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1. Introduction

Double-Higgs boson production will be an important process to study in the coming years. As
the simplest process which depends on the triple-Higgs coupling, the experimental measurement
of double-Higgs amplitudes will give crucial insight into the electro-weak sector of our models
of particle physics. Despite its small cross section, it is anticipated that double-Higgs production
in gluon fusion will be observable after the coming high-luminosity upgrade of the Large Hadron
Collider at CERN.

The leading-order (one-loop) contributions to the gg→ HH process were computed many
years ago [1, 2]. Since then, there have been various efforts to improve our theoretical understand-
ing of this process by investigating two-loop (NLO) QCD contributions. Although a full, analytic
calculation of the amplitude has not been completed at NLO, it has been computed in the large-mt

limit using an effective theory in Ref [3] and then checked and extended in Refs. [4, 5], where an
asymptotic expansion of the full theory was performed. Large-mt contributions are also available
at three loops (NNLO) in Refs. [6, 7, 8, 9]. A numerical computation of the full amplitude, exact
in mt , is available in Refs. [10, 11]. Recently, results also became available in the limit of small
Higgs transverse momentum [12].

These proceedings summarize a talk presented at Loops and Legs in Quantum Field Theory
2018 and a previous publication on these works [13], in which we aim to supplement existing
results by providing the so-far unknown high-energy limit of the gg → HH virtual amplitude.
Assigning particle momenta as g(q1)g(q2)→H(q3)H(q4), this virtual amplitude can be written in
terms of the Mandelstam variables

s = (q1 +q2)
2, t = (q1 +q3)

2, u = (q2 +q3)
2, (1.1)

where all momenta are incoming. In the high-energy limit we set all q2
i = 0 (and so m2

H = 0), and
have that s+ t +u = 0. The Mandelstam variables become

s = 2q1 ·q2, t = 2q1 ·q3, u = 2q2 ·q3 =−s− t; (1.2)

the amplitude and master integrals can be written in terms of the variables s, t,m2
t . We decompose

the amplitude in terms of two independent Lorentz structures Aµν

i , multiplied by two form factors
Mi,

M = ε1,µε2,νM µν = ε1,µε2,ν
(
Aµν

1 M1 +Aµν

2 M2
)
, (1.3)

where ε1 and ε2 are the polarization vectors of the gluons. M1 and M2 can be projected from M µν

by means of projection operators,
Mi = Pi,µνM µν . (1.4)

We do not typeset Aµν

i or Pi,µν explicitly here, instead referring the reader to Ref [13]. In the
following sections, we describe our computation of the form factors Mi.

2. Reduction

The two-loop virtual amplitude is generated using qgraf [14]. The programs q2e and
exp [15, 16] map each Feynman diagram onto an integral topology, and convert the notation for
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further processing with FORM 4.2 [17]. For each diagram, colour factors and Dirac traces are
computed, and a projection onto the form factors Mi is performed as described in Section 1. The
Feynman integrals are then written as linear combinations of scalar Feynman integrals which we
reduce to a minimal set of master integrals by making use of FIRE 5.2 [18]. LiteRed [19, 20]
is also used to provide symmetry information to FIRE. No approximations (other than m2

H = 0)
are made at this point; the exact dependence on mt is retained.

After reduction, the amplitude is written in terms of 10 one-loop and 221 two-loop master
integrals, however this is not in fact a minimal two-loop set. In order to expose additional relations
between these 221 integrals, we make use of the FIRE command FindRules. By applying it to
the input set of integrals from the amplitude and then applying the reduction relations, we form a
set of equations which should hold if the reduction relations are consistent,

FindRules[I ] == I. (2.1)

Any of these equations which are not satisfied provide relations between some of the 221 master
integrals. Using these additional relations we obtain a list of 161 two-loop master integrals, which
are listed in Ref [13].

3. Differential Equations

We use the method of differential equations [21, 22] to compute the master integrals. The
differential equations are solved by using an ansatz, suitable to describe the integrals in the high-
energy limit. By differentiating the vector of master integrals with respect to a parameter x ∈
{s, t,m2

t } and applying reduction relations to the result, one obtains a closed system of coupled first
order differential equations for the vector of master integrals MI,

d
dx

MI = Kx ·MI, (3.1)

where Kx is a square matrix whose entries depend on s, t,m2
t and ε . Our high-energy (large-mt

limit) ansatz for the an l-loop master integral I has the following form, guided by the structure of
an asymptotic expansion,

I =
nmax

1

∑
n1=nmin

1

nmax
2

∑
n2=nmin

2

2l+n1

∑
n3=0

CI,n1,n2,n3(s, t) ε
n1
(
m2

t
)n2 (logm2

t
)n3

. (3.2)

When combined with suitable boundary conditions, the differential equations can be integrated
to determine the free coefficients of the ansatz, the functions CI,n1,n2,n3 . The leading term in the
expansion provides these boundary conditions; that is, the term with n2 = nmin

2 . This leading term
is computed by using the method of expansion by regions [23, 24]. Each integral can be written as
the sum of integrals in a hard-scaling region and several soft-scaling regions. These integrals are
written as Mellin-Barnes integrals whose integrands either are independent of, or depend on, t (s
can be set to, say, −1).

The t-independent case is easier to deal with; we evaluate the Mellin-Barnes integral numer-
ically, to high precision (300 digits), and fit the result to a basis of irrational numbers using the
PSLQ algorithm [25]. A further 200 digits are used to check the result. For the t-dependent case
we can proceed in two ways:
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1. Set t to a value, say, −1. Evaluate the integral using PSLQ as in the t-independent case.
The t dependence of the boundary condition can be recovered by substituting it into the t
differential equation; this produces a coupled system of differential equations for the ansatz
coefficients CI,n1,nmin

2 ,n3
(−1,−1), which can be integrated to obtain CI,n1,nmin

2 ,n3
(t,−1).

2. Construct a Taylor series for the Mellin-Barnes integral about t = 0, by taking its residues.
Fit the series to a basis of harmonic polylogarithms [26] to produce a t-dependent boundary
condition; that is, the coefficients CI,n1,nmin

2 ,n3
(t,−1) are produced directly.

In both cases, we obtain t-dependent boundary conditions which can be substituted into the m2
t

differential equations. Since all m2
t dependence is explicit in the ansatz, one obtains a system of

linear equations relating the set of coefficients CI,n1,n2,n3(t,−1) which can be solved, in principle,
to an arbitrarily high maximum value of n2 = nmax

2 . In practice, higher values of nmax
2 are computa-

tionally more difficult. We compute a sufficient number of terms to verify the convergence of the
series. For more details on how the above steps are performed, the reader is referred to Ref [13].

After reconstructing the s dependence on dimensional grounds, we obtain asymptotic expan-
sions for the master integrals for small values of m2

t . These expansions can be substituted into the
amplitude. The leading two orders of these expansions are also given in Ref. [27], and we find
complete agreement.

4. Higgs Mass Effects

After computing the master integrals using the method described in Section 3, we consider
Higgs mass corrections to the amplitude in the high energy limit. Unreduced integrals appearing
initially in the amplitude can be expanded as a Taylor series in m2

H , since the Higgs bosons are
external particles and their momenta can always flow along massive lines. This expansion can be
performed with LiteRed. The resulting expression contains extra integrals which can be reduced,
now for vanishing m2

H , as described in Section 2. For example, we have that

F̂6(1,1,1,1,1,1,0,0)→ G6(1,1,1,1,1,1,0,0)+
m2

H

s+ t

{
G6(1,1,1,1,1,1,1,0,0)

+
( s

2
−m2

t

(
1+

s
2t

)
+ t

)
F6(1,1,2,1,1,1,1,0,0)

−
(

1+
s
2t

)
F6(1,1,2,1,1,1,1,0,−1)− s

2t
F6(1,1,1,1,1,2,1,−1,0)

−
( s

2
+m2

t
s
2t

)
G6(1,1,1,1,1,2,1,0,0)−

1
2

F6(1,1,2,0,1,1,1,0,0)

− 1
2

F6(1,1,1,1,0,2,1,0,0)−
1
2

F6(0,1,1,1,1,2,1,0,0)

+

(
3
2
+

s
t

)
F6(1,0,2,1,1,1,1,0,0)

}
+O

(
(m2

H)
2) . (4.1)

Integrals labelled with F rather than G are not master integrals, and will be reduced to our master
integral basis. Hatted integrals denote that they are m2

H dependent. The definitions of our integral
families can be found in Ref. [13].
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Figure 1 shows the effect of including terms proportional to m2
H and (m2

H)
2 in the differential

cross-section at one loop. In the high-energy region where the m2
t expansion converges (

√
s &

800GeV), the correction due to the m2
H terms describes the known exact result with an error below

1.5% (and an error below 0.1% for
√

s & 1000GeV). In this region, the correction due to the (m2
H)

2

terms is very small; it shifts the m2
H curve by less than 0.05%. We thus have confidence that our

asymptotic expansions describe the amplitude very well in the high-energy region, and feel that
computing only the m2

H correction will be sufficient at NLO.
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Figure 1: Various high-energy approximations of the LO differential cross section, normalized to the known,
exact result. The curves are plotted for a Higgs-boson scattering angle θ = π/2. The curves labelled “exact”
are the result of [1, 2], plotted for m2

H values of 0 and 125 GeV. The curves labelled “mm
H ,m

n
t ” show the result

of our asymptotic expansion, including terms to m,n-th order in mH ,mt .

5. Expansion by Regions and Uniform Transcendentality

Although we have not made use of the property of uniform transcendentality in our choice of
basis for the planar master integrals, or for their calculation, we will describe some observations on
how uniformly transcendental integrals can be identified by the method of expansion by regions.
We proceed by example.

Consider the integral G6(1,1,1,1,1,1,1,0,0). It is a finite integral; that is, its expansion about
D = 4− 2ε dimensions contains no poles in ε . Expanding by regions, where here the expansion
parameter is mt , one sees that the integral can be expressed as the sum of contributions from a
hard region and several soft-collinear regions. The contribution from the hard region is simply the
fully massless 2-loop double box integral, which has poles in ε starting from ε−4. These poles are
cancelled by poles from the soft regions, such that we obtain a finite result.

This cancellation means that if the hard region is uniformly transcendental, as is the case
for G6(1,1,1,1,1,1,1,0,0), the sum of the contributions from the soft regions must also be uni-
formly transcendental up to O(ε−1). Indeed, the sum of the soft-collinear regions is also uniformly
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transcendental in its ε0 and ε1 terms, so we conclude that G6(1,1,1,1,1,1,1,0,0) is a uniformly
transcendental integral, at least to the order in ε required by our amplitude.

We emphasize that the uniform transcendentality of the first few terms of the ε-expansion of
an integral does not guarantee that higher order terms of the series will be uniformly transcendental
also. In such cases, one can seek linear combinations of integrals which are uniformly transcen-
dental to all ε orders required by the amplitude. For the 7-line planar master integrals considered
here we have found the following uniformly transcendental basis,

G6(1,1,1,1,1,1,1,0,0) ,

G6(1,1,1,1,1,1,1,−1,0) ,

G6(1,1,1,1,1,1,1,−1,−1)+G6(1,1,0,1,1,0,1,0,0) ,

G20(1,1,1,1,1,1,1,0,0) ,

G20(1,1,1,1,1,1,1,−1,0) ,

G20(1,1,1,1,1,1,1,0,−1) ,

G20(1,1,1,1,1,1,1,−1,−1)+G20(1,1,0,1,1,0,1,0,0) . (5.1)

These combinations of integrals have been identified by first examining only the hard-scaling mass-
less contributions, which is straightforward. Once a uniformly transcendental hard-scaling combi-
nation has been found, one can compute the more difficult soft contributions to check their tran-
scendentality at the ε powers required by the amplitude.

6. Conclusions

These proceedings have summarized our computation of the amplitude and planar master in-
tegrals of the gg→ HH at NLO in QCD. We have computed these quantities in the high-energy
limit, which is not well described by results currently available in the literature. We have found
that in this limit, while corrections due to a non-zero m2

H are small, corrections due to m2
t are of

crucial importance. Our work on the remaining non-planar master integrals is nearing completion,
and the reader can expect a study on the size of these effects on the amplitude in the near future.
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