDG

+ +
1

cos 2β

(
MUVR − sin 2βe−iαVLMD

)
H+

]
dR

+

√
2

v
dL

[
−eiαV †LMUG

− − 1

cos 2β

(
MDV

†
R − sin 2βeiαV †LMU

)
H−
]
uR + h.c..

(B.12)

Therefore, the heavy Higgs interactions with quarks become

−LY '
√

2muk

v cos 2β
di(V

†
L)ik(VR)kjPRdjH

0 +

√
2muk

v cos 2β
di(V

†
R)ik(VL)kjPLdjH

0∗

+

√
2muk

v cos 2β
uk(VR)kiPRdiH

+ +

√
2muk

v cos 2β
di(V

†
R)ikPLukH

−, (B.13)

where the terms proportional to tan 2β are dismissed, because tan 2β = O(mb/mt).
After integrating out the heavy charged Higgs boson, one obtains the effective operator,

Leff '
2
√

2GF

cos2 2β

m2
t

M2
H±

(V †R)i3(VR)3j(d̄iPLt)(t̄PRdj)

= −
√

2GF

cos2 2β

m2
t

M2
H±

(V †R)i3(VR)3j(t̄αγ
µPLtβ)(d̄i,βγµPRdj,α), (B.14)
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where α, β denote color indices. By rearranging the colors, the Wilson coefficients become

(C
(8)
qd )tree

33ij

∣∣
q=u

= −2
√

2GF

cos2 2β

m2
t

M2
H±

(V †R)i3(VR)3j, (B.15)

(C
(1)
qd )tree

33ij

∣∣
q=u

=
1

2Nc

(C
(8)
qd )33ij

∣∣
q=u

. (B.16)

for q = u. The Wilson coefficients for q = d is generated by the heavy neutral Higgs
exchange. After integrating out the heavy neutral Higgs boson, one obtains

Leff '
2
√

2GF

cos2 2β

m2
t

M2
H0

(V †R)i3(VL)3k(V
†
L)l3(VR)3j(d̄iPLdk)(d̄lPRdj)

= −
√

2GF

cos2 2β

m2
t

M2
H0

(V †R)i3(VL)3k(V
†
L)l3(VR)3j(d̄l,αγ

µPLdk,β)(d̄i,βγµPRdj,α). (B.17)

In the mass eigenstate basis, the SU(2)L quark double is shown as q = (uL, VLdL)T . Thus,
the Wilson coefficients for q = d become

(C
(8)
qd )tree

33ij

∣∣
q=d

= −2
√

2GF

cos2 2β

m2
t

M2
H

(V †R)i3(VR)3j, (B.18)

(C
(1)
qd )tree

33ij

∣∣
q=d

=
1

2Nc

(C
(8)
qd )33ij

∣∣
q=d

. (B.19)

Consequently, Eqs. (3.13) and (3.14) are obtained.

C Loop functions

The loop functions which are necessary for the ∆F = 2 transition amplitudes in the left-right
model are summarized. They are defined as

FA(xi, xj, β) =

(
1 +

xixjβ

4

)
I1(xi, xj, β)− 1 + β

4
I2(xi, xj, β), (C.1)

FB(τL, τR) = (τ 2
L + τ 2

R + 10τLτR + 1) I3(τL, τR)

+ (τ 2
L + τ 2

R + 10τLτR − 2τL − 2τR + 1) I4(τL, τR), (C.2)

FC(τi, τj, τL, τR) = 2(τL + τR) I3(τL, τR)−
[

τi
√
τLτR

τi − 4
√
τLτR

I5(τi, τL, τR) + (i→ j)

]
, (C.3)

FD(xi, xj, τL) =xixjI1 (xi, xj, τL)− I2 (xi, xj, τL) . (C.4)

The functions, I1–I5, are denoted by the Passarino-Veltman functions as [37]

I1(xi, xj, β) = −M2
WL
M2

WR
D0(0, 0, 0, 0; 0, 0;mui ,muj ,MWL

,MWR
), (C.5)

I2(xi, xj, β) = −4M2
WR
D00(0, 0, 0, 0; 0, 0;mui ,muj ,MWL

,MWR
), (C.6)
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I3(τL, τR) = B0(0;MWL
,MWR

)− Re[B0(M2
H ;MWL

,MWR
)], (C.7)

I4(τL, τR) = M2
H

2∑
n=0

Re
[
Cn(M2

H , 0,M
2
H ;MWL

,MWR
,MWR

)
]
, (C.8)

I5(τi, τL, τR) = M2
H

{
C0(0, 0, 0;MWL

,mui ,MWR
)

− Re

[
C0

(
M2

H

4
,
M2

H

4
,M2

H ;MWL
,mui ,MWR

)]}
, (C.9)

where we follow the notation of Refs. [38,39]. The absorptive parts in the loop functions are
discarded [29]. We also obtain the following analytical formulae:

I1(xi, xj, β) =
xi lnxi

(1− xi)(1− xiβ)(xi − xj)
+ (i↔ j)− β ln β

(1− β)(1− xiβ)(1− xjβ)
, (C.10)

I2(xi, xj, β) =
x2
i lnxi

(1− xi)(1− xiβ)(xi − xj)
+ (i↔ j)− ln β

(1− β)(1− xiβ)(1− xjβ)
, (C.11)

I3(τL, τR) = −1 +
1

2

[
τL − τR −

τL + τR
τL − τR

]
ln
τL
τR

(C.12)

−
√

(1− τL − τR)2 − 4τLτR
2

ln
1− τL − τR −

√
(1− τL − τR)2 − 4τLτR

1− τL − τR +
√

(1− τL − τR)2 − 4τLτR
,

I4(τL, τR) = 1− τL − τR
2

ln
τL
τR

(C.13)

+
(τL − τR)2 − (τL + τR)

2
√

(1− τL − τR)2 − 4τLτR
ln

1− τL − τR −
√

(1− τL − τR)2 − 4τLτR

1− τL − τR +
√

(1− τL − τR)2 − 4τLτR
,

I5(τi, τL, τR) =
τi(τR − τL) ln τi + τL(τi − τR) ln τL + τR(τL − τi) ln τR

(τR − τL)(τL − τi)(τi − τR)

− Re

{
ln
τLτR
τ 2
i

+
1

4τi − 2τL − 2τR + 1

×
[
8κ

(
1

4
, τi, τL

)
ln
κ
(

1
4
, τi, τL

)
+ τi + τL − 1

4

2
√
τiτL

+ (L→ R)

− 4κ(1, τL, τR) ln
κ(1, τL, τR) + τL + τR − 1

2
√
τLτR

]}
, (C.14)

with

κ(x, y, z) =
√
x2 + y2 + z2 − 2(xy + yz + zx). (C.15)

When the relation, m2
ui

, M2
WL
� M2

WR
� M2

H , are satisfied, one can use the following
approximations:

I3(τL, τR) ' −1 + (1− τR) ln

(
1

τR
− 1

)
≈ −1− ln τR, (C.16)
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I4(τL, τR) ' 1 + τR ln

(
1

τR
− 1

)
≈ 1, (C.17)

I5(τi, τL, τR) ' τi ln (τi/τR)− τL ln (τL/τR)

τR(τi − τL)
, (C.18)

which are consistent with Ref. [29]. Numerically, the second term of I5 in Eq. (C.14),
Re{· · · }, is much smaller than the first term for MH �MWR

.

D Double penguin contributions

In this section, we apply the one-loop matching conditions in Sec. 2 to double-penguin
diagrams, where ∆F = 2 processes are generated by exchanging the SM gauge bosons
with FC interactions. When vector bosons of the unbroken gauge symmetries, i.e., those
of SU(3)C and U(1)em in the SM, are exchanged, such double-penguin contributions should
vanish because of the gauge invariance. In fact, form factors of their FC penguin vertices
should be proportional to q2, i.e., vanish in the limit of q2 → 0 for the gauge invariance,
where q is the momentum transfer. Then, ∆F = 2 double-penguin diagrams depend on
q4 × 1/q2, where 1/q2 represents the propagator of the unbroken gauge boson. Hence, they
disappear in the limit of q2 → 0.

In our formula, this gauge invariance is confirmed by observing the cancellations among
the Wilson coefficients. Once ∆F = 1 operators (and ∆F = 2 ones if necessary) are
generated by the penguin diagrams at the NP scale, we will see that ∆F = 2 contributions
cancel out below the EWSB scale, if the diagrams are mediated by the gauge bosons of the
unbroken gauge symmetries. Here, the one-loop matching conditions are necessary. These
results justify our one-loop matching conditions in Sec. 2.

We will focus on the double-penguin diagrams with exchanging the gauge bosons as-
sociated with the unbroken gauge symmetries. At the NP scale, penguin-type ∆F = 1
contributions are generated by exchanging them. The effective Lagrangian from the mass-
less B, W 3 and gluon can be written as

LB =
α

4πc2
W

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
)

(YuLūkγµPLuk + YuR ūkγµPRuk)

+
α

4πc2
W

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
) (
YdL d̄kγµPLdk + YdR d̄kγµPRdk

)
=
α

4π

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
)
Quūkγµuk

− αZ
4π
s2
W

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
) (
I3
u −Qus

2
W

)
ūkγµuk

+
α

4π

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
)
Qdd̄kγµdk

− αZ
4π
s2
W

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
) (
I3
d −Qds

2
W

)
d̄kγµdk, (D.1)

LW 3

=
α

4πs2
W

CW 3

L,ij

(
d̄iγ

µPLdj
) (
I3
uūkγµPLuk

)
+

α

4πs2
W

CW 3

L,ij

(
d̄iγ

µPLdj
) (
I3
d d̄kγµPLdk

)
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=
α

4π
CW 3

L,ij

(
d̄iγ

µPLdj
)
Quūkγµuk +

αZ
4π
c2
WC

W 3

L,ij

(
d̄iγ

µPLdj
) (
I3
u −Qus

2
W

)
ūkγµuk

+
α

4π
CW 3

L,ij

(
d̄iγ

µPLdj
)
Qdd̄kγµdk +

αZ
4π
c2
WC

W 3

L,ij

(
d̄iγ

µPLdj
) (
I3
d −Qds

2
W

)
d̄kγµdk,

(D.2)

Lg =
αs
4π

(
Cg
L,ij d̄iγ

µPLT
Adj + Cg

R,ij d̄iγ
µPRT

Adj
) (
ūkγµT

Auk + d̄kγµT
Adk
)
, (D.3)

where Yf is the hypercharge, I3
f the SU(2)L charge, and Qf the U(1)em charge. Also, αs and

α are the gauge couplings of SU(3)C and U(1)em, respectively. The coefficients, CV
c,ij (V =

B,W 3, g and c = L,R), are generated by integrating out the NP particles. In the second lines
of LB and LW 3

, the effective Lagrangians are divided into the would-be γ- and Z-penguin
contributions, which are proportional to αQf and αZ (I3

f −Qfs
2
W ), respectively. Here, αZ =

α/(c2
W s

2
W ). In terms of the SMEFT operators, the above operators are represented as

(C(1)
qq )ijkk =(C(1)

qq )kkij

=− αs
16Ncπ

Cg
L,ij +

α

8π
Yq

(
CB
L,ij + CW 3

L,ij

)
+
αZ
8π
s2
WYq

(
s2
WC

B
L,ij − c2

WC
W 3

L,ij

)
, (D.4)

(C(1)
qq )ikkj =(C(1)

qq )kjik =
αs

32Ncπ
(Nc − 2)Cg

L,ij, (D.5)

(C(3)
qq )ijkk =(C(3)

qq )kkij

=− α

16π

(
CB
L,ij + CW 3

L,ij

)
+

αZ
16π

c2
W

(
s2
WC

B
L,ij − c2

WC
W 3

L,ij

)
, (D.6)

(C(3)
qq )ikkj =(C(3)

qq )kjik =
αs

32π
Cg
L,ij, (D.7)

(C(1)
ud )kkij =

α

4π
QuC

B
R,ij −

αZ
4π
s2
WC

B
R,ij

(
−s2

WQu

)
, (D.8)

(C(8)
ud )kkij =

αs
4π
Cg
R,ij, (D.9)

(C(1)
qu )ijkk =

α

4π
Qu

(
CB
L,ij + CW 3

L,ij

)
− αZ

4π

(
s2
WC

B
L,ij − c2

WC
W 3

L,ij

) (
−s2

WQu

)
, (D.10)

(C(8)
qu )ijkk =

αs
4π
Cg
L,ij, (D.11)

(C(1)
qd )kkij =

α

4π
QqC

B
R,ij −

αZ
4π
s2
WC

B
R,ij

(
I3
q − s2

WQq

)
, (D.12)

(C(8)
qd )ijkk =

αs
4π
Cg
L,ij, (D.13)

(C(8)
qd )kkij =

αs
4π
Cg
R,ij. (D.14)

In addition, one has to include ∆F = 2 contributions which come from the diagram
in Fig. 5. They are generated at the NP scale. The di → dj transitions are induced by
the penguin vertices of the NP contribution in one side and those of the SM contribution
in another side, where the up-type quarks, especially the top quark, and the W boson are
exchanged. The Wilson coefficients of the SMEFT operators are represented as

(C(1)
qq )ijij =(C(3)

qq )ijij
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W ± , G±

t
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Figure 5. Feynman diagram for the one-loop contribution to ∆F = 2 operators at the NP scale.

=− α2λijt
8π2s2

W

(
CB
L,ij + CW 3

L,ij

){
QG+

xt
8
L(xt, µW ) +QG+

1

4
M(xt)−

1

8
[2− 6L(xt, µW )]

}
+
ααZλ

ij
t

8π2s2
W

(
s2
WC

B
L,ij − c2

WC
W 3

L,ij

){
(IG

+ − s2
WQ

G+

)
xt
8
L(xt, µW )

+ (−s2
WQG+)

1

4
M(xt)−

1

8
c2
W [2− 6L(xt, µW )]

}
(D.15)

=− α2λijt
8π2s2

W

(
CB
L,ij + CW 3

L,ij

)
K(xt, µW )

− ααZλ
ij
t

8π2s2
W

(
s2
WC

B
L,ij − c2

WC
W 3

L,ij

)[xt
16
L(xt, µW ) +

1

4
M(xt)− c2

WK(xt, µW )

]
,

(D.16)

(C(1)
qd )ijij =− α2λijt

4π2s2
W

CB
R,ij

{
QG+

xt
8
L(xt, µW ) +QG+

1

4
M(xt)−

1

8
[2− 6L(xt, µW )]

}
+
ααZλ

ij
t

4π2s2
W

(
s2
WC

B
R,ij

){
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+ − s2
WQ
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)
xt
8
L(xt, µW ) + (−s2

WQG+)
1

4
M(xt)

− 1

8
c2
W [2− 6L(xt, µW )]

}
(D.17)

=− α2λijt
4π2s2

W

CB
R,ijK(xt, µW )

− ααZλ
ij
t

4π2
CB
R,ij

[
xt
16
L(xt, µW ) +

1

4
M(xt)− c2

WK(xt, µW )

]
, (D.18)

where QG+ = 1 and IG
+

= 1/2. Here, the GIM mechanism is used to reduce the results,
and the loop functions are given as

L(x, µ) = ln
µ

MW

+
3x− 1

4(x− 1)
− x2 lnx

2(1− x)2
, (D.19)

M(x) =
x

1− x
+

x2 lnx

(1− x)2
. (D.20)
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For the gluon double-penguin contributions, one obtains the low-scale ∆F = 2 operators
through the one-loop matching conditions, Eqs. (2.24)–(2.26), from the SMEFT ∆F = 1
operators in Eqs. (D.4)–(D.14) as

(C1)ij = (C1)1–loop
ij

= − αλijt
4πs2

W

αs
4π

2(Nc − 1)

Nc

Cg
L,ij [I1(xt, µW ) + 2J(xt)−K(xt, µW )]

= 0, (D.21)

(C4)ij = (C4)1–loop
ij

=
αλijt
πs2

W

αs
4π
Cg
R,ij [I1(xt, µW ) + 2J(xt)−K(xt, µW )]

= 0, (D.22)

(C5)ij = (C5)1–loop
ij

= −αλ
ij
t

πs2
W

αs
4π

1

Nc

Cg
R,ij [I1(xt, µW ) + 2J(xt)−K(xt, µW )]

= 0. (D.23)

Since all these Wilson coefficients are proportional to the function, I1(xt, µW ) + 2J(xt) −
K(xt, µW ), which is identical to zero, there are no contributions to the ∆F = 2 opera-
tors. Hence, the gluon double-penguin contributions vanish, as expected from the gauge
invariance.

Next, for the γ double-penguin contributions, the low-scale ∆F = 2 operators are gen-
erated from the SMEFT ∆F = 2 operators in Eqs. (D.16) and (D.18) through the tree-level
matching as well as the ∆F = 1 ones in Eqs. (D.4)–(D.14) through the one-loop matching
conditions, Eqs. (2.24)–(2.26). In total, the low-scale ∆F = 2 coefficients are

(C1)ij =(C1)tree
ij + (C1)1–loop

ij

=
αλijt
πs2

W

α

4π

(
CB
L,ij + CW 3

L,ij

)
K(xt, µW )

− αλijt
πs2

W

α

4π

(
CB
L,ij + CW 3

L,ij

){
Qu[I1(xt, µW ) + 2J(xt)]−QdK(xt, µW )

}
=0, (D.24)

(C5)ij =(C5)tree
ij + (C5)1–loop

ij

=− 2αλijt
πs2

W

α

4π
CB
R,ijK(xt, µW )

+
2αλijt
πs2

W

α

4π
CB
R,ij

{
Qu[I1(xt, µW ) + 2J(xt)]−QdK(xt, µW )

}
=0, (D.25)
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and other Wilson coefficients do not receive contributions. It is noticed that (C1)ij and (C5)ij
are proportional to the function which is identical to zero, because Qd = Qu− 1. Hence, the
γ double-penguin contributions also vanish, as expected from the gauge invariance, and it
guarantees our one-loop matching conditions.#10
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