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Abstract

We consider the double-soft limit of a generic QCD process involving massless
partons and integrate analytically the double-soft eikonal functions over the
phase-space of soft partons (gluons or quarks) allowing for an arbitrary rel-
ative angle between the three-momenta of two hard massless radiators. This
result provides one of the missing ingredients for a fully analytic formulation
of the nested soft-collinear subtraction scheme described in Ref. [1].

1 Introduction

A precise description of hard processes offers an exciting opportunity to dis-
cover or constrain physics beyond the Standard Model at the LHC using
indirect methods. Such a description is based on the collinear factorization
framework that emphasizes the importance of understanding partonic cross
sections in higher orders of perturbative QCD. Currently, it is possible to
compute most processes of phenomenological interest at a fully-differential
level at leading and next-to-leading orders in perturbative QCD, and 2 → 1
and 2 → 2 processes at next-to-next-to-leading order (NNLO).

An important recent development in the field of precision collider physics
is the start of “mass production” of NNLO QCD results for major 2 → 2
LHC processes such as pp → tt̄ [2, 3], pp → 2j [4, 5], pp → V + j [6–10],
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pp → H + j [11–14], the t-channel single top production [15, 16], Higgs pro-
duction in weak boson fusion [17, 18] etc. General purpose public numerical
codes also became available recently [19,20]. This progress happened because
a number of computational schemes, both of the slicing type and the sub-
traction type [1, 11, 17, 21–29], have matured enough to be used in complex
realistic calculations.

Nevertheless, in spite of these successes, it is fair to say that none of
the suggested schemes are fully optimal. This is unfortunate as it can limit
our ability to make precise predictions for higher multiplicity processes at
the LHC in the future. Hence, further developments of subtraction methods
are welcome. Motivated by these considerations, two of us in collaboration
with R. Röntsch have recently proposed [1] a modification of the subtraction
scheme described in Refs. [22–24]. A key element in our proposal is the
double-soft limit defined as follows.

We consider the double-real emission contribution to NNLO QCD cor-
rections to the production of an arbitrary final state X in hadron collisions.
Specifically, we are interested in the X+f final state, where f are either two
gluons or a quark-antiquark pair. We assign four-momenta k4,5 to the two
additional partons, and consider the double soft configuration k4,5 → 0, with
no particular hierarchy between k4 and k5. It is well known that soft emis-
sions factorize. Indeed, in the soft approximation parton emission does not
change the kinematics of the final state X and does not affect infra-red safe
observables. Moreover, the matrix element squared of the process ij → X+f
factorizes into a color-correlated emissionless matrix element squared for the
process ij → X and a universal eikonal function that depends on momenta
of hard radiators that are present in either the initial or the final state, and
the momenta k4 and k5 of the soft partons.

An important ingredient of any NNLO subtraction scheme is the integral
of the double-soft eikonal function over the phase-space of the two extra
partons f , subject to kinematic constraints. In the framework of Ref. [1], the
following constraints on energies of the soft partons are imposed

k0
4 < Emax, k0

5 < k0
4. (1)

In Ref. [1], double-soft integrals with constraints as in Eq. (1) were computed
numerically for the case when hard emittors are back-to-back. Although this
is adequate for the color-singlet production processes considered in [1], in
more complicated cases the numerical approach becomes cumbersome, since
it requires a non-trivial continuation of phase-space integrals beyond four
space-time dimensions (see [22–24, 30] for details). Moreover, beyond the
back-to-back limit, the double-soft integrals become functions of an angle
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between the three-momenta of the hard radiators. Since these angles change
from event to event, the required numerical computations become quite ex-
pensive.

In what follows, we show how to overcome these issues and present an
analytic computation of the double-soft integrals required for the description
of NNLO real emission contributions to an arbitrary process. The rest of
this paper is organized as follows. In Section 2 we introduce our notation,
present relevant formulas for the double-soft limit and define the integrals
that need to be computed. In Section 3 we discuss how to use differential
equations to find the phase-space integrals. In Sec. 4 we explain how to fix
the boundary conditions needed to fully reconstruct the required integrals
from the differential equations. In Section 5 we present our final results for
the integrals of the double-soft eikonal functions. We conclude in Section 6.

2 The double-soft current and its integration

In this section, we consider the double-soft limit of a generic scattering pro-
cess. It is well known that soft emissions factorize. We now recall basic
features of this factorization, following closely Ref. [31]. Interested readers
should consult Ref. [31] for further details.

In QCD, soft emissions involve non-trivial color correlations. It is then
convenient to introduce a color basis |c1, ..., cn〉, and write a generic scattering
amplitude as

Mc1,...,cn(p1, ..., pn) = 〈c1, ..., cn|M(p1, ..., pn)〉 , (2)

where ci are the color indices. It is also useful to associate a color charge Ti

with the emission of soft gluons off a parton i. Its action is defined as

〈c1, ..., ci, ..., cm, a|Ti|b1, ..., bi, ...bm〉 = δc1b1 ...T
a
cibi

...δcmbm , (3)

where a is the gluon color index (a = 1, ..., N2
c −1) and T a

cibi
= ifacibi if parton

i is a gluon, T a
cibi

= tacibi if i is a quark, and T a
cibi

= t̄acibi = −tabici if i is an
antiquark. Here fabc and tcab are the generators of the SU(Nc) Lie algebra in
the adjoint and fundamental representations, respectively. The color charge
operators satisfy

T a
i T

a
j = Ti ·Tj = Tj ·Ti, T2

i = Ci, (4)

with Ci = CA = Nc if i is a gluon and Ci = CF = (N2
c − 1)/(2Nc) if i

is a quark or an antiquark. Note also that each vector |M(p1, ..., pn)〉 is a
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color-singlet state, which implies

n∑

i=1

Ti|M(p1, ..., pn)〉 = 0. (5)

Using this notation, the matrix element squared for the process ij →
X + f(k4, k5) in the double-soft limit k4, k5 → 0 can be written as [31]

|M(g4, g5; {p})|2 ≈
[
g2s,bµ

2ǫ
]2
[
1

2

n∑

ij,kl

Sij(k4)Skl(k5)|M(i,j)(k,l)({p})|2

− CA

n∑

i<j

S̃ij(k4, k5)|M(ij)({p})|2
]
,

(6)

if f(k4, k5) are two gluons, and

|M(q4, q̄5; {p})|2 ≈
[
g2s,bµ

2ǫ
]2
TR

∑

i<j

Ĩij(k4, k5)|M(ij)({p})|2, (7)

if f(k4, k5) are a quark and an antiquark. In Eqs. (6,7), “≈” means that we
only consider the most singular contribution in the double-soft limit, and

|M(ij)(kl)({p})|2 ≡ 〈M(p1, ..., pn)| {Ti ·Tj ,Tk ·Tl} |M(p1, ..., pn)〉 ,
|M(ij)({p})|2 ≡ 〈M(p1, ..., pn)|Ti ·Tj|M(p1, ..., pn)〉 .

(8)

We also used gs,b to denote the bare QCD coupling constant and TR = 1/2.
The sums in Eqs. (6,7) run over all pairs of hard color-charged radiators.

The functions S̃ij and Ĩij read

S̃ij(k4, k5) = 2Sij(k4, k5)− Sii(k4, k5)− Sjj(k4, k5),

Ĩij(k4, k5) = 2Iij(k4, k5)− Iii(k4, k5)− Ijj(k4, k5).
(9)

All other eikonal functions are defined as follows [31]

Sij(k) =
pi · pj

(pi · k)(pj · k)
,

Sij(k4, k5) = Sso
ij (k4, k5)−

2pi · pj
k4 · k5

[
pi · (k4 + k5)

][
pj · (k4 + k5)

]

+
(pi · k4)(pj · k5) + (pi · k5)(pj · k4)[

pi · (k4 + k5)
][
pj · (k4 + k5)

]
[

(1− ǫ)

(k4 · k5)2
− 1

2
Sso
ij (k4, k5)

]
,

(10)
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where ǫ = (4− d)/2 with d being the space-time dimensionality,

Sso
ij (k4, k5) =

pi · pj
k4 · k5

(
1

(pi · k4)(pj · k5)
+

1

(pi · k5)(pj · k4)

)

− (pi · pj)2
(pi · k4)(pj · k4)(pi · k5)(pj · k5)

,

(11)

and

Iij =
(pi · k4)(pj · k5) + (pi · k5)(pj · k4)− (pi · pj)(k4 · k5)

(k4 · k5)2
[
pi · (k4 + k5)

][
pj · (k4 + k5)

] . (12)

According to the computational scheme described in Ref. [1], the double-
soft matrix elements in Eqs. (6,7) should be integrated over the three-momenta
of soft partons, subject to the constraints in Eq. (1). It follows that a double-
soft contribution to any differential cross section can be constructed if the
following integrals are known

SSij,kl =

∫
[dk4][dk5]θ(Emax − k0

4)θ(k
0
4 − k0

5)Sij(k4) Skl(k5),

SS(gg)
ij =

∫
[dk4][dk5]θ(Emax − k0

4)θ(k
0
4 − k0

5)S̃ij(k4, k5),

SS(qq̄)
ij = −2

∫
[dk4][dk5]θ(Emax − k0

4)θ(k
0
4 − k0

5)Ĩij(k4, k5),

(13)

where the factor -2 in SS(qq̄)
ij is introduced for convenience. In Eq. (13) we

introduced the short-hand notation

[dki] =
d(d−1)ki

2k0
i (2π)

d−1
. (14)

As explained in Ref. [1], the energy ordering E4 > E5 accounts for the
1/2! symmetry factor relevant for gg emission. We find it convenient to
use the same phase-space parametrization for qq̄ emission as well. Since
Ĩij(k4, k5) = Ĩij(k5, k4), the full result in the qq̄ case is twice the result that
is obtained by imposing the E4 > E5 ordering.

We satisfy constraints in Eqs. (1,13) by choosing the following parametriza-
tion of the energies of the two soft partons

k0
4 = Emax ξ, k0

5 = Emax ξz, 0 < ξ < 1, 0 < z < 1. (15)

We note that integrals in Eq. (13) depend on the relative angles between
the three-momenta of the hard partons but not on their energies. The first
integral SSij,kl in Eq. (13) is easy to compute since it is a product of two
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single-gluon eikonal functions. For further convenience, we introduce the
following notation

pi = Ei(1, ~ni), k4 = Emax ξ (1, ~n4), k5 = Emax ξz (1, ~n5), (16)

where ~n2
i = 1. Moreover, we will use

ρij = 1− ~ni · ~nj . (17)

in what follows.
To compute SSij,kl, we integrate over ξ and z and obtain

SSij,kl =
E−4ǫ

max

8ǫ2

∫
dΩ4

2(2π)d−1

ρij
ρi4ρj4

∫
dΩ5

2(2π)d−1

ρkl
ρk5ρl5

. (18)

The angular integrals over the emission angles of the gluons g4 and g5 com-
pletely factorize and can be easily performed. One obtains [32]

∫
dΩ4

2(2π)d−1

ρij
ρi4ρj4

= −2

ǫ

[
1

8π2

(4π)ǫ

Γ(1− ǫ)

]
(2ρij)

−ǫFij, (19)

where

Fij =

[
Γ(1− ǫ)2

Γ(1− 2ǫ)

](ρij
2

)1+ǫ

F21

(
1, 1, 1− ǫ, 1− ρij

2

)

= 1 + ǫ2
[
Li2

(ρij
2

)
− ζ2

]
+O(ǫ3).

(20)

Finally, we obtain

SSij,kl =
(2Emax)

−4ǫ

2ǫ4

[
1

8π2

(4π)ǫ

Γ(1− ǫ)

]2 (ρij
2

)−ǫ (ρkl
2

)−ǫ

FijFkl. (21)

It is straightforward to obtain the expansion of the hypergeometric function
through O(ǫ4) using existing computer algebra packages [33].

The non-trivial part of the computation requires the calculation of the
correlated emission terms SS(gg/qq̄)

ij as a function of the scattering angle be-
tween the two hard partons. We describe such a calculation in the next
section.

3 Double soft integrals

In this section, we describe the calculation of the correlated contributions to
the eikonal integrals SS(gg/qq̄)

ij defined in Eq. (13). For definiteness, we focus
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on the SS(gg)
ij computation. The calculation of SS(qq̄)

ij proceeds in a similar
fashion.

We use the fact that S̃ij(k4, k5) is a homogeneous function of the soft
momenta k4,5 and of the hard momenta pi,j. This implies that if we use the
parametrization of the four-momenta as in Eq. (16), we can integrate over
the variable ξ. After the ξ integration, we separate the integration over z
and write

SS(gg)
ij = −(2Emax)

−4ǫ

ǫ

1∫

0

dz Gij(z). (22)

The function Gij(z) is defined as

Gij =

∫
[dk4][dk5]S̃ij(k4, k5)δ(2P · k4 − 1)δ(2P · k5 − z), (23)

and the four-momentum P is a time-like vector P = (1,~0). Although the final
result for double soft integrals does not depend on the normalization of the
four-momenta of hard radiators, when computing individual contributions we
will use pi,j = 1/2(1, ~ni,j). The two δ-functions in Eq. (23) provide constraints
on the energies of the two gluons k4,5; their arguments are chosen to make
them “propagator-like” for reasons that will become clear later.

To calculate Gij(z) we need to integrate S̃ij(k4, k5) over the phase-space
of the two gluons with energy constraints shown in Eq. (23). We do this by
mapping these phase-space integrals onto loop integrals following Ref. [34].
After defining integral families, we apply the integration-by-part identities to
reduce the number of independent integrals that need to be computed and
to derive differential equations that these integrals satisfy.

We identify 19 master integrals to be calculated. To display them, we
introduce seven propagator-like structures

D1 = 2p1 · k4, D2 = 2p2 · k4, D3 = 2p1 · k5, D4 = 2p2 · k5,
D5 = p1 · (k4 + k5) , D6 = p2 · (k4 + k5) , D7 = 2k4 · k5,

(24)

and define
〈

1∏
i D

αi

i

〉
=

∫
[dk4][dk5]δ(2P · k4 − 1)δ(2P · k5 − z)∏

iD
αi

i

. (25)
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With this notation, we require the following integrals1

I1 = 〈1〉 , I2 =
〈

1

D5

〉
, I3 =

〈
1

D2
5

〉
, I4 =

〈
1

D4D5

〉
,

I5 =

〈
1

D4D2
5

〉
, I6 =

〈
1

D4D5D7

〉
, I7 =

〈
D1

D4D5D7

〉
,

I8 =

〈
1

D1D6

〉
, I9 =

〈
1

D1D2
6

〉
, I10 =

〈
1

D1D6D7

〉
,

I11 =

〈
D4

D1D6D7

〉
, I12 =

〈
1

D5D6

〉
, I13 =

〈
1

D2
5D6

〉
,

I14 =

〈
D4

D2
5D6

〉
, I15 =

〈
1

D1D5D6

〉
, I16 =

〈
1

D4D5D6

〉
,

I17 =

〈
1

D1D4D5D6

〉
, I18 =

〈
1

D1D4D7

〉
, I19 =

〈
1

D2
1D4D7

〉
.

(26)

These master integrals are functions of the energy fraction z and of the
relative angle θ between the two hard radiators i and j. To compute them,
we use differential equations.

In principle, we can write differential equations for master integrals in
both z and θ. As it is easy to see from their definition, the two integrals I18
and I19 are homogeneous in z; this implies that the z-differential equation
does not give any non-trivial information in this case. Therefore, we com-
puted these two integrals by solving the differential equation with respect to
the scattering angle. The boundary conditions for these differential equations
were determined from the values of I18,19 computed in a situation when the
three-momenta of the radiators are back-to-back, i.e. θ = π. We find the
following results

I18 =
Nǫ

xz1+2ǫ
×
{

3

ǫ2
− 1

ǫ

[
12 + 6G0(x)

]
+
[
12 + π2 + 24G0(x)

+ 12G0,0(x)− 8G1,0(x)
]

+ ǫ
[
− 4π2 − 24G0(x)− 2π2G0(x) +

4π2

3
G1(x)− 48G0,0(x)

+ 32G1,0(x)− 24G0,0,0(x) + 16G0,1,0(x) + 16G1,0,0(x)

− 8G1,1,0(x)− 18ζ3
]

+ ǫ2
[
4π2 − π4

10
+ 8π2G0(x)−

16π2

3
G1(x) + 48G0,0(x) + 4π2G0,0(x)

− 8π2

3
G0,1(x)− 32G1,0(x)−

8π2

3
G1,0(x) +

4π2

3
G1,1(x)

1In the qq̄ case, only the integrals I1−3 and I12−14 contribute.
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+ 96G0,0,0(x)− 64G0,1,0(x)− 64G1,0,0(x) + 32G1,1,0(x)

+ 48G0,0,0,0(x)− 32G0,0,1,0(x)− 32G0,1,0,0(x) + 16G0,1,1,0(x)

− 32G1,0,0,0(x) + 24G1,0,1,0(x) + 16G1,1,0,0(x)− 8G1,1,1,0(x)

+ 72ζ3 + 36ζ3G0(x)− 24ζ3G1(x)
]}

,

I19 =
Nǫ

x2z1+2ǫ
×

{
3

ǫ2
− 1

ǫ

[
6x+G0(x)

]

+
[
14x+ π2 − 30 + 4xG0(x) + 12G0,0(x)− 8G1,0(x)

]
(27)

+ ǫ
[
26x+ 18− 2π2

3
x+ 60G0(x)− 2π2G0(x)− 12xG0(x)

+
4π2

3
G1(x)− 8xG0,0(x) + 8xG1,0(x)− 24G0,0,0(x)

+ 16G0,1,0(x) + 16G1,0,0(x)− 8G1,1,0(x)− 18ζ3
]

+ ǫ2
[
54− 10π2 − π4

10
− 90x+ 2π2x− 36G0(x)− 4xG0(x)

+
4π2

3
xG0(x)−

4π2

3
xG1(x)− 120G0,0(x) + 4π2G0,0(x)

+ 24xG0,0(x)−
8π2

3
G0,1(x) + 80G1,0(x)−

8π2

3
G1,0(x)

− 24xG1,0(x) +
4π2

3
G1,1(x) + 16xG0,0,0(x)− 8xG0,1,0(x)

− 16xG1,0,0(x) + 8xG1,1,0(x) + 48G0,0,0,0(x)− 32G0,0,1,0(x)

− 32G0,1,0,0(x) + 16G0,1,1,0(x)− 32G1,0,0,0(x) + 24G1,0,1,0(x)

+ 16G1,1,0,0(x)− 8G1,1,1,0(x) + 12ζ3x+ 36ζ3G0(x)

− 24ζ3G1(x)
]}

.

In writing the expressions for I18,19, we used the following expression for the
normalization factor

Nǫ =

[
Ω(d−1)

(2π)d−122−2ǫ

]2
=

[
1

8π2

(4π)ǫ

(1− 2ǫ)

Γ(1− ǫ)

Γ(1− 2ǫ)

]2
. (28)

Also, x is the sine squared of half the relative angle between the three-
momenta of hard radiators x = sin2 δ, δ = θ/2, and Ga1,a2,...,am(x) are the
standard Goncharov polylogarithms.

The situation with the remaining seventeen integrals is rather different.
Indeed, many of them couple to each other and the majority of them are
not homogeneous functions of z. Although it is possible to use differential
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equations w.r.t. the relative energy and angle to determine the integrals also
in this case, we found it more convenient to consider the differential equation
in the energy fraction z and to determine the full dependence on the angle
between the hard radiators by computing boundary conditions as functions
of θ. We did not use a canonical form [35] for the z differential equation.
In fact, it is relatively straightforward to achieve a canonical form for the
first eleven integrals but after that it becomes much more difficult to do so.
However, we managed to re-write the system of differential equations in such
a way that integrating it by expanding master integrals order-by-order in
ǫ becomes possible. In principle, this is absolutely sufficient for solving the
system of differential equations. A possible drawback of this approach is that
intermediate results tend to be quite cumbersome. This is, however, easy to
deal with once all the expressions for the integrals are substituted to obtain
the physical result.

The differential equations in z are of the following form

∂

∂z
~I(z, δ) = Â(ǫ, z, δ)~I, (29)

where Â(0, z, δ) is a triangular matrix with vanishing diagonal elements. To
integrate these differential equations, it is important to expose the depen-
dence of the matrix Â on inverse powers of the monomials of z. This depen-
dence is characterized by elements of the list shown below

{
z, (1 + z), (sin2 δ + z), (1 + z sin2 δ),

√
(1− z)2 sin2 δ + 4z

}
. (30)

The integration of the system of differential equations is greatly simplified if
its coefficients are rational functions of the integration variables. To achieve
this, we rationalize the square root in Eq. (30) using the following change of
variables

z =
(1− cos δ t) (cos δ − t)

t sin2 δ
. (31)

It leads to √
(1− z)2 sin2 δ + 4z =

cos δ

sin δ

(1− t)(1 + t)

t
. (32)

In addition to making the square root rational, the variable transformation
Eq. (31) also maps all other z-dependent monomials in Eq. (30) onto rational
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functions of t. We obtain

1 + z =
cos δ

t sin2 δ
(t− eiδ)(t− e−iδ),

sin2 δ + z =
cos δ

t sin2 δ
(t− a+) (t− a−) ,

1 + z sin2 δ =
cos δ

t
(t− b+) (t− b−) ,

(33)

where

a± = cos δ

(
1 +

sin2 δ

2

)
± i

√

1− cos2 δ

(
1 +

sin2 δ

2

)2

,

b± =
cos δ

2
± i

√
1− cos2 δ

4
.

(34)

As the result of the z → t mapping, we obtain a system of linear differential
equations for the seventeen integrals with rational coefficients

∂

∂t
~I(t) = B̂(δ, t, ǫ)~I. (35)

Since the matrix B is a rational function of t, integration over t can be per-
formed in terms of Goncharov polylogarithms in a straightforward manner.
This gives the result up to an integration constant that must be determined
by matching to appropriate boundary conditions. We discuss the computa-
tion of the latter in the next section.

4 Boundary conditions

As explained in the previous section, we only integrate the t differential
equation, without considering a differential equation in the scattering angle
θ. We then need to compute the master integrals at a given value of t (or
z) as a function of θ. It is natural to consider the boundary condition at
z = 0, which corresponds to the situation where one of the two soft particles
is much softer than the other. Not only is this the simplest kinematic point
where such a computation can be performed, but it is also very useful for the
subsequent integration over z in Eq. (22) since that integration is, in fact,
singular at z = 0.

The computation of boundary conditions is relatively straightforward for
the majority of the master integrals but there are a few of them that require
some effort. We will illustrate the relevant techniques by considering two
representative examples.
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The simplest master integral is the phase-space itself. It can be computed
in a straightforward way by first integrating over energies and then over
emission angles. The result reads

I1 =

∫
[dk4][dk5]δ(2k4 · P − 1)δ(2k5 · P − z) = Nǫz

1−2ǫ, (36)

where the normalization factor Nǫ is defined in Eq. (28). A significantly more
complex integral is I13, which reads (cf. Eqs. (26,24))

I13 =

∫
[dk4][dk5]δ(2k4 · P − 1)δ(2k5 · P − z)

[
pi · (k4 + k5)

]2[
pj · (k4 + k5)

] . (37)

Upon integrating over gluon energies, we obtain

I13 = 64Nǫz
1−2ǫ

∫
[dΩ4][dΩ5]

(ρi4 + zρi5)2(ρj4 + zρj5)
, (38)

where we introduced the normalized solid angle integration measure as

[dΩi] =
dΩ

(d−1)
i

Ω(d−1)
,

∫
[dΩi] = 1. (39)

By inspecting Eq. (38), it is easy to see that, at small z, the master integral
I13 scales as z

−1. Therefore, we need to compute it to first subleading power
to determine the integration constant. To accomplish this, we first combine
denominators using Feynman parameters

1

(ρi4 + zρi5)2(ρj4 + zρj5)
= 2

1∫

0

dx x

(ρ4η + zρ5η)3
, (40)

where ρ4,5 η = 1 − ~n4,5 · ~η and ~η = ~nix + (1 − x)~nj . We then use this
representation in Eq. (38) and integrate over directions of the gluon g4. We
obtain

∫
[dΩ4]

(1− ~n4 · ~η + z(1− ~n5 · ~η))3
=

F21(3, 1− ǫ, 2− 2ǫ, 2η
1+η+zρ5η

)

(1 + zρ5η − η)3
, (41)

with η =
√
~η · ~η =

√
1− 4x(1− x) sin2 δ. We still need to integrate the right

hand side of Eq. (41) over x and direction of the vector ~n5 to obtain I13, i.e.

I13 =64Nǫz
1−2ǫ

1∫

0

2xdx

∫
[dΩ5]

(1 + η + zρ5η)3

× F21

(
3, 1− ǫ, 2− 2ǫ,

2η

1 + η + zρ5η

)
.

(42)
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It is quite obvious that such computations simplify dramatically if the expan-
sion in small z is possible at early stages of the computation. Unfortunately,
the hypergeometric function in Eq. (42) can not be expanded in powers of z
because the maximal value of its argument in the z → 0 limit is one and the
hypergeometric function in Eq. (42) is non-analytic there. To transform the
integrand in Eq. (42) to a suitable form, we use the standard transforma-
tion for hypergeometric functions that connects F21(..., y) with F21(..., 1−y).
We also note that since η is invariant under the replacement x ↔ (1 − x),
one can replace 2x with 1 in the integrand in Eq. (42) without affecting the
value of the integral I13. Splitting the integral into two contributions as the
consequence of the hypergeometric transformation, we write

I13 = 64Nǫz
1−2ǫ

(
(−2 + 8ǫ2)

(1 + ǫ)(2 + ǫ)
T

(a)
13 +

Γ(2− 2ǫ)Γ(2 + ǫ)

2Γ(1− ǫ)
T

(b)
13

)
, (43)

with

T
(a)
13 =

1∫

0

dx

∫
[dΩ5]

(1 + η + κ)3
F21

(
3, 1− ǫ, 3 + ǫ,

1− η + κ

1 + η + κ

)
,

T
(b)
13 =

1∫

0

dx

∫
[dΩ5]

(1 + η + κ)1−ǫ(1− η + κ)2+ǫ

× F21

(
−1− 2ǫ, 1− ǫ,−1 − ǫ,

1− η + κ

1 + η + κ

)
,

(44)

where κ = zρ5η.
In principle, the hypergeometric functions in Eq. (44) can be directly ex-

panded in powers of z, since the goal of the transformations described above
has already been achieved. However, the remaining integrations over x and
the directions of the vector ~n5 would have been quite difficult in this case.
Fortunately, there exists another transformation of the hypergeometric func-
tion that reduces the complexity of the remaining integrations dramatically.
It reads

F21(a, b, a− b+ 1, y) = (1 + y)−aF21

(
a

2
,
a

2
+

1

2
, a− b+ 1,

4y

(1 + y)2

)
. (45)

As we will see, this transformation completely removes square roots from the
computation of the boundary conditions.

We begin by applying this relation to the computation of T
(a)
13 . We note

that T
(a)
13 ∼ O(1) in the z → 0 limit, so that it contributes directly to the

13



subleading term in the z-expansion of I13. Therefore, we are allowed to set
z = 0 in the computation of T

(a)
13 . We find

lim
z→0

T
(a)
13 =

1

8

1∫

0

dx F21

(
3

2
, 2, 3 + ǫ, 1− η2

)
. (46)

To compute this integral, we write the function F21 as hypergeometric series
and integrate over x using 1 − η2 = 4x(1 − x) sin2 δ. We find a very simple
result

T
(a)
13 =

1

8
F21

(
1, 2, 3 + ǫ, sin2 δ

)
+O(z). (47)

The computation of T
(b)
13 is somewhat more complex, primarily because

the z → 0 limit can not be taken directly. Using the transformation Eq. (45),
we obtain

T
(b)
13 =

1∫

0

dx

∫
[dΩ5]

21+2ǫ(1 + κ)1+2ǫ

(1− η2 + 2κ+ κ2)2+ǫ

× F21

(
−1

2
− ǫ,−ǫ,−1 − ǫ,

1− η2 + 2κ+ κ2

(1 + κ)2

)
.

(48)

To proceed further we note that if we write the hypergeometric function
in Eq. (48) as the standard hypergeometric series, we can take the z → 0
limit in all but the first two terms of the expansion. Hence, we consider the
contribution of these two terms separately. We write

T
(b)
13 = T

(b),1
13 + T

(b),2
13 + T

(b),Σ
13 . (49)

We begin with the computation of T
(b),Σ
13 . We use the series representation of

the hypergeometric function in Eq. (48), set z to zero, integrate over x and
~n5 and obtain

T
(b),Σ
13 =

Γ2(−1− ǫ)Γ(2− ǫ)

16Γ(−2− 2ǫ)Γ(−ǫ)
(sin δ)−2ǫ F21(1, 2− ǫ, 3, sin2 δ) +O(z). (50)

Next, we compute the contribution T
(b),2
13 that arises if we take the second

term in the series representation of the hypergeometric function in Eq. (48).
This term can be written as

T
(b),2
13 = −ǫ(1 + 2ǫ)

(1 + ǫ)
22ǫW (b),2

W (b),2 =

∫
[dΩ5]

1∫

0

dx
(1 + κ)−1+2ǫ

(1 − η2 + 2κ+ κ2)1+ǫ
.

(51)
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Since 1 − η2 = 4x(1 − x) sin2 δ and κ ∼ O(z), it is impossible to expand
the integrand in Eq. (42) in Taylor series in z. Nevertheless, to obtain an
approximation to W (b),2 at small values of z by expanding the integrand, we
can follow ideas about asymptotic expansions of Feynman diagrams known
as the “strategy of regions” [36].

The integral in Eq. (51) has, obviously, three regions: i) x ∼ O(z), ii)
(1 − x) ∼ O(z) and iii) x ∼ (1 − x) ∼ 1. The first two (soft) regions give
identical contributions; we consider one of them and multiply the result by
two. We refer to the third region as the “hard region”. We therefore write

W (b),2 = W
(b),2
H + 2W

(b),2
S +O(z). (52)

The contribution of the hard region is obtained upon expanding the integrand
in Eq. (51) in Taylor series in powers of z. Since we are interested in the
O(z0) term only, we obtain

W
(b),2
H =

∫
[dΩ5]

1∫

0

dx
(
4x(1− x) sin2 δ

)1+ǫ = (4 sin2 δ)−1−ǫ Γ
2(−ǫ)

Γ(−2ǫ)
. (53)

To compute the soft contribution, we focus on the region x ∼ z. We expand
the integrand assuming x ∼ z ≪ 1 and extend the upper x integration
boundary to infinity [36]. We obtain

W
(b),2
S =

∫
[dΩ5]

∞∫

0

dx
(
4x sin2 δ + 2z(1 − cos θ5)

)1+ǫ

=
z−ǫ

21+2ǫǫ sin2 δ

Γ(1− 2ǫ)Γ(2− 2ǫ)

Γ(2− 3ǫ)Γ(1− ǫ)
.

(54)

The calculation of T
(b),1
13 proceeds along the same lines. The only compli-

cation is that, since T
(b),1
13 ∼ O(z−1), we need to expand the soft contribution

in Taylor series in x ∼ z ≪ 1 to first subleading term. Apart from additional
algebraic complexity, this does not lead to any conceptual complications. We
provide the results of the calculation for completeness. We write

T (b),1 = T
(b),1
H + 2T

(b),1
S +O(z), (55)

where

T
(b),1
H =

21+2ǫ

(
4 sin2 δ

)2+ǫ

Γ2(−1 − ǫ)

Γ(−2 − 2ǫ)
, (56)
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and

T
(b),1
S =

z−1−ǫ

4(1 + ǫ) sin2 δ
(1− z)

Γ(−2ǫ)Γ(2 − 2ǫ)

Γ(1− 3ǫ)Γ(1− ǫ)

+
z−ǫ(2 + 3ǫ(1 + ǫ) sin2 δ)

4ǫ(1 + ǫ) sin4 δ

Γ(1− 2ǫ)Γ(2− 2ǫ)

Γ(2− 3ǫ)Γ(1− ǫ)
.

(57)

Finally, we assemble the full result for the boundary condition of the integral
I13 using Eqs. (43,47,49–57).

We note that the computation of the other boundary integrals is per-
formed following similar steps; in fact, the manipulations of the hypergeomet-
ric functions and the “expansion by regions” are similar for all complicated
master integrals that one has to compute. We believe that the discussion of
the boundary condition of the integral I13 provides enough insight into how
to deal with them and we do not discuss other integrals for that reason. We
note that boundary conditions for all the seventeen integrals I1,..,17 are given
in the Appendix.

5 Final results

With the boundary conditions known and the system of linear equations
rationalized, it is straightforward to integrate the equations in terms of Gon-
charov polylogarithms and to match the result of the integration to the
boundary conditions. This allows us to write the function Gij(z) in Eq. (22)
as a linear combination of master integrals

Gij(z) =
∑

R
(k)
ij (z)Ik(z), (58)

where R
(k)
ij (z) are the reduction coefficients to master integrals. The inte-

gration over z in Eq. (22) is straightforward – we change variables z → t
using Eq. (31) and integrate from t = (1 − sin δ)/ cos δ, that corresponds to
z = 1, to t = cos δ that corresponds to z = 0. The only subtlety is that the
integration over z diverges at z = 0. To overcome this problem, we write

1∫

0

dz Gij(z) =

1∫

0

dz
(
Gij(z)− G̃ij(z)

)
+

1∫

0

dz G̃ij(z), (59)

where G̃ij(z) ∼ z−1−2ǫ describes the non-integrable behavior of the func-
tion Gij(z) at small z. This function can be extracted from the computed
boundary conditions for the master integrals and the small-z expansion of
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the reduction coefficients R
(k)
ij (z). Finally, since G̃ij(z) ∼ z−1−2ǫ, the last

term in Eq. (59) can be trivially integrated over z and, since the first term is
not singular at z = 0, the integrand can be expanded in ǫ and, after changing
variables from z to t, the integration over t can be performed in a relatively
straightforward way.

We note that after performing this final z (or, rather, t) integration, we
obtain the result given by a linear combination of Goncharov polylogarithms
up to weight four with indices drawn from the following set

{
a±, b±, e

±iδ, cos δ,
1

cos δ
, 0,−1, 1

}
, (60)

where a±, b± are given in Eq. (34). The arguments of these Goncharov poly-
logarithms are either (1−sin δ)/ cos δ or cos δ. The result of the z integration
(or rather t integration) appears to be very large and complex. However, it
can be simplified using the (by now standard ) symbol techniques [37–39].
Computing the symbol of the result, simplifying it and integrating the result
back, we arrive at the following expressions for the double-eikonal integrals

SS(gg)
ij = (2Emax)

−4ǫ

[
1

8π2

(4π)ǫ

Γ(1− ǫ)

]2{
1

2ǫ4
+

1

ǫ3

[
11

12
− ln(s2)

]

+
1

ǫ2

[
2Li2(c

2) + ln2(s2)− 11

6
ln(s2) +

11

3
ln 2− π2

4
− 16

9

]

+
1

ǫ

[
6Li3(s

2) + 2Li3(c
2) +

(
2 ln(s2) +

11

3

)
Li2(c

2)− 2

3
ln3(s2)

+

(
3 ln(c2) +

11

6

)
ln2(s2)−

(
22

3
ln 2 +

π2

2
− 32

9

)
ln(s2)

− 45

4
ζ3 −

11

3
ln2 2− 11

36
π2 − 137

18
ln 2 +

217

54

]

+ 4G−1,0,0,1(s
2)− 7G0,1,0,1(s

2) +
22

3
Ci3(2δ) +

1

3 tan(δ)
Si2(2δ)

+ 2Li4(c
2)− 14Li4(s

2) + 4Li4

(
1

1 + s2

)
− 2Li4

(
1− s2

1 + s2

)

+ 2Li4

(
s2 − 1

1 + s2

)
+ Li4(1− s4) +

[
10 ln(s2)− 4 ln

(
1 + s2

)

+
11

3

]
Li3(c

2) +

[
14 ln(c2) + 2 ln(s2) + 4 ln

(
1 + s2

)
+

22

3

]
Li3(s

2) (61)

+ 4 ln(c2)Li3(−s2) +
9

2
Li22(c

2)− 4Li2(c
2)Li2(−s2) +

[
7 ln(c2) ln(s2)
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− ln2(s2)− 5

2
π2 +

22

3
ln 2− 131

18

]
Li2(c

2) +

[
2

3
π2 − 4 ln(c2) ln(s2)

]
×

Li2(−s2) +
ln4(s2)

3
+

ln4 (1 + s2)

6
− ln3(s2)

[
4

3
ln(c2) +

11

9

]

+ ln2(s2)

[
7 ln2(c2) +

11

3
ln(c2) +

π2

3
+

22

3
ln 2− 32

9

]
− π2

6
ln2

(
1 + s2

)

+ ζ3

[
17

2
ln(s2)− 11 ln(c2) +

7

2
ln
(
1 + s2

)
− 21

2
ln 2− 99

4

]
+ ln(s2)×

[
− 7π2

2
ln(c2) +

22

3
ln2 2− 11

18
π2 +

137

9
ln 2− 208

27

]
− 12Li4

(
1

2

)

+
143

720
π4 − ln4 2

2
+

π2

2
ln2 2− 11

6
π2 ln 2 +

125

216
π2 +

22

9
ln3 2

+
137

18
ln2 2 +

434

27
ln 2− 649

81
+O(ǫ)

}
,

and

SS(qq̄)
ij = (2Emax)

−4ǫ

[
1

8π2

(4π)ǫ

Γ(1− ǫ)

]2{
− 1

3ǫ3
+

1

ǫ2

[
2

3
ln(s2)− 4

3
ln 2

+
13

18

]
+

1

ǫ

[
− 4

3
Li2(c

2)− 2

3
ln2(s2) + ln(s2)

(
8

3
ln 2− 13

9

)
+

π2

9

+
4

3
ln2 2 +

35

9
ln 2− 125

54

]
− 8

3
Ci3(2δ)−

2

3 tan(δ)
Si2(2δ)−

4

3
Li3(c

2)

− 8

3
Li3(s

2) + Li2(c
2)

[
29

9
− 8

3
ln 2

]
+

4

9
ln3(s2) + ln2(s2)

[
− 4

3
ln(c2)

− 8

3
ln 2 +

13

9

]
+ ln(s2)

[
− 8

3
ln2 2− 70

9
ln 2 +

2

9
π2 +

107

27

]
+ 9ζ3

+
2π2

3
ln 2− 8

9
ln3 2− 23

108
π2 − 35

9
ln2 2− 223

27
ln 2 +

601

162
+O(ǫ)

}
.

(62)

Here, s = sin δ, c = cos δ and δ = θ/2 is half the angle between the three-
momenta of the hard radiators i and j. The Clausen functions are defined
as

Cin(z) =
(Lin(e

iz) + Lin(e
−iz))

2
, Sin(z) =

(Lin(e
iz)− Lin(e

−iz))

2i
, (63)

and Ga1,a2,...,am(x) are the standard Goncharov polylogarithms. We have

checked these analytic results by computing the functions SS(gg,qq̄)
ij numerically
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for a few values of δ using the Mellin-Barnes representation for the original
eikonal integrals and the MB.m routine for numerical integration [40]. We
found agreement within the expected numerical precision of the latter.2

The results shown in Eqs. (61,62) describe the integrals SS(gg,qq̄)
ij as a

function of the relative angle between the hard emittors. A useful special case
corresponds to back-to-back radiators; this kinematic situation is relevant for
the description of color singlet production and decay. In the back-to-back
limit δ = θ/2 = π/2

SS(gg)
ij |δ→π/2 = (2Emax)

−4ǫ

[
1

8π2

(4π)ǫ

Γ(1− ǫ)

]2{
1

2ǫ4
+

11

12ǫ3
+

1

ǫ2

[
11

3
ln 2

− π2

4
− 16

9

]
+

1

ǫ

[
− 21

4
ζ3 −

11

3
ln2 2− 137

18
ln 2− 11

36
π2 +

217

54

]

− 11

80
π4 − 275

12
ζ3 +

22

9
ln3 2− 11

6
π2 ln 2 +

125

216
π2 +

137

18
ln2 2

+
434

27
ln 2− 649

81
+O(ǫ)

}
,

(64)

and

SS(qq̄)
ij |δ→π/2 = (2Emax)

−4ǫ

[
1

8π2

(4π)ǫ

Γ(1− ǫ)

]2{
− 1

3ǫ3
+

1

ǫ2

[
13

18

− 4

3
ln 2

]
+

1

ǫ

[
π2

9
+

4

3
ln2 2 +

35

9
ln 2− 125

54

]
+

25

3
ζ3 +

2π2

3
ln 2

− 8

9
ln3 2− 35

9
ln2 2− 23

108
π2 − 223

27
ln 2 +

601

162
+O(ǫ)

}
.

(65)

We have checked the back-to-back results Eqs. (64,65) against the numerical
values used in Ref. [1], and found perfect agreement.

6 Conclusions

We computed integrals of the double-soft eikonal functions over phase-spaces
of two soft gluons or a soft qq̄ pair in the case when the three-momenta of
the hard massless radiators are at an arbitrary angle to each other. Within
the framework of a nested soft-collinear subtraction scheme [1], our results
will allow for an analytic treatment of the double-soft contribution to NNLO

2We are indebted to Ch. Wever for help with these checks.
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QCD corrections to a generic process with arbitrary number of hard massless
color-charged particles. Our results for the integrated double-soft functions
are compact; they are expressed in terms of ordinary and harmonic poly-
logarithms which ensures that they can be evaluated numerically fast and
efficiently. We look forward to the applications of these results in NNLO
QCD computations.

Acknowledgments We would like to thank Ch. Wever for help with some
aspects of the computation. We are grateful to R. Röntsch for useful discus-
sions.

A Boundary conditions for master integrals

We provide the boundary conditions for the required master integrals in this
Appendix. We introduce the following notation

IΓ =
Γ3 (1− 2ǫ) Γ (1 + ǫ)

Γ2 (1− ǫ) Γ (1− 3ǫ)
= 1 + ǫ2

π2

6
− ǫ32ζ3 − ǫ4

29π4

360
+O

(
ǫ5
)
, (66)

and write the results for master integrals as

Ii = NǫĨi, i = 1, ..., 17. (67)

where Nǫ is given in Eq. (28). The integrals Ĩ at small z are given below.

Ĩ1 = z1−2ǫ,

Ĩ2 = z1−2ǫ 2(1− 2ǫ)2

ǫ
×

{
IΓz

−ǫ

1− 3ǫ
− 1

1− 2ǫ

}
+O

(
z2
)
,

Ĩ3 = z1−2ǫ 4(1− 2ǫ)2×{
z−1−ǫIΓ

[−1

2ǫ
+

z(1 − ǫ)

(1 − 3ǫ)

]
− 2

(1− 2ǫ)(1 + ǫ)

}
+O

(
z2
)
,

Ĩ4 = z−2ǫ 2(1− 2ǫ)2

ǫ2
×

{
1− z−ǫIΓF21

(
1, ǫ, 1− ǫ, cos2 δ

)}
+O (z) ,

Ĩ5 = z−2ǫ −6(1− 2ǫ)2

ǫ
z−1−ǫIΓ × F21

(
1, 1 + ǫ, 1− ǫ, cos2 δ

)
+O

(
z0
)
,

Ĩ6 = z−1−2ǫ (1− 2ǫ)2

ǫ2
×
{

− 3z−ǫIΓF21

(
1, 1 + ǫ, 1− ǫ, cos2 δ

)
}

+ 2Ĩ18 +O
(
z0
)
,
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Ĩ7 = z−1−2ǫ (1− 2ǫ)2

ǫ2
×
{
2 + 2 z1−ǫIΓF21

(
1, ǫ, 1− ǫ, cos2 δ

)
}

+
2(1− 2ǫ)2(1 + 4ǫ)

zǫ2(1 + 2ǫ)
Ĩ1 −

(1 + 3ǫ)z

ǫ
Ĩ18 +

(1 + ǫ)z sin2 δ

ǫ(1 + 2ǫ)
Ĩ19 +O

(
z0
)
,

Ĩ8 = z1−2ǫ (1− 2ǫ)

ǫ

1

sin2 δ
×

{
2z−ǫ (1− 2ǫ)

(1− 3ǫ)
IΓ

− 4
[
sin2 δ

]−ǫ
F21

(
−ǫ,−ǫ, 1 − ǫ, cos2 δ

)}
+O

(
z2
)
,

Ĩ9 = z1−2ǫ 8(1− 2ǫ)2 ×
{
− (1 + 2ǫ)

(1 + ǫ)(2 + ǫ)(1− 2ǫ)
F21

(
1, 2, 3 + ǫ, sin2 δ

)

− z−1−ǫIΓ

[sin δ]2

[
1

4ǫ
+

z(1 + ǫ)

2(1− 3ǫ)

]
+

z−ǫIΓ

[sin δ]4
(1 + ǫ)

2ǫ(1− 3ǫ)

− [cos δ]2ǫ

[sin δ]4+2ǫ Γ (1− ǫ) Γ (1 + ǫ)
(1 + 2ǫ)

ǫ(1− 2ǫ)

}
+O

(
z2
)
,

Ĩ10 = z−2ǫ (1− 2ǫ)2

ǫ2
1

sin2 δ
×

{
4
[
sin2 δ

]−ǫ
F21

(
−ǫ,−ǫ, 1 − ǫ, cos2 δ

)

− z−ǫIΓ

}
+O (z) ,

Ĩ11 = O (z) ,

Ĩ12 = O (z) ,

Ĩ13 = z1−2ǫ 16(1− 2ǫ)2 ×
{
− (1 + 2ǫ)

(1 + ǫ)(2 + ǫ)(1 − 2ǫ)
F21

(
1, 2, 3 + ǫ, sin2 δ

)

− z−1−ǫIΓ

[sin δ]2

[
1

4ǫ
− z(1 + ǫ)(1− 2ǫ)

4ǫ(1− 3ǫ)

]
+

z−ǫIΓ

[sin δ]4
1

ǫ(1 − 3ǫ)

− [cos δ]2ǫ

[sin δ]4+2ǫ Γ (1− ǫ) Γ (1 + ǫ)
(1 + 2ǫ)

ǫ(1− 2ǫ)

}
+O

(
z2
)
,

Ĩ14 = z1−3ǫ 4(1− 2ǫ)2 × IΓ
ǫ(1− 3ǫ)

1

sin2 δ

{
2ǫ− sin2 δ − ǫ sin2 δ

}
+O

(
z2
)
,

Ĩ15 = z1−2ǫ 4(1− 2ǫ)2 ×
{
− 2(1 + 2ǫ)

(1 + ǫ)(2 + ǫ)(1− 2ǫ)
F21

(
1, 2, 3 + ǫ, sin2 δ

)

+
z−1−ǫIΓ

[sin δ]2

[
1

2ǫ2
− z(1 + ǫ)(1− ǫ+ 2ǫ2)

2ǫ2(1− 3ǫ)(1− ǫ)

]
+

z−ǫIΓ

[sin δ]4
(3− ǫ)

ǫ(1− ǫ)(1− 3ǫ)

− [cos δ]2ǫ

[sin δ]4+2ǫ Γ (1− ǫ) Γ (1 + ǫ)
2(1 + 2ǫ)

ǫ(1− 2ǫ)

}
+O

(
z2
)
,

21



Ĩ16 = z−2ǫ 8(1− 2ǫ)2

ǫ2
×

{
ǫ

(1 + ǫ)
F21

(
1, 1, 2 + ǫ, sin2 δ

)

+
[
sin2 δ

]−1−ǫ
Γ (1 + ǫ) Γ (1− ǫ)

[
cos2 δ

]ǫ

− 1

4

[
sin2 δ

]−1
z−ǫIΓ

[
1 + 2 F21

(
1, ǫ, 1− ǫ, cos2 δ

)]}
+O (z) ,

Ĩ17 = z−2ǫ 8(1− 2ǫ)2 ×
{

(1 + 2ǫ)

ǫ(1 + ǫ)(2 + ǫ)
F21

(
1, 2, 3 + ǫ, sin2 δ

)
+

z−1−ǫIΓ

[sin δ]2
×

[
3

4ǫ2
× F21

(
1, 1 + ǫ, 1− ǫ, cos2 δ

)
+

z(1 + ǫ)

2ǫ(1− ǫ)
× F21

(
1, ǫ, 1− ǫ, cos2 δ

) ]

− z−ǫIΓ

[sin δ]4

[
1

2ǫ2
+

(1 + ǫ)

2ǫ2(1− ǫ)
× F21

(
1, ǫ, 1− ǫ, cos2 δ

)]

+
[cos δ]2ǫ

[sin δ]4+2ǫ Γ (1− ǫ) Γ (1 + ǫ)
(1 + 2ǫ)

ǫ2

}
+O (z) .

We note that the hard contributions for master integrals Ĩ6 and Ĩ7 can be
written in terms of the master integrals Ĩ18 and Ĩ19, see Eqs. (27). This
provides an easy way to compute these integrals to the required order in the
ǫ-expansion.
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