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Abstract

We compute the three-loop QCD corrections to the massive quark form factors
with external vector, axial-vector, scalar and pseudo-scalar currents. All corrections
with closed loops of massless fermions are included. The non-fermionic part is
computed in the large- N, limit, where only planar Feynman diagrams contribute.


http://arxiv.org/abs/1804.07310v1

1 Introduction

Vertex form factors with external fermions play a crucial role in a number of phenomeno-
logically interesting processes. Among them are the massive fermion production in elec-
tron positron collisions, and in particular the forward-backward asymmetry, where form
factor contributions induced by vector and axial-vector currents are needed. Furthermore,
building blocks to the decay rates of scalar and pseudo-scalar Higgs bosons are provided
by the corresponding form factors. Last but not least, form factors constitute important
toys, which help to investigate the structure of high-order quantum corrections.

In this work we consider vertex form factors where the external current is of vector,
axial-vector, scalar or pseudo-scalar type. They are given by

Jno= b,
Je = Vs,
J° = muyy,
o= imzﬂ%@b, (1)

where for convenience the heavy quark mass m has been introduced in the scalar and
pseudo-scalar currents such that no additional overall (ultraviolet) renormalization con-
stants have to be introduced (as for the vector and axial-vector] cases) [1]. If j° or j? are
used to compute properties of the Higgs boson there is a one-to-one relation of m to the
corresponding Yukawa coupling.

We consider the three-point functions of the currents in Eq. (Il) and a quark-anti-quark
pair. The corresponding vertex functions can be decomposed into scalar form factors
which are defined as
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with incoming momentum ¢, outgoing momentum ¢, and ¢ = ¢; — ¢ being the outgoing
momentum at j°. The external quarks are on-shell, i.e., ¢> = ¢ = m? and we have

o = i[y",4"]/2. We note that in all cases the colour structure is a simple Kronecker delta
in the fundamental colour indices of the external quarks and not written out explicitly.

For later convenience we define the perturbative expansion of the scalar form factors as
as () \"

F=) f® 3

S (4 3

n>0
'In this paper we do not consider Feynman diagrams which contribute to the axial anomaly.




with F' = poO) = pa©) = pr® = 1 and FP = 2@ = 0.

The two-loop corrections to the vector current contributions Fy and F3} have been com-
puted for the first time in Ref. [2] (see also Ref. [3] for the fermionic contributions) and
have been cross checked by several groups [448]. In some cases higher order terms in
€ have been added. Two-loop axial-vector, scalar and pseudo-scalar contributions have
been computed in Refs. [O0HII] and recently been confirmed in Ref. [7] where O(e) and
O(€?) terms have been added. Three-loop corrections are only known for well-defined
subsets of the vector form factor: The large- N, limit has been computed in Ref. [5] using
the master integrals of [12]. This involves only planar integrals. The complete (planar
and non-planar) light-fermion contributions to Fy and F3y have been obtained in Ref. [§].
In this reference also the results of the relevant master integrals are given. Let us mention
that all-order corrections to the massive vector form factor in the large-f3, limit have been
considered in Ref. [13].

For the three-point functions one in general distinguishes singlet and non-singlet contri-
butions. The former includes a closed fermion loop which contains the coupling to the
external current. It is connected to the fermions in the final state via gluons as is shown
in Fig. [[(a). In case the external current contains -5 singlet contributions need special
attention since the anti-commuting definition for 75 can not be used. Instead prescriptions
like the one introduced in Ref. [I4] have to be applied.

If the external current does not contain 5 the singlet contributions can be treated along
the same lines as the non-singlet part. However, in contrast to the latter the singlet
contributions have massless cuts which requires modifications of the technique described
in [5,812] to compute the master integrals. Thus, in this paper we restrict ourselves
to non-singlet contributions (cf. Figs. l(b)—(1)), i.e., the external current couples to the
fermions in the final state. At three loops we compute the complete light-fermion contri-
butions and consider the large- N, expansion of the remaining part. At one- and two-loop
order all colour factors are computed and agreement with the literature [7] is found.

In the next section we introduce the notation and briefly mention some techniques used for
the calculation. Afterwards analytical and numerical results are presented in Sections
and 4l We close with a brief summary in Section [5l

2 Technicalities

The techniques and the setup of the programs, which are used to obtain the results of
this paper, are straightforward extensions of the works [5,[§] and thus we refrain from
repeating in detail the technical descriptions. Note, however, that in contrast to Ref. [5]
we do not define a “super family”, which includes the eight relevant planar families as
sub-cases. Rather, we generated the input files for FIRE [I5] from scratch and computed
separate tables for each individual family. Let us mention that for the reduction to
master integrals and the minimization of the latter it is useful to combine FIRE [15] with
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Figure 1: Sample diagrams contributing to the form factors. Solid and curly lines represent
quarks and gluons, respectively. The grey blob refers to one of the external currents given
in Eq. (). Singlet contributions, as shown in (a), are not considered in this paper.

LiteRed [I6,17], which provides important symmetry information. In fact, for the most
complicated integral family the reduction took about a day of CPU time on a computer
with 18 cores, even for general gauge parameter.

For the form factors it is useful to introduce the following variable

¢ _ (-2 (4)

m2 x
which maps the complex ¢?/m? plane into the unit circle, as illustrated in Fig. 2l The
low-energy (¢*> — 0), high-energy (¢*> — oo) and threshold (¢* — 4m?) limits correspond
tor — 1,z — 0 and x — —1, respectively. Furthermore, the interval ¢> < 0 is mapped to
z € (0,1) and ¢* € [0,4m?] to the upper semi-circle. Note that for z € (0,1) and z = €™
with ¢ € [0, 7] the form factors have to be real-valued since the corresponding Feynman
diagrams do not have cuts. This is different for the region ¢ > 4m?, which corresponds
to z € (—1,0), where the form factors are complex-valued. Note that for negative x we
interpret log(z) as log(x + i0) = log(—x) + i.

For the threshold limit (¢*> — 4m?, & — —1) it is convenient to introduce the velocity of



Figure 2: Tllustration of the variable transformation between ¢?/m? and x as given in
Eq. [@). The left graph represents the ¢?/m? plane and on the right the complex x
plane is shown. The (coloured) wiggled and zigzag lines show the mapping of the various
intervals, whereas the straight lines indicate the mapping for special values of ¢?/m? and
x.

the produced quarks

4m?
B o= 4/1-—, (5)
s
which is related to x via
28
= - (6)
1+

For the analytic three-loop expressions we furthermore define

rije = e = (1£iV3)/2,
r3g = e = (—14+iv3)/2. (7)

In the practical calculation it is convenient to apply projectors in order to extract the
scalar form factors. We refrain to provide them explicitly but refer to Ref. [7] where
projectors for the four currents in Eq. (Il can be found.

All one- and two-loop Feynman integrals can be expressed as a linear combination of the
2+ 17 master integrals discussed in Ref. [8]. Note that our two-loop basis is smaller than
the one of Ref. [7] where 23 non-singlet master integrals are given. After inserting the
e-expanded results for the master integrals into the expressions for the form factors we
obtain the one- and two-loop expressions expanded up to order €* and €2, respectively. Our



two-loop results agree with [7]. Let us repeat that we do not consider singlet contributions
which occur for the first time at two loops. Note that they vanish for the vector current
but give non-vanishing contributions for the other three currents.

At three-loop order we have 89 planar master integrals entering the large- N, expressions
and 15 additional master integrals for the complete light-fermion n; and n} contributions,
only two of the them are non-planar.

To obtain the renormalized form factors we use the MS scheme for the strong coupling
constant and the on-shell scheme for the heavy quark mass and wave function of the
external quarks. In all cases the counterterm contributions are simply obtained by re-
scaling the bare parameters with the corresponding renormalization constants, Z,,, Z9°
and Z95. The latter is needed to three loops whereas two-loop corrections for Z,, and Z9%
are required. For the scalar and pseudo-scalar form factors also the overall overall factor
m has to be renormalized (to three-loop order), which we choose to do in the MS scheme.
Note that this is the natural choice if F** or F? are used for Higgs boson production or
decay since then m takes over the role of the Yukawa coupling. The MS renormalization
constants, of course, only contain pole parts. However, for the on-shell quantities also
higher order e coefficients are needed since the one- and two-loop form factors develop 1/¢
and 1/€* poles, respectively. Note that in our case the overall renormalization constants
of all currents in Eq. ([Il) are equal to unity.

3 Analytic results

The analytic results for the form factors are expressed in terms of Goncharov polyloga-
rithms (GPLs) [18] with letters —1,0,41 and r;. They are quite long and we refrain from
presenting them in the paper. Rather we collect all relevant expressions in a computer-
readable format; the corresponding file can be downloaded from [19]. To fix the notation
we provide one-loop results for the six scalar form factors introduced in Eq. (2]) up to the
constant term in e. For u? = m? they are given by

v1) 1/2(@*+1)G(0z) (22 + 1) [G(0]z)]?

K= O L ( D@+ 2) e D@+
(322 + 22+ 3) G(0|) 4 (22 4+1)G(-1,0]z)
(x—=1)(z+1) (x —1)(z+1)
2 (22 4+ 1)
BECECES) _4] !
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B = O T e )

a) g 4xG(0]x)
S g s



a(l) 4x (32% — 2z + 3) G(0|x) 8
B = Cr l G- DD (- 1)2] ’
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where the two GPLs can be written as

G(O0z) = log(z),
G(—1,0|z) = Liy(—x) + log(z)log(l + z). 9)

In Eq. (®) we have the colour factor Cr = (N2 —1)/(2N.). At two-loop order one has
C%, CrCy, CpTen; and CpTpny, where Cy = N., n; counts the massless quark loops
and n, = 1 the quark loops with mass m. At three-loop order there are the colour
factors CrT2n?, C2Trny, CrCaTrny, CrTinyn; and N3. The latter is obtained by the
replacements Crp — N./2 and C'y — N, in the non-n; terms and taking only the leading
contribution for large N.. This limit removes in particular all (pure) n;, terms.

In the following three subsections we discuss the analytic structure of the form factors
in three important kinematical regions where the external momentum ¢? is either small,
large or close to the threshold for producing the heavy quarks on-shell. In these limits
the expressions are compact and analytic results can be reproduced in this paper. We
obtain the expansions of the full result by expanding the GPLs in the respective region.
We restrict ourselves to the choice pu? = m? and refer to [19] for the general results.
Subsection B.4] contains a brief discussion on the infrared structure of the form factors
and mentions several checks on our calculation.

3.1 Static limit

After expanding the GPLs in the low-energy limit we obtain the expansion of the form
factor up to order (1 — x)%. In the following we present the results for the first two terms
for the axial-vector, scalar and pseudo-scalar cases. The results for the vector currents
can be found in Refs. [8l[12] (see Sections 4.2.1 and 5.2, respectively). Since the interval
q?/m? € [0,4] is mapped to the upper semi-unit circle in the complex x plane we use
x = €' and parametrize our results as a function of ¢ which is real-valued. Our results

read
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In all cases the limit ¢> — 0 exists (i.e., there are no logarithmic terms in ¢?) and all form
factors become infrared finte. The infrared divergences are present starting from the ¢?
term. Note that for the vector case all quantum corrections vanish for ¢> = 0 and we have
FP(0) = 1 whereas for all other form form factors this is not the case. The static form
factors for the vector and axial-vector case have been discussed in Ref. [20] up to two-loop
order and the physical interpretations have nicely been summarized. Once the complete
non-fermionic pieces and all singlet contributions are available the analysis of Ref. [20] can
be extended to three loops. Three-loop corrections to Fy'(0) have been computed in [21].

+ CFTI%nhnl

3.2 High-energy limit

In the high-energy limit, i.e. for x — 0 it is convenient to introduce

FA = (14)

k>0

where we have computed seven expansion terms, i.e., up to O(z°), for all six scalar form
factors. Note that the leading terms are identical both for F} and F}' and for F° and

12



FP since in this limit the quark masses in the numerator can be neglected and ;5 is anti-
commuted through an even number of v matrices to one end of the fermion string. As a

consequence we also have that fo'™” = 0 since f

(9 — 0. We illustrate the structure

of the analytic expressions by showing the terms of order 2 and 2! which are given by
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Results for £ can be found in Eq. (13) of Ref. [8] and Eq. (16) of Ref. [12].

i,lar
In general one has two powers of [, for each loop-order. At one and two loops we indeed
observe [2 and [% terms, respectively. However, for the shown colour structures we have
at three-loop order at most [> terms in the above expressions. Note that for the vector
form factor one has (8 terms in the N? term of ff,’l(jr’o) [22/23]. For a dedicated analysis
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of the leading logarithmically enhanced terms in power-suppressed contributions we refer

to [24H26].

3.3 Threshold expansion

In the threshold region we can use our expressions for the form factors to obtain physical
results for decay rates and productions cross sections since the corresponding real radiation
is suppressed by a relative order 3. In the expressions we present in this subsection, the
factor m in the definition of the scalar and pseudo-scalar currents, see Eq. (II), has been
transformed from the MS to the on-shell scheme which allows for a more straightforward
comparison with results present in the literature.

In Refs. [5L8] the vector form factors F and Fy have been used to obtain results for
the cross section o(e*e™ — QQ) in the limit of small quark velocities. In principle these
results can be extended in order to incorporate the Z-boson contribution with vector
and axial-vector couplings. We prefer to represent the results in a slightly different way,
namely as the decay rate of a (hypotetical) boson with either vector, axial-vector, scalar
or pseudo-scalar couplings which is related to the form factors via

|(1—-pB*)F + F2|2)

R = 8 (\Ff+F§’|2+

2(1-52)
R = BRI,
RS = 53|FS|2,
R = BIF?2, (19)

R? are defined such that the exact result at tree level reads

ROw  — % (1 _ B_2) ’

2 3
R(O),a _ B37
R(O),s _ 53’
RO? = 3. (20)

Note that the R enter physical quantities as building blocks. For example, we have

olete” - QQ) = ogR"+...,

i 3G My M2
I'(H—QQ) = 72\@1; QR4
i 3G M 4 M2
NA—=QQ) = 25747 0pe (21)

42 ’

where H and A are scalar and pseudo-scalar Higgs bosons with masses My and My,
respectively, and the ellipses indicate quantum corrections from real radiation. In Eq. (21)
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G is Fermi’s constant, Mg is the heavy quark on-shell mass, op = 47a’Q3/(3s), a is
the fine structure constant and ()¢ is the electric charge of the quark (). The decay rates
in (21I]) can be obtained from an effective Lagrangian of the form

1
'Ceff - _; (]SH+ij) ) (22)

where v = 1/4/v/2G is the vacuum expectation value.
We cast R in the form

R R(0)75+K65n62<a8(M)> ADS (23)

, 4
i>1

with K, =3/2, K, = K, = K, =1, n, = n, = 1 and n, = n, = 3. Then the threshold
expansion of A9 starts at 1/ and the leading term of the real radiation contribution to
A9 is of order 33—, For the three-loop fermionic results we can provide results including
B°. In the following we only show results for § = a, s and p since the expressions for the
vector current can be found in Refs. [5,[8]. The one- and two-loop results for A2 are
given by

_2 ,
AW = op|ZZ _g42728]
- B -
(1),s -27T2 2 |
AYE = Op|l— —4427°3],
- B -
o [ o2 )
AP = CF 7 — 12427 B , (24)
1 47t 1672 40 8ttt 4n?
AP — 2 4?4 — | — — —n*log(283) — 54¢(3) + — + —
140 76 1 {19472 44
+ ? + 37?2[2) + CACF B ( 9 — 377'2 10g(25)>
16 , 17872 404 56 9
— —12100(28) — ="
+ ( 3 7% log(28) — 36((3) + 5 5 3 T lg)]
1/(16 8872 112 640 647>
+ C'FTFnl B <§7T2 log(2ﬁ) — 9 ) -+ ? + CFTFTLh (7 — 9 ) s
1 47t 872 64 8rt 6272
AP = o2 4rt 4 — | - — — —n*log(283) — 88¢(3) + —
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1 (19472 44
+ CuCr —( i ——Wzlog(2ﬁ)>

+ 14 + 167r2l2> 3 5 2

16 3872 98
+ ( - gﬂz log(28) —40¢(3) + Ty 167r2l2>]

3 9
1/(16 8872 40 968 3272
CpTen | = | =—7?1log(28) — — — | +C¢T, -
+ FFnl5<37T 0g(20) 9> 9 + FFnh(g 3>,
1 [ 47* 2472 8t 1472
NSRS [y i — 327%log(283) — 144¢(3) + — —

FlgEl 3 5+ 7" log(28) C()+3 ;

1(627% 44

+ ( — 167%log(283) — 96¢(3) + Art 34 327r2l2)]

3 3
11 4072 44 3272
5 <_67r2 log(28) — 207 ) +§ + CpTrny, <‘% 2 3” ) .(25)

CyT
+ Cpdpny 3 9

For the C%/B% and the {C4Cr, CrTen}/B terms of A®Y we find agreement with
Ref. [27]. At three-loop order we have

4 1 44 44 2 15874
A(3),a _ Nc3 [ﬂ-_ +— ( . —7T4 10g(25) . 37_‘_2 10g(2ﬁ) . 88 C(?)) + 58

B3 B2 9 3 27

+ 35S7T2> + % (%ﬁ log?(23) — 67 log(23) — 4(2)?79 log(28) — M57TT2C(3)
e d6letet mg) L CiTim %(% o8 25)

. 6—;# log(25) + 1287r32g(3) - 3522;4 - 6487r2> . % ( - 8_??7T2 log(2)

12
5 o TW2 log?(288) + ?87# log(2/3)

6704 2567°C(3) , 10780¢(3) 96837* 121007* | 1912

— 7% log(2
o os(28) + —— 9 105 81 27

100004 112 ,, 2296 )]

4 320%(3) 4547r2> . (8000a4 320

B S iy ) A

27 o7 " 2T o7

96 1127%¢(3)  352n!

1 704, 7696
— | = =r%10g%(28) + ——n log(2

+ C4CrTrmy
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1552 668((3 18047* 398872 8992
og2(25)+77r210g(26)+ g()+ T o + o

16005 64 1256
- 3 2“‘?7?2[%4—77?2[2)]

1/ 128 640 647t
+ CpTen} 3 (7”21 *(28) — 577 o *log(28) + >
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At one- and two-loop order the leading terms are proportional to Cr/3 and (Cr/3)?,
respectively. At three-loop order we observe 1/ terms only in the axial-vector and scalar
case but not for the vector and pseudo-scalar currents. Our findings are in agreement
with considerations in the non-relativistic limit which can be used to predict the leading
terms of order (a,/B)". In fact, in this limit A° can be written as a combination of the
Sommerfeld factor and a factor taking into account P-wave scattering [28] (see also [27]):

oo ()
1—e—y( 472 -
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o o2 as\2 C% [Arn?t ag\3 C?
e (G (A ) () B
+ O 5\ 3 + P )+ (o g 8 + (27)

After the second equality sign y = Cra,m/3 has been used and P? is zero for S-wave and
unity for P-wave processes, i.e., we have P* = PP = (0 and P* = P®* = 1. The ellipses in
the above equations represent subleading terms.

3.4 Iy, and checks

An interesting feature of the (renormalized) form factors is the presence of infrared poles
that can be described by a universal function, the cusp anomalous dimension I'¢y, [29-31],
which is independent of the external current. This means that we can write

F=ZF7, (28)

where F is any of our (six) scalar form factors and F/ is the corresponding (ultraviolet
and intrared) finite version. The factor Z, which is defined in the MS scheme and thus
only contains poles in €, absorbs the infrared divergences and FY is finite. The single
e pole of the n-loop corrections of Z contains the n-loop expression of I'c,sp. Using the
notation

o (o
FCUSP = Zrcusp T ’

1>1

() \ °
o Zi,j g
Z_1+ZE«W>, (29)

1<j<i

where ag’”’ is the strong coupling constant with decoupled heavy quark, we have

1
21 = —§F§ﬁ)sp,
1
Zo1 = _er(:i)sp7
L@
231 = _grcusp' (30)

We have used Eq. (28) for the four form factors Fy, F}*, F** and FP?, and have determined
the corresponding Z factor to three loops. This requires to use decoupling relations for
as up to two loops (including higher order e terms [21]) since the calculation of the form

factors described above has been peformed in the full theory with a, = a§"f ). Afterwards,
one-, two- and three-loop corrections to I'cysp are extracted with the help of Eq. (80]) where
at three loops we have to restrict ourselves to the complete n; and the N? terms of the

remainder. For all four currents we have obtained the same result for I E’Rsp (1=1,2,3)
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which constitutes a strong cross check of our calculations. Furthermore, our results agree
with Refs. [29,81H33] where dedicated calculations of I'c,sp have been performed.

Besides the correct infrared structure there are several other checks which our analytic
expressions fulfill:

e As mentioned in Section we observe that the results for the vector (scalar) and
axial-vector (pseudo-scalar) form factors agree in the high-energy limit.

e We have furthermore performed the calculation for general gauge parameter which
drops out for the renormalized form factors. Note that the cancellation is non-trivial
and only occurs in the proper interplay between bare three-loop expression and wave
function and quark mass counterterm contributions.

e We have also numerically cross checked all three-loop master integrals up to the
finite term in € using the program FIESTA [34].

e As a further check, our results fulfill the axial Ward identity which is given by

¢Te = 2T7, (31)
Using Eq. (2)) this leads to
e
Fi 4 5B = . (32)

which is satisfied by our explicit results up to three loops after transforming the
mass parameter m in Eq. () into the on-shell scheme.

4 Numerical results

In this section we evaluate both the exact result and the approximations in the various
limits numerically. For illustration we plot for each of the six form factors the ¢’ term
both as a function of # € [—1,1] and ¢ € [0, 7]. This means we cover the whole real ¢*
axis. In the plots we restrict ourselves to the real part of the form factors. Using the
results from [19] it is straightforward to obtain plots for the imaginary parts, as well.

At one- and two-loop order we plot the complete (non-singlet) results and set N, =
3,n; = 5 and n, = 1. These values are also used at three loops where the sum of the
complete n; and the N2 terms are shown. For the numerical evaluation of the GPLs
we use the program ginac [35,[36] which is straightforward for real values of z. GPLs
with complex arguments (in our case for x = ¢ with ¢ € [0, 7]) are evaluated with the
help of transformation rules given in Ref. [36]. Some of the GPLs involving 7 require
extraordinary long run times. In some cases the results are even unstable. For this reason
we generate in a first step for each GPL, which is present in our anayltic result, a data
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Figure 3: Real part of the €” term of the vector and axial-vector form factors as a function
of x. Exact results and approximations are shown as solid and dashed lines, respectively.
At three-loop order we add the complete light-fermion part for n; = 5 and the N? con-
tribution. Short- (blue), medium- (red) and long- (green) dashed lines correspond to the
low-energy, high-energy and threshold approximation, respectively

base for ¢ € [0, 7] and construct an interpolation function. Afterwards the numerical
evaluation of the form factors is fast and stable.

The approximations shown in the plots contain terms up to order z° and (1 — )% in
the high- and low-energy expansion, respectively. At threshold we only include terms up
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Figure 4: Same as Fig. [ but for the the scalar and pseudo-scalar currents.

to order 3% although higher order terms are available [I9]. However, for the N3 term
we observe a bad convegence behaviour which is the reason that we drop $* and higher

terms.

In the high-energy limit the form factors exhibit logarithmic singularities. Thus, for the
plots in the range « € [—1, 1] we subtract the leading high-energy behaviour, i.e., all terms
which are not power-suppressed by z, in order to ensure a smooth behaviour for z — 0.
Furthermore, we multiply by (1+x)* to ensure that at threshold (i.e. for z = —1) the one-,
two- and three-loop expressions become zero. This leads to a numerical enhancement for
x = 1, however, also in this limit finite results are obtained. Thus, the function we use
for the plots reads

(33)

P = ot [P - P -
q*—00
Our results for the six scalar form factors are shown in Figs. Bl and 4l The exact result
is shown as solid (black) curve and the approximations are plotted as dashed lines. Note
that in all cases the whole range = € [—1, 1] can be covered by the approximations, i.e.,

for each xz-value there is at least one dashed curve on top of the (black) solid line.

It is interesting to mention that some of the plots show a peculiar bump-like structure
at or close to z = 0. This is not a numerical artifact but probably related to the way
the high-energy limit is subtracted. Note that the exact results and the high-energy
expansions (red dashed curve), which is simple to evaluate numerically, perfectly agree
with each other.

FiguresBland Blshow the results for the one-, two- and three-loop form factors for ¢ € [0, 7]
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Figure 5: € term of the vector and axial-vector form factors as a function of ¢. Exact
results and approximations are shown as solid and dashed lines, respectively. At three-
loop order we add the complete light-fermion part for n; = 5 and the N2 contribution.
Note that for ¢ € [0, 7] the form factors are real. Short- (blue) and long- (green) dashed
lines correspond to the low-energy and threshold approximation, respectively

where x = €. For these values of x the form factors have to be real which we checked
numerically. To suppress the threshold singularities we plot (7 — ¢)*F and thus ensure
that also at three loops the plotted functions are zero at threshold, i.e. for x = 1. One
observes that the approximations agree with the exact result for ¢ < 0.5 and ¢ 2 2.0
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Figure 6: Same as Fig. B but for the scalar and pseudo-scalar currents.

which corresponds to ¢?/m? < 0.25 and ¢*/m? = 2.8, respectively.

5 Conclusions

We have considered the vertex form factors induced by vector, axial-vector, scalar and
pseudo-scalar heavy quark currents, which play an important role both in the Standard
Model but also in extensions. The form factors are parametrized by six scalar functions,
which we have computed up to three-loop order. Our results are expressed in terms
of GPLs with letters {—1,0,1,7; = ¢"™/3} and the argument 2 defined via the relation
¢?/m* = —(1 — x)?/x. After expanding the GPLs for small and large ¢® and around
the threshold given by ¢?> = 4m? we obtain compact and easy to evaluate expansions in
the corresponding kinematical regions. We have discussed the convergence properties by
comparing to the exact expressions. On the way to our three-loop result we have obtained
the two-loop form factors including order €? terms. This work extends the considerations
of Refs. [5] and [§] to axial-vector, scalar and pseudo-scalar currents. Obvious next steps
towards the full result are singlet contributions and the subset of Feynman diagrams
containing closed massive fermion loops. However, it can be expected that even these
sub-classes show a more involved mathematical structure and it is likely that not all
pieces of the final result can be expressed in terms of GPLs.
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