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We systematically analyze the full angular distribution in D → P1P2l
+l− decays, where

P1,2 = π,K, l = e, µ. We identify several null tests of the standard model (SM). Notably,

the angular coefficients I5,6,7, driven by the leptons’ axial-vector coupling C(′)
10 , vanish by

means of a superior GIM-cancellation and are protected by parity invariance below the weak

scale. CP-odd observables related to the angular coefficients I5,6,8,9 allow to measure CP-

asymmetries without D-tagging. The corresponding observables A5,6,8,9 constitute null tests

of the SM. Lepton universality in |∆c| = |∆u| = 1 transitions can be tested by comparing

D → P1P2µ
+µ− to D → P1P2e

+e− decays. Data for P1P2 = π+π− and K+K− on muon

modes are available from LHCb and on electron modes from BESIII. Corresponding ratios of

dimuon to dielectron branching fractions are at least about an order of magnitude away from

probing the SM. In the future electron and muon measurements should be made available

for the same cuts as corresponding ratios RDP1P2
provide null tests of e-µ-universality. We

work out beyond-SM signals model-independently and in SM extensions with leptoquarks.

I. INTRODUCTION

Rare charm decays are notoriously challenging theoretically, yet offer singular insights into flavor

in the up-quark sector [1]. With standard model (SM) branching ratios of |∆c| = |∆u| = 1 modes in

the 10−7−10−6 (semileptonic) and 10−6−10−4 (radiative) range, precision studies are feasible at the

experiments LHCb [2], Belle II [3] and BESIII [4]. In view of the substantial hadronic uncertainties

there are three main avenues to probe for beyond the standard model (BSM) physics in charm: i)

a measurement in an obvious excess of the SM such as the D → πµ+µ− branching ratio at high

dilepton mass [5] – a window that can be closing soon [6], ii) extract the SM contribution from a

SM-dominated mode and use SU(3)F , e.g., recently demonstrated for D → V γ, V = ρ, K̄∗, φ and
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D(s) → Kππγ decays in [7] or iii) perform null tests of (approximate) symmetries of the SM. The

latter includes searches for lepton flavor violation (LFV), CP-violation, or lepton non-universality

(LNU).

In this work we consider angular observables, and LNU tests in semileptonic rare charm decays

into electrons and muons. Exclusive semileptonic 3-body charm decays have been studied in some

detail in the decays D → πl+l− [6, 8] and D → ρl+l− [1, 8, 9] within QCD factorization (QCDF)

[10]. Previous theory works on the four-body decays D → P1P2l
+l−, P1,2 = π,K decays highlight

T-odd asymmetries [11, 12] or the leptonic forward-backward asymmetry [12], however, a systematic

analysis of the virtues of the full angular distribution at par with the corresponding one in B-decays

[13] is missing. Modes sensitive to BSM physics in semileptonic transitions are

D0 → π+π−l+l− , D0 → K+K−l+l− ,

D+ → K+K̄0l+l− , (1)

Ds → K+π0l+l− , Ds → K0π+l+l− ,

which all are singly-Cabibbo suppressed. We do not consider D → π+π0ll decays because isospin-

conserving BSM contributions, such as those we are interested in this works, drop out in the isospin

limit. However, this mode can complement SM tests in hadronic 2-body decays of charm [11, 14–

16]. Experimental results on four-body decays exist from LHCb for branching ratios [17] of D0

decays into muons and from BESIII for upper limits on branching ratios [18] of D0, D+ decays into

electrons.

The aim of this work is to study the angular distribution in D → P1P2l
+l− decays on and off

resonance, and to work out opportunities for BSM signals. Related distributions in B → Kπl+l−

decays have been analyzed in [13]. We describe non-resonant contributions with an operator product

expansion (OPE) in 1/Q, Q = {
√
q2,mc}, applicable at q2 = O(m2

c) and detailed for B → V l+l−

decays in [19]. Here, q2 denotes the dilepton invariant mass-squared and mc is the charm mass.

D → P1P2 form factors are available from heavy hadron chiral perturbation theory (HHχPT)

[20]. To capture the phenomenology we model resonance effects, which dominate the decay rates,

assuming factorization and vector meson dominance, as in [12], amended by data [17].

Despite the significant hadronic uncertainties there are features in the SM which are sufficiently

clean to warrant phenomenological exploitation of semileptonic rare charm decays: negligible con-

tributions to axial-vector lepton coupling, C(′)
10 , and the suppression of CP, lepton flavor and lepton

universality violation. Our proposal to test the SM with D → P1P2l
+l− decays is based on these

features, which allow to perform null tests and to identify new physics. An interpretation in terms
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of BSM couplings, however, will again be subject to hadronic uncertainties.

This paper is organized as follows: In section II we review the weak Lagrangian, SM values and

constraints on |∆c| = |∆u| = 1 couplings. The D → P1P2l
+l− angular distribution is given in

section III. Phenomenological resonance contributions are discussed in section IV. BSM signals are

worked out in section V, where we also discuss LNU-sensitive observables, probing BSM interactions

which distinguish between electrons and muons. In section VI we conclude. Auxiliary information

on D → P1P2l
+l− matrix elements is given in the appendix.

II. WEAK LAGRANGIAN

We consider BSM effects in the semileptonic operators,

Q9 = (ūγµPLc)
(
lγµl

)
, Q′9 = (ūγµPRc)

(
lγµl

)
, (2)

Q10 = (ūγµPLc)
(
lγµγ5l

)
, Q′10 = (ūγµPRc)

(
lγµγ5l

)
, (3)

QS = (ūPRc)(l̄l), Q′S = (ūPLc)(l̄l) , (4)

QP = (ūPRc)(l̄γ5l) , Q′P = (ūPLc)(l̄γ5l) , (5)

QT =
1

2
(ūσµνc)(l̄σµν l) , Q′T5 =

1

2
(ūσµνc)(l̄σµνγ5l) , (6)

in the effective Lagrangian

Lweakeff =
4GF√

2

αe
4π

∑
q=d,s

V ∗cqVuq

2∑
i=1

CiQ
(q)
i +

∑
i=9,10,S,P

(
CiQi + C ′iQ

′
i

)
+ CTQT + CT5QT5

 , (7)

where GF is the Fermi constant, αe denotes the fine structure constant and Vij are CKM matrix

elements. PL, PR denote left- and right-chiral projectors, respectively.

In the SM, the four-quark operators Q(q)
1,2 ∼ (ūγµPLq)(q̄γ

µPLc) give rise to the dominant con-

tributions to the branching ratios in |∆c| = |∆u| = 1 decays. The Wilson coefficients of the BSM-

sensitive operators given in (2)-(6), on the other hand, are subject to an efficient GIM-cancellation,

and suppressed. At the charm mass scale µ = mc at NNLO [6, 21, 22],

|Ceff
7 | ' O(0.001) , |Ceff

9 |high q2 . 0.01 , CSM
10,S,P,T,T5 = 0 . (8)

Here, the coefficient of the dipole operator Q7 = mc
e (ūσµνPRc)F

µν , where Fµν denotes the electro-

magnetic field strength tensor, is also given for completeness. The effective coefficients Ceff
7,9 equal

C7,9 up to matrix elements of 4-quark operators which relax the GIM-cancellation, thus being the

dominant contribution [6, 22] and inducing a q2-dependence, see [23].
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In addition, all primed coefficients C ′i are negligible in the SM. Experimental constraints, avail-

able from the upper limit on the D+ → π+µ+µ− branching ratio, and D0 → ρ0γ are presently very

weak, at least about two orders of magnitude away from the SM [6, 24]

|C(′)
7 | . 0.3 , |C(′)

9,10| . 1 , |CT,T5| . 1 , |C(′)
S,P | . 0.1 , (9)

see [6] for correlated constraints. Corresponding constraints on c → ue+e− processes are about a

factor 2-4 (5 times for CT,T5) weaker than the ones in (9) on dimuons. Constraints on LFV processes

c→ ue±µ∓ are 6-7 times (4 times for C(′)
S,P ) weaker than the dimuon constraints. To discuss LNU

or LFV, Wilson coefficients and operators become lepton-flavor dependent. To avoid clutter, we

refrain from showing lepton flavor superscripts throughout this paper.

III. FULL ANGULAR DISTRIBUTION

In section IIIA we discuss the full angular distribution forD → P1P2l
+l− decays and identify SM

null tests that exist thanks to the extreme GIM-suppression in charm. In section III B we give the

angular distribution in the low hadronic recoil OPE, which defines a factorization-type framework

at leading order in 1/mc. To estimate possible BSM signals, which involve SM-BSM interference, we

need to estimate SM contributions to decay amplitudes as well. The phenomenological description

of the dominant resonance-induced contributions is detailed in section IV.

A. General case

The D → P1P2l
+l− angular distribution, with the angles θl, θP1 , φ defined as in [25] taking into

account footnote 2 of Ref. [26], can be written as

d5Γ =
1

2π

[∑
ci(θl, φ)Ii(q

2, p2, cos θP1)
]
dq2dp2d cos θP1d cos θldφ , (10)

where q2, p2 denotes the invariant mass-squared of the dileptons, (P1P2)-subsystem, respectively,

and

c1 = 1 , c2 = cos 2θl , c3 = sin2 θl cos 2φ , c4 = sin 2θl cosφ , c5 = sin θl cosφ ,

c6 = cos θl , c7 = sin θl sinφ , c8 = sin 2θl sinφ , c9 = sin2 θl sin 2φ . (11)

θl denotes the angle between the l−-momentum and the D-momentum in the dilepton center-of-

mass system (cms), θP1 is the angle between the P1-momentum and the negative direction of flight
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of the D-meson in the (P1P2)-cms, and φ is the angle between the normals of the (P1P2)-plane and

the (ll)-plane in the D rest frame. The angles are within the ranges

−1 < cos θP1 ≤ 1 , −1 < cos θl ≤ 1 , 0 < φ ≤ 2π . (12)

P1 is the meson that contains the quark emitted from the semileptonic weak ūcll vertex. For

instance, P1 = π+ and P1 = K+ in the D0, D+-decays in (1).

The angular coefficients Ii ≡ Ii(q2, p2, cos θP1) are given in terms of transversity amplitudes 1 as

I1 =
1

16

[
|HL

0 |2 + (L→ R) +
3

2
sin2 θP1{|HL

⊥|2 + |HL
‖ |

2 + (L→ R)}
]
,

I2 = − 1

16

[
|HL

0 |2 + (L→ R)− 1

2
sin2 θP1{|HL

⊥|2 + |HL
‖ |

2 + (L→ R)}
]
,

I3 =
1

16

[
|HL
⊥|2 − |HL

‖ |
2 + (L→ R)

]
sin2 θP1 ,

I4 = −1

8

[
Re(HL

0 H
L
‖
∗
) + (L→ R)

]
sin θP1 ,

I5 = −1

4

[
Re(HL

0 H
L
⊥
∗
)− (L→ R)

]
sin θP1 , (13)

I6 =
1

4

[
Re(HL

‖ H
L
⊥
∗
)− (L→ R)

]
sin2 θP1 ,

I7 = −1

4

[
Im(HL

0 H
L
‖
∗
)− (L→ R)

]
sin θP1 ,

I8 = −1

8

[
Im(HL

0 H
L
⊥
∗
) + (L→ R)

]
sin θP1 ,

I9 =
1

8

[
Im(HL

‖
∗
HL
⊥) + (L→ R)

]
sin2 θP1 .

The subscript 0, ‖ and ⊥ stands for longitudinal, parallel and perpendicular polarization, respec-

tively. Here, L,R denotes the handedness of the lepton current. In the SM electromagnetically-

induced contributions dominate c → ul+l− transitions due to the GIM-mechanism (8). Hence,

by inspecting the relative signs between the left-handed and the right-handed contributions in

(13), it follows that I5,6,7 constitute null tests, as they require axial-vector contributions to be

non-vanishing.

One may wonder about backgrounds to ISM
5,6,7 = 0. Intermediate pseudo-scalar resonances D →

P1P2η
∗ → P1P2l

+l− induce a contribution to pseudo-scalar operators QP not included in (13). The

impact can be read off from the D → V (→ P1P2)l+l− angular distribution [26]: Contributions from

CP to I5,6,7 require the presence of tensor operators. Similarly, lepton mass effects pose no challenge

1 No tensor and no (pseudo)-scalar operators included, and for vanishing lepton mass.
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to the null tests, as finite ml contributions require the presence of scalar or tensor operators which

are both negligible in the SM (8). Finite SM contributions to axial-vector couplings are expected

to arise from higher order electromagnetic effects. For instance, a 2-loop diagram with an insertion

of Q(q)
1,2 with two photons induces a contribution at the relative order αe/(4π), about permille level.

We estimate contributions from electromagnetic operator mixing as C10 < 0.01C9 [23, 27, 28],

which is small, at most 10−4 in the SM (8). As will be shown in section VA, order one BSM

contributions are needed to generate finite angular coefficients up to few percent. Therefore, higher

order effects are of no concern to the null tests I5,6,7 within the accuracy that can be achieved in the

foreseeable future, 3%(1%) at Run II (upgrade) on D0 → π+π−µ+µ− asymmetries at LHCb [29].

We learn that angular analysis in charm is simpler than in B-decays because charm is dominated

by resonances.

Integrating (10) over φ, cos θl and both, respectively, yields the decay distributions

d4Γ

dq2dp2d cos θP1d cos θl
= I1 + I2 cos 2θl + I6 cos θl , (14)

d4Γ

dq2dp2d cos θP1dφ
=

1

π

(
I1 −

I2

3
+
π

4
I5 cosφ+

π

4
I7 sinφ+

2

3
I3 cos 2φ+

2

3
I9 sin 2φ

)
, (15)

d3Γ

dq2dp2d cos θP1

= 2

(
I1 −

I2

3

)
. (16)

The forward-backward asymmetry in the leptons, AFB ∝ I6 can be obtained from asymmetric cos θl

integration

I6 =
1

2

[∫ 1

0
d cos θl −

∫ 0

−1
d cos θl

]
d4Γ

dq2dp2d cos θP1d cos θl
. (17)

The observables I7 and I5 can be obtained, for instance, as follows

I7 =

[∫ π

0
dφ−

∫ 2π

π
dφ

]
d4Γ

dq2dp2d cos θP1dφ
, (18)

I5 =

[∫ π/2

−π/2
dφ−

∫ 3π/2

π/2
dφ

]
d4Γ

dq2dp2d cos θP1dφ
. (19)

Methods to get angular coefficients for P-wave contributions are given in [25].

At the kinematic end point of zero hadronic recoil the following exact relations hold [13]

I3 = −I1 + I2

2
, I4 = −

√
(I1 + I2)(I1 − 3I2)

2
, I5,6,7,8,9 = 0 . (20)

The corresponding observables of the CP-conjugated D̄ decays are given by I1,2,3,4,7 → Ī1,2,3,4,7

and I5,6,8,9 → −Ī5,6,8,9, where Ī equals I with the weak phases flipped. In D̄-decays, θl is the angle

between the l−-momentum and D̄-momentum in the dilepton cms, θP1 is the angle between the
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P1-momentum and the negative D̄-momentum in the (P1P2)-cms, and φ the angle between the

(P1P2)- and (ll)-planes. We keep the definition of P1 from D decays for D̄ decays.

The observables I7,8,9 are (naive) T-odd and corresponding CP asymmetries are not suppressed

by small strong phases. The observables I5,6,8,9 are odd under the CP-transformation. Therefore,

if distributions from (untagged) D0 and D̄0 decays are averaged one measures a CP-asymmetry,

Ak, k = 5, 6, 8, 9. Due to the smallness of V ∗cbVub/(V
∗
csVus) these constitute null tests of the SM.

Note that time-dependent effects in angular observables [25] are suppressed by the small D0 − D̄0

width difference [30].

B. OPE and factorization

At leading order low recoil OPE, long- and short-distance physics factorizes as follows [13]

I1 =
1

8

[
|F0|2ρ−1 +

3

2
sin2 θP1{|F‖|2ρ−1 + |F⊥|2ρ+

1 }
]
,

I2 = −1

8

[
|F0|2ρ−1 −

1

2
sin2 θP1{|F‖|2ρ−1 + |F⊥|2ρ+

1 }
]
,

I3 =
1

8

[
|F⊥|2ρ+

1 − |F‖|
2ρ−1

]
sin2 θP1 ,

I4 = −1

4
Re(F0F∗‖ ) ρ

−
1 sin θP1 ,

I5 =
[
Re(F0F∗⊥)Reρ+

2 + Im(F0F∗⊥)Imρ−2
]

sin θP1 , (21)

I6 = −
[
Re(F‖F∗⊥)Reρ+

2 + Im(F‖F∗⊥)Imρ−2
]

sin2 θP1 ,

I7 = Im(F0F∗‖ ) δρ sin θP1 ,

I8 =
1

2

[
Re(F0F∗⊥)Imρ+

2 − Im(F0F∗⊥)Reρ−2
]

sin θP1 ,

I9 =
1

2

[
Re(F⊥F∗‖ )Imρ

+
2 + Im(F⊥F∗‖ )Reρ−2

]
sin2 θP1 ,

where the short-distance coefficients read

ρ±1 =
∣∣∣Ceff

9 ± C ′9
∣∣∣2 + |C10 ± C ′10|2 ,

δρ = Re
[(
Ceff

9 − C ′9
) (
C10 − C ′10

)∗]
,

Reρ+
2 = Re

[
Ceff

9 C∗10 − C ′9C ′∗10

]
,

Imρ+
2 = Im

[
C ′10C

∗
10 + C ′9C

eff∗
9

]
, (22)

Reρ−2 =
1

2

[
|C10|2 − |C ′10|2 +

∣∣∣Ceff
9

∣∣∣2 − ∣∣C ′9∣∣2] ,
Imρ−2 = Im

[
C ′10C

eff∗
9 − C10C

′∗
9

]
.
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As we are anticipating BSM contributions to semileptonic operators (2), (3) only 2 we dropped the

contributions from dipole operators, which enter as ∝ (mcmD/q
2)Ceff

7 for clarity. Full formulae can

be seen in [13]. We explicitly checked that contributions from dipole operators are negligible for

the purpose of our analysis.

The transversity form factors Fi, i = 0,⊥, ‖ can be written as

F0 =
Nnr

2

[
λ1/2w+(q2, p2, cos θP1) +

1

p2
{(m2

P1
−m2

P2
)λ1/2

− (m2
D − q2 − p2)λ1/2

p cos θP1}w−(q2, p2, cos θP1)

]
,

F‖ = Nnr

√
λp
q2

p2
w−(q2, p2, cos θP1) , F⊥ =

Nnr

2

√
λλp

q2

p2
h(q2, p2, cos θP1) , (23)

Nnr =
GFαe

27π4mD

√
π

√
λλp

mDp2
.

Here, λ = λ(m2
D, q

2, p2) and λp = λ(p2,m2
P1
,m2

P2
), where λ(a, b, c) = a2 + b2 + c2− 2(ab+ ac+ bc).

The D → P1P2 transition form factors are defined as

〈P1(p1)P2(p2)|ūγµ(1− γ5)c|D(pD)〉 = i
[
w+pµ + w−Pµ + rqµ + ihεµαβγp

α
Dp

βP γ
]
, (24)

〈P1(p1)P2(p2)|ūiqνσµν(1 + γ5)c|D(pD)〉 = −imD

[
w′+pµ + w′−Pµ + r′qµ+ ih′εµαβγp

α
Dp

βP γ
]
, (25)

where the right-hand sides have to be multiplied by an isospin factor of 1/
√

2 for every neutral

pion in the final state and we tacitly suppressed the dependence on q2, p2 and cos θP1 in the form

factors. Here, qµ = pµ+ + pµ−, pµ = pµ1 + pµ2 = pµD − qµ and Pµ = pµ1 − p
µ
2 . Since the dipole operators

in the SM are negligible and we do not consider BSM tensor operators, the dipole form factors (25)

are not needed for our analysis. r(′) does not contribute to D → P1P2l
+l− decays for ml = 0 3.

The relevant non-resonant D → P1P2 form factors w±, h are available from HHχPT [20]. Nu-

merical input is given in the appendix. Note that HHχPT applies if the participating light mesons

are sufficiently soft. We find that Eπ −mπ in the D-meson’s cms in D → π+π−l+l− decays does

not exceed 0.4 (0.6) GeV for q2 above m2
φ (m2

ρ), where Eπ denotes the energy of any of the pions

in the D-cms. The region above m2
φ is kinematically closed for D → K+K−l+l− decays. In these

decays EK −mK in the D-cms does not exceed 0.3 GeV for all q2, where EK denotes the energy

of any of the kaons in the D-cms. Although formally they are limited to low hadronic recoil we

use the HHχPT form factors in the full phase space also for D → π+π−l+l− in absence of other

estimates.

2 BSM effects in dipole operators can be tested in radiative D-decays, e.g., [7, 24, 31].
3 (Pseudo)-scalar operators would also require r, 〈P1(p1)P2(p2)|ū(1+γ5)c|D(pD)〉 = i/mc

[
w+p · q + w−P · q + rq2

]
.
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Figure 1: Phase space and dominant resonances in q2 and p2 for D0 → π+π−µ+µ− decays (left) and

D0 → K+K−µ+µ− decays (right). The bands correspond to (mass ± width)2. The very wide scalar

resonances f0(500) and f0(980) would fill everything below the f2 in the ππ plot and are not shown.

We use this prescription, factorization plus HHχPT form factors, for the BSM short-distance

contributions from 4-fermion operators (2), (3) to estimate BSM signals in the whole phase space

for both ππ and KK modes. In figure 1 the q2, p2-phase space for D0 → π+π−l+l− (plot to

the left) and D0 → K+K−l+l− decays (plot to the right) is shown with dominant resonances.

The OPE formally applies for q2 = O(m2
c). This is approximately the region above the φ-peak

in D → π+π−l+l− decays, and nowhere in D → K+K−l+l−. QCDF at least formally works for

p2 = O(Λ2) and p2 ∼ q2, that is, when the (P1P2)-system is light and energetic in the D-cms, see

also [32]. While QCDF therefore can be used in D0 → π+π−l+l− for low q2, this region is mostly

occupied by resonances. In D → K+K−l+l− with p2
min ≈ 1GeV2 there is little room left. For

p2 = O(m2
c) the dilepton system is soft in the D-cms. A related discussion of phase space has been

given in [33] for B → ππlν decays. Due to the lower value of the heavy quark mass the phase space

in charm is much more compressed than in b-decays.

IV. RESONANCE CONTRIBUTIONS

Several resonances contribute to D → P1P2l
+l− decays. First we consider resonances in the

(P1P2)-subsystem, that is, in p2. Depending on the spin j = 0, 1, ... of the resonance, such contri-
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butions are termed S,P,...-wave, respectively. Due to the lower mass of the D-mesons relative to the

B-ones, there are fewer resonances and ones with lower spin contributing in charm. Lowest lying

resonances with sizable branching ratios into ππ are the ρ and scalars σ = f0(500) and f0(980). At

spin 2 there is the f2(1270). For K+K−, it is essentially the φ, and for Kπ there is the K∗(892),

the scalars κ and K∗0 (1430) and the spin 2 resonance K∗2 (1430).

We model the resonance structure in p2 for D0 → π+π−l+l− decays by the ρ-contribution, which

is dominant at least in the wider vicinity of p2 ≈ m2
ρ. D → ρ form factors are taken from [34],

see appendix. D-waves and higher are phase space suppressed relative to the ρ and contribute to

small q2 . 0.4GeV2 only. Further study including scalar contributions, which are rather wide and

less known, is beyond the scope of this work, which aims at identifying null tests and illustrating

the sensitivity to BSM physics. We stress, however, that since there is no S-wave contribution to

I3,6,9 [13] these angular coefficients are unaffected by scalars. In addition, the S-P interference terms

in I4,5,7,8 can be separated from the P-wave contribution by angular analysis, therefore scalars can

be experimentally subtracted in these coefficients.

The other type of resonances contribute in q2 as D → P1P2γ
∗, γ∗ → l+l− via ω, ρ0, φ and η(′).

We model these contributions with a phenomenological Breit-Wigner shape for C9 → CR
9 for vector

and CP → CR
P for pseudoscalar mesons [6, 8]

CR
9 = aρe

iδρ

(
1

q2 −m2
ρ + imρΓρ

− 1

3

1

q2 −m2
ω + imωΓω

)
+

aφe
iδφ

q2 −m2
φ + imφΓφ

,

CR
P =

aηe
iδη

q2 −m2
η + imηΓη

+
aη′

q2 −m2
η′ + imη′Γη′

, (26)

where mM ,ΓM denotes the mass and total width, respectively, of the resonance M = η(′), ρ0, ω, φ,

and we used isospin to relate the ρ0 to the ω. Corresponding transversity form factors are given

in the appendix, eqs. (45)-(48). LHCb [17] has provided branching ratios in q2-bins around the

resonances ρ/ω and φ,

B(D0 → π+π−µ+µ−)|[0.565−0.950]GeV = (40.6± 5.7)× 10−8 , (27)

B(D0 → π+π−µ+µ−)|[0.950−1.100]GeV = (45.4± 5.9)× 10−8 , (28)

B(D0 → K+K−µ+µ−)|[>0.565]GeV = (12.0± 2.7)× 10−8 , (29)

where we added uncertainties in quadrature and neglected correlations. The resonance parameters

in CR
9,P are in general p2-dependent. We assume that the dominant p2-dependence is taken care of

by the ρ-lineshape specified in the appendix such that the aM are fixed by (27), (28) at p2 ≈ m2
ρ:

aππφ ' 0.3GeV2 , aππρ ' 0.7GeV2 . (30)
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For M = η(′) we use B(D0 → π+π−M(→ µ+µ−)) ' B(D0 → Mπ+π−)B(M → µ+µ−) and take

the right-hand side from data [35] together with B(η′ → µ+µ−) ∼ O(10−7) [35, 36]. We obtain

aππη ' 0.001GeV2 , aππη′ ∼ 0.001GeV2 . (31)

To implement the pseudo-scalar contributions we employed the D → ρl+l− distributions that can

be inferred from [26]. We note that fitting M = ρ0, ω, φ in the zero-width approximation [35] and

using 2× B(D0 → ρ0ρ0)× B(ρ0 → µ+µ−) for the ρ0, one obtains parameters consistent with (30),

with aω somewhat below the isospin prediction aρ/3 as already noticed for D+ → π+µ+µ− [6]. The

strong phases δM remain undetermined by this and introduce theoretical uncertainties.

The situation in the D0 → K+K−l+l− channel is different as the obvious resonance, the φ, is not

produced through a significant form-factor type contribution in D0-decays. The small uū admixture

in the φ should give approximately few percent of the corresponding ρ→ ππ amplitude. Similarly,

lowest lying mesons with larger uū content, f2(1270), a2(1320), decay with about 5% branching

ratio to KK̄, which again is a correction. The dominant contribution is expected to originate

from annihilation topologies D0 → φ(→ K+K−)γ∗, recently discussed in [10] for D → ρl+l−

decays within QCDF. Here we continue following a phenomenological approach, as in [12], based

on factorization and vector meson dominance, and use

〈γ∗(q)φ(p)|C1Q
(s)
1 + C2Q

(s)
2 |D

0(pD)〉 ∼ CR
9 |aφ=0 · 〈V (q)|ūγµPLc|D0(pD)〉〈φ(p)|s̄γµs|0〉 , (32)

where V = ρ0, ω, and we neglect differences between the D → ρ0 and D → ω form factors. The

corresponding amplitude in D → π+π−l+l− decays, that is, when the ρ0 which decays to π+π−

is created at the weak vertex rather than through a form factor, is effectively included in our

prescription with resonance parameters fixed by data – allowing for the extra amplitude would

merely result in re-fitting aππφ and aππρ 4. Specifically, for D0 → K+K−l+l− decays we use CR
9 as in

(26) with aφ = 0, and the transversity form factors Fiφ given in the appendix. The φ-lineshape is

parameterized by a Breit-Wigner distribution. To include the contribution from η → l+l− we use

〈γ∗(q)φ(p)|C1Q
(s)
1 + C2Q

(s)
2 |D

0(pD)〉 ∼ CR
P |aη′=0 · 〈η(q)|ūγµPLc|D0(pD)〉〈φ(p)|s̄γµs|0〉 . (33)

Note, the η′ is kinematically forbidden. We then obtain from (29) and the zero-width approximation

for the η [35]

aKKρ ' 0.5GeV2 , aKKη ' 0.0003GeV2 . (34)

4 There is a subtlety here, because the two contributions have slightly different p2-behavior from the form factors.
Since these are slowly varying functions, as opposed to the Breit-Wigner resonance shapes, this is a negligible
effect within the uncertainties and the purpose of this work.
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branching ratio D0 → π+π−µ+µ− D0 → K+K−µ+µ− D0 → π+π−e+e− D0 → K+K−e+e−

LHCb [17]† (9.64± 1.20)× 10−7 (1.54± 0.33)× 10−7 – –

BESIII [18] – – < 0.7× 10−5 < 1.1× 10−5

resonant ∼ 1× 10−6 ∼ 1× 10−7 ∼ 10−6 ∼ 10−7

non-resonant 10−10 − 10−9 O(10−10) 10−10 − 10−9 O(10−10)

[12] ∼ 10−6 ∼ 10−7 ∼ 10−6 ∼ 10−7

Table I: Branching ratios for D0 → π+π−l+l− and D0 → K+K−l+l− from data, LHCb [17] (l = µ) and

BESIII [18] (l = e), our evaluation, resonant and non-resonant, and [12]. Upper limits are at 90% CL.
†Statistical and systematic uncertainties are added in quadrature.

In table I branching ratio data on D0 → π+π−l+l− and D0 → K+K−l+l− decays from LHCb

[17] and BESIII [18] are shown, together with our evaluation for resonant and non-resonant branch-

ing ratios, and the predictions from [12] 5. In figure 2 we show the differential branching ratio

dB/dq2 for δρ− δφ = π (red solid curve) and δρ− δφ = 0 (red dotted curve). The ρ/ω-φ interference

matters in the regions around the resonances. The η(′) contributions are subleading. The purely

non-resonant – neither q2 nor p2 resonances are included – SM contribution (blue band) is much

smaller than the resonance-induced distributions except for very low q2. This remains true with

BSM couplings (long-dashed purple curve) as illustrated for a maximal scenario CBSM
9 = 1 (9). We

learn that, unlike presently in D → πµ+µ− decays, in the branching ratio of D → ππµ+µ− decays

and with non-resonant form factors (44) there is no room left to probe BSM physics in the high q2

region above the φ. In figure 2 we also show the prediction by [12] (green dashed curve). The rise of

the branching ratio at very low q2 in [12] is due to the onset of bremsstrahlung, computed using an

extrapolation of Low’s theorem [37], an effect which will be more pronounced for electrons as lower

values of q2 can be accessed. We recall that the soft photon approximation holds for photon energies

up to m2
P /EP [38], P = π,K, which limits its controlled use to q2 . 0.1GeV2 in D0 → K+K−l+l−

and to q2 . 0.001GeV2 in D0 → π+π−e+e− decays. As it is a small effect on the D0 → P1P2µ
+µ−

branching ratios and, except for the difference in phase space a lepton universal one, we refrain

from including this effect in our numerics. We comment on bremsstrahlung in the discussion of

LNU in section VC.

So far we discussed D0 → π+π−l+l− and D0 → K+K−l+l− decays. The former is special as it is

5 There is a sign error in eq. (25) of [12]: the relative sign between the ρ and the ω contributions from isospin must
be negative, as in our (26). We thank Giancarlo D’Ambrosio for confirmation.
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Figure 2: The differential branching ratio dB(D0 → π+π−µ+µ−)/dq2 (left) and dB(D0 → K+K−µ+µ−)/dq2

(right) in the SM for central values of input. The lowest curve (blue solid) corresponds to the non-resonant

prediction including uncertainties from mc/
√

2 ≤ µ ≤
√

2mc represented by the band. The long-dashed

purple curve illustrates the impact of CBSM
9 = 1 on the non-resonant distribution. The resonance curves

are our evaluation for δρ − δφ = π (red solid), as from SU(3)F , and δρ − δφ = 0 (red dotted) to illustrate

uncertainties related to strong phases, compared to the model [12] (green, dashed). The latter employs fixed

δρ − δφ = π and the relative sign between the ρ and the ω is as in (26), see footnote 5.

the only one from (1) with a proper distribution at high q2 above the φ. The latter decay is special

as it is the only mode from (1) which only proceeds through the annihilation-type topology. On the

other hand, the decays D+ → K+K̄0l+l− are expected to have a more pronounced non-resonant

contribution in p2 as the presumably leading resonance in K+K̄0 is a2(1320), with only a small

branching ratio to KK̄. The rare, semileptonic 4-body Ds decays are somewhere between the two

D0-decays, with contributions from both topologies, however, with color-enhanced annihilation at

q2 ' m2
φ and m2

η(′)
. We stress that we employ such a phenomenological description only to obtain

BSM signatures, worked out in the next section. The SM predictions, that is, specific observables

being null tests, are independent of the resonance model.

V. BSM SIGNATURES

In this section we work out BSM signatures of SM null tests model-independently and in BSM

scenarios with leptoquarks. For null tests related to the angular observables I5−9 largest effects

are expected from SM-BSM interference near the resonances ρ/ω and φ. The dependence on the

semileptonic |∆c| = |∆u| = 1 coefficients can be taken from (21), (22).

In section VA and VB we study the angular null tests I5,6,7 and CP asymmetries, respectively.

In section VC we discuss ratios of dimuon to dielectron branching ratios as a probe of LNU. LFV
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branching ratios are worked out in section VD.

A. Angular null tests I5,6,7

We define integrated null test observables, normalized to the D → P1P2l
+l− decay rate Γ,

〈I6〉(q2) =
1

Γ

∫ (mD−
√
q2)2

4m2
π

dp2

∫ +1

−1
d cos θP I6(q2, p2, cos θP ) , (35)

〈I5,7〉(q2) =
1

Γ

∫ (mD−
√
q2)2

4m2
π

dp2

[∫ +1

0
d cos θP −

∫ 0

−1
d cos θP

]
I5,7(q2, p2, cos θP ) . (36)

We calculate Γ from integrating (16) over the full phase space.

We show the integrated I5,6,7 as a function of q2 in figure 3 for four BSM benchmarks C(′)
9 =

−C(′)
10 = 0.5 and C(′)

9 = −C(′)
10 = 0.5i. The curves for C(′)

9 = +C
(′)
10 = 0.5 and C(′)

9 = +C
(′)
10 = 0.5i

can be obtained by flipping the signs of the 〈I5,6,7〉, see (21), (22). The latter also explain why I5

and I6 have similar BSM-sensitivity and why I7 is different. As anticipated, the effects are largest

where the SM contribution peaks, around the ρ/ω and the φ resonances. The shape between the

resonances depends on their relative strong phase, shown here for δρ − δφ = π. The effect of

δρ − δφ = 0 is a reflection of the φ-peak at the x-axes. Our findings for the magnitude of 〈I6〉 are

consistent with [12] 6.

B. CP asymmetries without tagging

The CP asymmetries corresponding to the CP-odd angular coefficients Ik, k = 5, 6, 8, 9 are

defined as [25]

Ak = 2
Ik − Īk
Γ + Γ̄

=
Ik − Īk

Γave
, (37)

where Γave corresponds to the CP-averaged decay rate. The observables I8 and I9 can be obtained

from the angular distribution (10), for instance, as follows

I8 =
3π

8

[∫ π

0
dφ−

∫ 2π

π
dφ

] [∫ 1

0
d cos θl −

∫ 0

−1
d cos θl

]
d5Γ

dq2dp2d cos θP1d cos θldφ
, (38)

I9 =
3π

8

[∫ π/2

0
dφ−

∫ π

π/2
dφ+

∫ 3π/2

π
dφ−

∫ 2π

3π/2
dφ

]
d4Γ

dq2dp2d cos θP1dφ
. (39)

6 Note, θl is defined in [12] with respect to the positively charged lepton, whereas we use the negatively charged one.
It follows that A[12]

FB = −2〈I6〉.
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Figure 3: Angular observables 〈I5,6,7〉 integrated over p2, see (35), (36), for D0 → π+π−µ+µ− normalized

to Γ(D0 → π+π−µ+µ−) for C(′)
9 = −C(′)

10 = 0.5, C(′)
9 = −C(′)

10 = 0.5i and relative strong phase δρ − δφ = π.

I5,6 are given in (19), (17).

We define the integrated angular coefficients 〈I8〉 analogous to 〈I5,7〉, (36), and 〈I9〉 analogous

to 〈I6〉, (35). From here we obtain the integrated CP asymmetries 〈Ak〉 = (〈Ik〉 − 〈Īk〉)/Γave.

Numerical values for high q2, q2
min = (1.1GeV)2 in BSM-benchmarks are given in table II. To

obtain the ranges given we varied strong phases and explicitly verified that the sign of C9 in the

first and C ′9 in the second case does not matter, in agreement with (22). In the analysis of the CP

asymmetries in (26) we effectively take into account the CKM factors V ∗cdVud and V ∗csVus for the

ρ/ω and φ, respectively. The SM predictions for 〈A8,9〉SM at high q2 are below the permille level,

and zero for 〈A5,6〉SM due to the GIM-mechanism, CSM
10 = 0. CP-asymmetries integrated over the

full q2 region are at most permille level in BSM models, and smaller in the SM.
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C9 = −C10 = ±0.5i C ′9 = −C ′10 = ±0.5i

〈A5〉 [−0.04, 0.04] [−0.03, 0.03]

〈A6〉 [−0.06, 0.05] [−0.06, 0.06]

〈A8〉 [−0.02, 0.02] [−0.02, 0.02]

〈A9〉 [−0.03, 0.03] [−0.03, 0.03]

Table II: Ranges for the high q2, q2min = (1.1GeV)2, integrated CP asymmetries 〈Ai〉 for D0 → π+π−µ+µ−

decays for different BSM benchmarks, varying strong phases.

C. Testing lepton universality

LNU-ratios in semileptonic decays [13, 39, 40]

RDP1P2
=

∫ q2max

q2min
dB/dq2(D → P1P2µ

+µ−)∫ q2max

q2min
dB/dq2(D → P1P2e+e−)

, (40)

with the same cuts in the dielectron and dimuon measurement provide yet another null test of the

SM in charm as RDP1P2
|SM ' 1. Phase space corrections of the order m2

µ/m
2
c amount to percent

level effects. Electromagnetic effects are another source of non-universality, and expected at order

αem/(4π) × logarithms, parametrically suppressed [25, 28, 41]. A detailed calculation is beyond

the scope of this work. Within the SM we obtain for q2
min = 4m2

µ and q2
max = (mD −mP1 −mP2)2

RD SM
ππ = 1.00±O(%) , RD SM

KK = 1.00±O(%) . (41)

Beyond the SM, RDππ can be modified significantly. Varying strong phases and Wilson coefficients

C
(′)
9,10 one at a time within allowed ranges (9), we obtain RDππ|BSM ∈ [0.85, 0.99] and RDKK |BSM ∈

[0.94, 0.97]. The latter is barely distinguishable from (41), as well as RDππ and RDKK in leptoquark

models, e.g., [6, 40]. It is advantageous to consider the LNU-ratios in bins with a smaller SM

contribution to increase the BSM sensitivity. For ππ, this is, for instance, the high q2 region

above the φ, q2
min = (1.1GeV)2, as in [17], and with the SM prediction (41) intact. Here, in this

high q2 bin, leptoquark effects are within RDππ|
high q2
LQ ∈ [0.7, 4.4], consistent with related sizable

SM deviations in D → πl+l− decays at high q2 [40]. Such sizable deviations from universality are

possible for the scalar and vector SU(2)L-singlet and doublet representations S1,2, Ṽ1,2, respectively,

which escape kaon bounds because there is no coupling to quark doublets [6]. The other leptoquark

representations give SM-like values for RDP1P2
.

For D0 → K+K−l+l− decays we investigate possibilities to enhance the BSM sensitivity by

lowering q2
max. This increases the sensitivity to lepton mass effects such that (41) does not hold
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anymore. We find, even when simultaneously increasing q2
min, that leptoquark-induced LNU cannot

be unambiguously distinguished from the SM in the KK mode. The long-distance dominance of

the branching ratio even with BSM contributions is also manifest from figure 2. For instance, below

the η, for q2
max = (0.525GeV)2 [17], we find that RDKK in leptoquark models is within the ballpark

of the SM prediction, RD SM
KK = 0.83 ± O(%). On the other hand, model-independently RDKK can

be suppressed relative to the SM, RDKK |
<η
BSM ∈ [0.60, 0.87].

While data on muons [17] and electrons [18] exist for D0 → π+π−l+l− and D0 → K+K−l+l−

decays, see table I, unfortunately, this does not permit to compute the respective clean LNU-ratios

(40) due to incompatible q2-cuts employed by the two experiments. In particular, BESIII included

q2-regions not accessible with dimuons and vetoed the φ → e+e− region. We recommend to give

dielectron results for q2 values above the dimuon threshold to allow for a measurement of RDP1P2

(40). Naive ratios of the branching ratio measurements [17, 18] given in table I result in lower

limits,

R̄Dπ+π− & 0.1 , R̄DK+K− & 0.01 , (42)

whose respective SM predictions are, due to the different q2-cuts, subject to sizable hadronic un-

certainties. Using the same cuts as in the BESIII analysis – none on the dielectron invariant

mass squared except for excluding the region [0.935, 1.053] GeV [18] – we find in the model of [12]

R̄D SM
π+π− ' 0.9 and R̄D SM

K+K− ' 0.1, about an order of magnitude away from the data. The smallness

of the ratio R̄D SM
K+K− follows from the bremsstrahlung enhancement for electrons. A similar effect is

present in the ππ mode, however, here it is lifted by the contribution of the φ in the dimuon mode.

The main difference between our resonance model and [12] is, besides the use of on-peak data (27)-

(29), the inclusion of bremsstrahlung effects at very low q2, subject to systematic uncertainties as

briefly discussed in section IV. Lepton mass corrections in our model are small such that the main

difference between electrons and muons is due to the vetoed φ in the denominator, R̄D SM
π+π− ∼ 2, and

R̄D SM
K+K− ∼ 1. A measurement with identical cuts (40) would avoid this model-dependence.

D. LFV

We work out predictions for LFV branching ratios D0 → π+π−e±µ∓ and D0 → K+K−e±µ∓,

which vanish in the SM. Integrating the non-resonant distributions over the full q2-range, and using

the constraints discussed in section II we find model-independently and in leptoquark models,
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following [6],

B(D0 → π+π−e±µ∓) . 10−7 , B(D0 → K+K−e±µ∓) . 10−9 . (43)

VI. CONCLUSIONS

The SM angular distribution in semileptonic 4-body D-decays is considerably simpler than in

B-decays because of long-distance dominance in charm. The latter implies P-conservation and

equal chirality of the lepton currents. As a result, the angular coefficients I5,6,7 are null tests of the

SM. BSM-contributions to the axial-vector coupling, C(′)
10 , can, on the other hand, induce rates at

few percent level, see figure 3.

Rare semileptonic D0-decays are not self-tagging and benefit from the CP-asymmetries related

to I5,6,8,9, which are CP-odd and do not require D-tagging. Due to the smallness of V ∗cbVub/(V
∗
csVus)

corresponding CP-asymmetries A5,6,8,9 constitute null tests of the SM. BSM-induced integrated

asymmetries can reach few percent, see table II.

Ratios of branching fractions into muons and electrons (40) probe lepton universality in the

up-sector and complement studies with B-decays. LNU-tests in charm are presently not very

constraining as only upper limits on branching ratios of D → P1P2e
+e− decays exist. We strongly

encourage experimenters to provide in the future data based on the same kinematic cuts for muons

and electrons, enabling more powerful SM tests.

Leptonic P-invariance and suppression of SM CP violation holds in the whole (p2, q2)-phase

space on and off resonance peaks. Therefore, there is no particular need for cutting on ππ around

or outside the ρ, or ll around φ or ρ/ω and one can collect events from the whole phase space. Yet,

experimental information on the otherwise SM-dominated branching ratios with on-resonance cuts

assists tuning the hadronic model parameters. Note, near-resonance BSM signals in the angular

observables I5−9 are larger due to enhanced interference with the SM, as exploited in [12, 42] and

evident in figure 3. On the other hand, deviations from lepton universality in the ratios (40) are

enhanced in regions where the SM-contribution is smaller, such as in the high q2 region above the

φ in D0 → π+π−l+l− decays, where order one BSM effects are possible. LFV branching ratios

B(D0 → π+π−e±µ∓) and B(D0 → K+K−e±µ∓) can reach 10−7 and 10−9, respectively.
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VII. APPENDIX: D → P1P2l
+l− MATRIX ELEMENTS

A. D → P1P2 form factors

We employ the form factors from HHχPT [20]

w± = ± ĝfD
2f2
P1

mD

v · pP1 + ∆
, h =

ĝ2fD
2f2
P1

1

(v · pP1 + ∆)(v · p+ ∆)
, (44)

with input ∆ = (mD∗0 − mD0) = 0.1421GeV, fD = 0.21GeV, fπ = 0.13GeV, fK = 0.156GeV,

ĝ = 0.570 ± 0.006 [43], v · pP1 = ((m2
D − q2 + p2) −

√
λ(m2

D, q
2, p2)(1− 4m2

P1
/p2) cos θP1)/(4mD)

and v · p = (m2
D − q2 + p2)/(2mD).

B. Resonance amplitudes

The transversity form factors for the contributions from resonances R with spin JR read [13]

F0 ≡ F0(q2, p2, cos θP1) '
∑
R

P 0
JR

(cos θP1) · F0JR(q2, p2) , (45)

Fi ≡ Fi(q2, p2, cos θP1) '
∑
R

P 1
JR

(cos θP1)

sin θP1

· FiJR(q2, p2) , i =‖,⊥ ,

where Pm` denote the associated Legendre polynomials, e.g., P 0
1 (cos θP ) = cos θP and P 1

1 (cos θP ) =

− sin θP . For vector V resonances with mass mV and width ΓV [13, 44]

F0V = −3NV
(m2

D −m2
V − q2)(mD +mV )2A1(q2)− λ(m2

D,m
2
V , q

2)A2(q2)

2mV (mD +mV )
√
q2

P V , (46)

F‖V = − 3√
2
NV

√
2(mD +mV )A1(q2)P V , (47)

F⊥V =
3√
2
NV

√
2λ(m2

D,m
2
V , q

2)

mD +mV
V (q2)P V , (48)

with the resonance shape P V . For the latter we employ a Breit-Wigner parametrization [45],

P V (p2) =

√
mV ΓV
π

p∗

p∗0

1

p2 −m2
V + imV ΓV (p2)

, (49)

ΓV (p2) = ΓV

(
p∗

p∗0

)3 mV√
p2

1 + (rBW p∗0)2

1 + (rBW p∗)2
, (50)

p∗ =

√
λ(p2,m2

P1
,m2

P2
)

2
√
p2

, p∗0 = p∗|p2=m2
V
, (51)
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which is normalized
∫
dp2|P V (p2)|2 = 1. For the ρ we use the Blatt-Weisskopf parameter rBW =

3GeV−1 [46]. In the normalization factor

NV = GFαe

√√√√βlq2
√
λ(m2

D, p
2, q2)

3(4π)5m3
D

, βl =

√
1−

4m2
l

q2
, (52)

we use the Källen-function suitable for off-resonance effects, instead of λ(m2
D,m

2
V , q

2), and include

an overall finite ml phase space suppression. Form factors A1,2, V are provided in [34, 47, 48].

Following [24] we employ the form factors by [34], parameterized as

F (q2) =
F̃ (0)

1− σ1 q2/m2
D∗

, (53)

where F̃ (0) = F (0)/(1 − q2/m2
D∗) for F = V and F̃ (0) = F (0) for F = A1,2. For D → ρ the

parameters are given as

V (0) = 0.90 , σ1 = 0.46 ,

A1(0) = 0.59 , σ1 = 0.50 , (54)

A2(0) = 0.49 , σ1 = 0.89 .

Since the modelling of the resonances itself is accompanied by large uncertainties, we neglect the

form factor uncertainties in the numerical evaluations as well as differences between D → ρ and

D → ω form factors.

For the resonance-induced D0 → K+K−l+l− contribution we use the form factors

F0φ = −3NV

(m2
D −m2

ρ − p2)(mD +mρ)
2A1(p2)− λ(m2

D,m
2
ρ, p

2)A2(p2)

2mρ(mD +mρ)
√
q2

P φ , (55)

F‖φ = − 3√
2
NV

√
2(mD +mρ)A1(p2)P φ , (56)

F⊥φ =
3√
2
NV

√
2λ(m2

D,m
2
ρ, p

2)

mD +mρ
V (p2)P φ , (57)

where V,A1,2 are D → ρ form factors given above. We employ a constant width (normalized)

Breit-Wigner distribution for the φ-lineshape

P φ(p2) =

√
mφΓφ
π

1

p2 −m2
φ + imφΓφ

. (58)
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