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Abstract

The quark and lepton mixing matrices are here both parametrised in terms of the
corresponding four independent mass ratios of each fermion sector. This realization is
studied under two different approaches: a general discussion on the conditions to achieve
it and through the examination of a particular example. In the former approach, the sole
dependence on the mass ratios is exploited to investigate the properties that a mixing
matrix will possess under such a parametrization. Already at this first stage, the ob-
served fermion mixing can be roughly understood. Thereafter, in the second approach,
a particular implementation which was recently proposed is considered. The procedure
is revisited and both its weak and strong points are discussed. The purpose of this work
is not to present a model but to explore the possibility of reviving an old idea, that of
parametrizing the mixing matrices with the fermion masses.
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1 Introduction
The problem is simple: from the theoretical point of view we do not understand the observed
values in fermion mixing. We wish to do it though but the nature of the answer seems to evade
all our trials. In contrast, the experimental situation of the theory describing the fundamental
interactions is quite remarkable. The Standard Model (SM) of the weak, color, and electromag-
netic interactions keeps most of its original form; with the masses of neutrinos being the most
needed change plus the inclusion of lepton mixing, but no deep connections have been really
accomplished. This is equivalent to say that the initial number of arbitrary parameters has only
increased from nineteen to twenty six (in the least worst scenario). On the other hand, after
the phenomenological observation of a strong hierarchy simultaneously occurring in the masses
and the mixings of quarks, one is tempted to relate both sets of parameters. Unfortunately,
this picture is lost as soon as lepton mixing with its anarchical structure is incorporated as this
seems to point to a completely independent origin. Explaining both sectors within a unifying
picture is thus a difficult challenge. In this work, we investigate and realize the idea of relating
mixing phenomena to the masses of fermions, thus obtaining a unified picture.

All begins from the complete arbitrariness in which the Yukawa couplings are introduced,

− LY ⊃ Yij
f F̄L,iΦfR,j , (1)

with Yij
f a complex number and entry of a three by three matrix. Assignment of a non-zero

vacuum expectation value to the neutral component of the scalar field,

Φ(x) =
(

G+(x)
v+h(x)+iG0(x)√

2

)
, (2)

spontaneously breaks the electroweak symmetry and brings about the massive nature of fermions,

Mf = v√
2
Yf , (3)

where v ' 246 GeV. Diagonalization of the mass matrices,

Σf = LfMfR†f , (4)

occurs via a biunitary transformation each acting independently in the left or right-handed
corresponding field,

FL → LfFL and fR → RffR . (5)

In this new basis, the mass basis, the quark and leptonic charged currents have changed to,

J µ,−
cc-q = − gw√

2
ūLγ

µVdL , J µ,+
cc-` = − gw√

2
ēLγ

µUνL , (6)

where V = LuL†d and U = LeL†ν . These matrices parametrize how likely are the transitions
between any two given unequal flavors via the interactions with the W± bosons. As the masses
of the different up and down type quarks and neutrinos and the charged leptons are different
we do not expect the unitary transformations, acting independently in the left handed fields,
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to be the same and therefore V and U should, in general, be distant from the unit matrix.
From this picture, it becomes clear that the key to understanding fermion mixing lies in further
understanding either the mass matrices or for all general purposes, in understanding the Yukawa
matrices, see for example Ref. [1].

As this work is about a mixing parametrization, let us briefly discuss their history. The first
parametrization one can encounter goes back to the days where Cabibbo proposed a way to
preserve universality in the weak interactions [2]. Although not a parametrization proposal on
its own the consideration of adding the charm quark in order to avoid tree level flavor changing
neutral currents [3] came into represent an important step in the need for a better description
of the charged current interactions. Later on, through the work of Kobayashi and Maskawa,
who noticed that in order to introduce Charge-Parity (CP ) violation three fermion families
were needed, the first three by three mixing parametrization was proposed [4].

Among the different proposals that came after [4–13] there is one particular parametrization
which has served, in the quark sector, to provide a better connection to the flavor parameters [7,
9, 11],

V =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (7)

The Wolfenstein parametrization exploits the hierarchical structure of the mixing angles, θqij �
1, and takes one of them, the Cabibbo angle, λ ≡ θq12 ≈ 0.22, as a mixing and expansion param-
eter along with other three real parameters A, ρ, and η of order O(1). This parametrization
was improved in Ref. [9] in order to guarantee unitarity of the quark mixing matrix to all orders
in λ.

The standard parametrization, for both quarks and leptons, as suggested by the Particle
Data Group (PDG), follows Chau and Keung’s proposal [8],

W =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 , (8)

where we have denoted cij = cos θij and sij = sin θij. In the case of Majorana neutrinos a second
matrix is introduced U = WK where K = diag(eiα, eiβ, 1). On the other hand, it has been
shown that in the lepton sector a symmetrical parametrization first introduced by Schechter and
Valle [6] and later revisited [12] gives a similar description but with an additional feature when
considering Majorana neutrinos, which is, that the effective mass parameter characterizing the
amplitude for neutrinoless double beta decay only depends, as it should, in the two Majorana
phases, α and β, whereas the PDG parametrization also includes the Dirac phase.

We know the following theoretical facts about the mixing matrix: it is unitary, there is
no unique parametrization, and it requires of four independent parameters. In this regard,
among the different parametrizations, there is one property which must be shared among all of
them, that is, the unitary description should be made by four real parameters and still provide
one non-removable complex phase. To this end, an invariant measure of CP violation (CPV),
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independent of the parametrization, is the Jarlskog invariant [14],

JX =
Im

(
det

[
MaM†

a,MbM†
b

])
−2Πi>j(m2

a,i −m2
a,j)Πk>l(m2

b,k −m2
b,l)

, (9)

where X = q, `, a = u, ν, and b = d, e.
Mixing parametrizations including mass ratios as mixing parameters have been explicitly

proposed [10, 13, 15–20]. Nevertheless, only one of them has really gathered all the four in-
dependent fermion mass ratios as mixing parameters [13] in full agreement with the observed
mixing phenomena. Here we consider the work of Ref. [13] and study both its implications and
relations to the most used parametrizations. Moreover, we start by first discussing the reality of
such instance by only assuming the masses as mixing parameters and examine the properties of
the mixing matrices under them. As the reader will find out, our main result strongly suggests
a connection between the mixing parameters and the corresponding fermion masses.

This work is organized as follows. In the next section, Section 2, we discuss the main
features on the procedure to relate the masses of fermions to their mixing. Then, in Section
3, we assume the corresponding four independent mass ratios of each sector as the mixing
parameters without any explicit realization and investigate all the implied consequences and
emergent properties. Afterwards, in Section 4, we take the particular example of Ref. [13] and
discuss further aspects in the implied theoretical mixing. In Section 5, we discuss the main
problematic of the parametrization in Ref. [13] along with a manner to solve it. Finally, in
Section 6, we conclude.

2 Preamble: The nature of the solution
How could fermion mixing be understood through the corresponding fermion masses? In the
following, we provide some general theoretical observations on the nature of the answer to this
question. Some of them are trivial but we shall not omit them for the sake of completeness. A
discussion on similar and complementary criteria may be found in Ref. [21].

2.1 The matrix invariants are the key
The usual procedure to reparametrize comes from the matrix invariants which are the coeffi-
cients of the characteristic polynomial, det[MM† − λI] = 0. In the n family case, the set of
n invariants provides n equations which can be used, although not always easily, to write the
matrix parameters in terms of the singular values (masses). For simplicity, the n = 3 case
would be given by,

λ3 − tr[Hf ]λ2 + 1
2
(
tr[Hf ]2 − tr[HfHf ]

)
λ− det[Hf ] = 0 , (10)

where Hf = MfM†
f is the hermitian product and the roots of the equation are the eigenvalues

(squared masses) of Hf .
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The matrix invariants in terms of the masses are written as,

tr[H] = m2
1 +m2

2 +m2
3 , (11)

det[H] = m2
1m

2
2m

2
3 , (12)

1
2
(
tr[H]2 − tr[HH]

)
= m2

1m
2
2 +m2

2m
2
3 +m2

1m
2
3 , (13)

where in these last expressions we have suppressed the subscript f as this applies to all fermions.
To illustrate this, let us consider the Weinberg ansatz [22],

m =
(

0 |a|
|a| |b|

)
→ tr[m] = |b| = m1 +m2

det[m] = −|a|2 = m1m2
→

(
0 √

m1m2√
m1m2 m2 −m1

)
,

(14)
where we have considered without any loss of generalitym1 → −m1.1 In return, we immediately
obtain a relation between the angle of rotation and a mass ratio, tan θ =

√
m1/m2. In fact,

this ansatz was made to reproduce the well known Gatto–Sartori–Tonin (GST) relation for the
Cabibbo angle, θC ≈

√
md/ms [23]. We must add another remark to this example, even though

we have two different masses, we can always consider the largest mass as setting the scale of
the matrix whereas the ratio with the lighter one a relevant parameter,

m = m2

(
0 γ
γ 1− γ2

)
= m2

(
0 0
0 1

)
+m2

(
0 γ
γ −γ2

)
, (15)

where we defined it as γ ≡
√

m1
m2

; it provides all the internal structure of the mass matrix. To
see this consider a hierarchy in the masses m2 � m1. The smallness could point to a model
where the lighter masses arise from radiative corrections, for example [24,25].

2.2 The SM is not enough
Consider the n family case. We are asking ourselves how possible it is to reparametrize the
initial mass matrix solely in terms of its singular values (masses). A complex n× n matrix has
n2 phases and n2 magnitudes. By virtue of the n invariants, it is clear, that the proposed task
is impossible. The system is underdetermined.

However, a further reduction of the arbitrariness is still possible if we recall that the kinetic
terms per fermion sector posses a [U(n)]3 due to universality of the gauge couplings. This
accidental symmetry group describes the nature of the transformations leaving invariant the
weak interaction basis.2 We have at our disposal: 3n(n−1)

2 and 3n(n+1)−2
2 arbitrary magnitudes

and complex phases, respectively, to choose whatever basis we require. As these transformations
are involved in the two kinds of fermions of a given sector, we continue our counting by summing
up all the parameters of the corresponding two mass matrices: 2n2 magnitudes and 2n2 complex
phases. A careful choice of basis, with both mass matrices still not fully diagonal, would have
n(n+3)

2 and (n−1)(n−2)
2 arbitrary parameters in magnitudes and complex phases, respectively.

Reparametrization with the 2n invariants would still leave (n − 1)2 arbitrary parameters. In
1 This change of sign can be easily achieved by a global chiral transformation.
2By weak interaction basis, we mean those bases where the weak interactions are diagonal in flavor space.
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particular, for n = 3, this means that there are special bases where the mass matrices can
be reexpressed in terms of its singular values plus four unknown physical parameters. In fact,
notice how these parameters are equivalent to the mixing parameters appearing in the mass
basis.

An example of such a basis would be the following couple of matrices,

Ma =

m
a
1 0 0

0 ma
2 0

0 0 ma
3

 , Mb =

m
b
11 0 0

mb
21 mb

22e
−iδ 0

mb
31 mb

32 mb
33

 , (16)

where we have employed Ref. [26] to find such a basis. In this case, one finds that,

mb
33 = mb

3 ,

mb
11m

b
22 = mb

1m
b
2 ,

(mb
11)2 + (mb

22)2 + (mb
21)2 + (mb

31)2 + (mb
32)2 = (mb

1)2 + (mb
2)2 .

(17)

We reach the known conclusion that the SM framework is not enough to fully reparametrize
the mass matrices in terms of only its singular values and that if such possibility really occurs
in Nature then the theory will require extending it in a smart way. Of course extending the
SM is already so very well motivated by many other facts like, for example, neutrino masses.
So the importance of this conclusion is only valid within the present context.

2.3 Mixing parameters: physical but not necessarily independent
A long standing fact is that the mixing parameters besides being physical are also completely
arbitrary. The former aspect is true, however, the second one should be left as soon as we have
extended the theory and the number of parameters, in the special basis, is less or equal than
the general arbitrariness (n − 1)2 contained in each fermion sector of the SM (considering n
families). Take for example the left-right symmetric models in which the matrices are naturally
hermitian and thus a significant reduction of the Yukawa parameters appears, see for example
Refs. [1, 27,28].

2.4 Full reparametrization is only possible for two or three families
Curiously enough the possibility of fully reparametrizing a mass matrix in terms of its singular
values only occurs for two and three fermion generations [13]. Assume again n fermion genera-
tions. The number of independent mass ratios, 2(n−1), grows much slower than the number of
mixing parameters, (n−1)2. As a consequence, being able to completely reparametrize depends
on the inequality 2(n− 1) ≥ (n− 1)2 and thus 1 < n ≤ 3. Lucky we, that we live in a universe
with three fermion families.

2.5 Pursue the minimal description
It is difficult to reconcile into a single description both mixing sectors when they share no
similarities and their mixing angles largely depart the one from the other, see Appendix A
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for the present status of fermion mixing. Much easier is then to naively consider that their
origins should be unconnected. However, following the generality principle, where if allowed it
should be included, we see that both possibilities, i.e. equal and different origins, should have
an equal footing from the theoretical viewpoint. In the end, the real criteria to distinguish
which description is better is that which less assumptions and free parameters requires. In the
following, we then pursue for such a minimal explanation.

2.6 Naturalness links mixing with the mass ratios
A small number is natural only if an exact symmetry emerges when it is set to zero. This
is ’t Hooft’s criteria for naturalness [29]. Regarding it, in the weak interaction basis, the SM
lagrangian acquires an exact symmetry when all Yukawa couplings are set to zero,

GF = UQ
L (3)× Uu

R(3)× Ud
R(3)× UE

L (3)× U e
R(3) , (18)

Thus, the smallness of the Yukawa couplings is natural. The top Yukawa coupling is of course
not small compared to the rest of fermion masses but it should be small compared to a flavor
scale, ΛF & 1 TeV, of a more fundamental theory. Of course, it is also possible to consider
subsets of Yukawa couplings zero such that we have the intermediate steps,

GF
m3−→ U(2)5 m2−→ U(1)5 m1−→ U(1)B × U(1)3

Lα , (19)

as suggested from the hierarchical fermion masses, m3 � m2 � m1, where α = e, µ, τ .
The aforementioned argument requires a modification when instead of the Yukawa couplings

we consider the mixing matrix elements together with the masses. It is possible to relate the
previous naturalness of the small Yukawa couplings to the mixing matrix elements if mixing
obeys equivalent limits such that when m1 → 0 or m1,m2 → 0 either no mixing with the first
family occurs or the charged current interactions become diagonal even if the third family is
massive, respectively. Regarding this, small mixing angles could become explicitly natural if
they are expressible in terms of the masses. A similar argumentation can be found in Ref. [30]
however their remark appears more in the connection to a discrete flavor symmetry.

Furthermore, to properly understand, for example, the observed quark mixing, the correct
connection is not with masses themselves but with their ratios. In this way, the hierarchical
structure of the quark masses manifests in the hierarchical pattern of their mixing. One can
already guess how the anarchical pattern in lepton mixing should be related to either a very
mild hierarchy or anarchical structure of neutrino masses [31–33].

3 First approach: An arbitrary relation
Hereafter, we assume that a mixing parametrization depending solely on the masses exists and
explore its properties and implications.
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3.1 Four independent mass ratios
The first important realization we should have in mind is the fact that only four independent
mass ratios exist and perfectly match the number of required mixing parameters. Our first
result can then be written as,

V = V
(
mu

mc

,
mc

mt

,
md

ms

,
ms

mb

)
(20)

and3

U = U
(
me

mµ

,
mµ

mτ

,
mν1

mν2
,
mν2

mν3

)
. (21)

In order to see the latter, we can start by thinking that three mass ratios smaller than one
can be formed within a given fermion species, mi/mj < 1. However, one of the three can always
be made with the other two either through a product or a ratio, for example,

m1

m3
= m1

m2

(
m2

m3

)
. (22)

3.2 The need for a special weak basis
The new given dependence on the mass ratios has an immediate consequence: both fermions
within a sector must equally contribute to fermion mixing. This in return means the depart-
ing weak interaction basis should have all matrices as non-diagonal; and hence, the unitary
transformations acting in the left-handed fields and diagonalizing the mass matrices,

LuMuM†
uL†u = Σ2

u , LdMdM†
dL
†
d = Σ2

d , (23)
LeMeM†

eL†e = Σ2
e , LνMνM†

νL†ν = Σ2
ν , (24)

could give the desired dependence on the four mass ratios,

V
(
mu

mc

,
mc

mt

,
md

ms

,
ms

mb

)
= Lu

(
mu

mc

,
mc

mt

)
L†d
(
md

ms

,
ms

mb

)
, (25)

U
(
me

mµ

,
mµ

mτ

,
mν1

mν2
,
mν2

mν3

)
= Le

(
me

mµ

,
mµ

mτ

)
L†ν
(
mν1

mν2
,
mν2

mν3

)
. (26)

But it seems we have reached some kind of inconsistency as we all know that there are an
infinite amount of weak interaction bases and none of them is more preferable than other. The
choice of basis should not matter, nevertheless, here we have something that seems to imply
that. For such a principle or symmetry dictating the initial basis, see for example Ref. [34].

To cure this problematic we consider the minimal breaking of the maximal flavor symmetry
3For the sake of illustration let us assume for the moment a normal ordering in neutrino masses.
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group,4

U(3)3 → U(2)3 → U(1)3 → U(1)B(L) (27)

in which the sequential breaking simultaneously occurring for the two components in a weak
doublet and the right-handed (singlet) counterparts, sets the initial basis, see Refs. [35, 36].
From the bottom-up perspective this would be pointing out to a class of models which had this
breaking in their framework and would give concrete realizations of the Principle of Minimal
Flavor Violation [37–41], which basically states that all sources of New Physics producing flavor
transitions should obey the SM flavor structure. In the following, we will assume this to set
our basis.

A last feature to be aware of is that,

L
(
m1

m2
,
m2

m3

)
= L

(
m1

m2
,
m2

m3
,
m1

m3

)
, (28)

that is, despite having an explicit dependence on only two mass ratios we can still think of all
the unitary matrices as having three different rotation angles, for example,

L =

 cos Θ12 sin Θ12e
−iδ12 0

− sin Θ12e
iδ12 cos Θ12 0

0 0 1


 cos Θ13 0 sin Θ13e

−iδ13

0 1 0
− sin Θ13e

−iδ13 0 cos Θ13

×

×

1 0 0
0 cos Θ23 sin Θ23e

−iδ23

0 − sin Θ23e
iδ23 cos Θ23

 .

(29)

3.3 Three different limits
The Singular Value Decomposition (SVD) of our hermitian matrix is given as,

Hf =
∑
i

m2
i~vf,i~v

†
f,i , (30)

where ~vf,i is an eigenvector by which Lf is built.
Three different limits can teach us important structural aspects of the parametrization and

a way to extend the naturalness of the Yukawa sector to the fermion mixing matrices:

• m1,m2 → 0: From the SVD, when taking the mass of the lightest families equal to zero
we get,

Hf = m2
3~vf,3~v

†
f,3 . (31)

In general, the normalized singular vector can be written in spherical coordinates as,

~vf,3 =

sin Ωf sinωf
sin Ωf cosωf

cos Ωf

 , (32)

4In order to have a symmetrical treatment we are assuming Dirac neutrinos. However, a U(3) factor should
be left out when considering Majorana neutrinos.
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where the complex phases are been omitted without any loss of generality as we only care
on the magnitudes themselves.
Therefore, generally speaking, having a single generation with mass can still imply fermion
mixing, see Refs. [24, 25] where this idea is exploited within a two Higgs doublet model.
Notice, however, that on one hand both angles should be related to the mass ratios while
on the other asm1 andm2 are already zero there is no way to have an adimensional number
made out of only m3. Then, either both angles are zero or these vectors point in the same
direction irrespective of the fermion type such that after a weak basis transformation we
reach the important conclusion that a single massive fermion family cannot imply mixing,

V(0, 0, 0, 0) =

1 0 0
0 1 0
0 0 1

 (33)

and

U(0, 0, 0, 0) =

1 0 0
0 1 0
0 0 1

 . (34)

• m1 → 0: In this limit, the two heaviest families are left with a non-zero mass. Therefore,
all ratios of the kind m1/mj with j = 2, 3 will be zero. This case is actually the sequel
of the previous one. So we can ask what modifications should we do in our mixing
parametrization such that m2 is now taken into account? That is,

V
(

0, 0, mc

mt

,
ms

mb

)
=

1 0 0
0 1 0
0 0 1

+ A(mc

mt

,
ms

mb

) , (35)

U
(

0, 0, mµ

mτ

,
mν2

mν3

)
=

1 0 0
0 1 0
0 0 1

+ A′(mµ

mτ

,
mν2

mν3
) , (36)

where A and A′ are unknown matrices with the expected dependence on the new contri-
butions. But how should these additions look like? To answer this we need to turn our
attention to the mass matrices. From the previous case, we know that, generically, our
departing point should then be,

H =

0 0 0
0 0 0
0 0 m2

3

+m2
2~v2~v

†
2 , (37)

where ~v2 is the corresponding singular vector to m2. As before, a similar expression holds
for ~v2,

~v2 =

sin Ω′ sinω′
cos Ω′

sin Ω′ cosω′

 , (38)

however, in this case, the good new is that we have the non-zero mass ratio m2/m3 to

10



connect to. Therefore, we can relate both angles to a mass ratio. In general, for a very
small angle,

H ≈ m2
3

0 0 0
0 0 −Ω
0 −Ω 1

+m2
2

0 0 0
0 1 Ω′
0 Ω′ 0

 , (39)

mixing only appears between the two heaviest generations. Here, we have also considered
~v3 to depend on m2

m3
.

The way in which masses appear directly suggest the order of diagonalization required,

Lf = L12L13L23 , (40)

so the first two transformations are the unit matrix when m1 → 0. This property can be
achieved if L12 and L13 are homogeneous functions in m1 up to an unknown degree.5

• m3 →∞: Taking m3 → ∞ is not equivalent to the first case m1,m2 → 0. From the
functional dependence we see that we have been left with,

V
(
mu

mc

, 0, md

ms

, 0
)

and U
(
me

mµ

, 0, mν1

mν2
, 0
)
. (41)

The third family has decoupled from the first two and therefore this case corresponds to
a unique mixing angle in the 1− 2 sector,

V
(
mu

mc

, 0, md

ms

, 0
)

=

 cos θq12 sin θq12 0
− sin θq12 cos θq12 0

0 0 1

 , (42)

U
(
me

mµ

, 0, mν1

mν2
, 0
)

=

 cos θ`12 sin θ`12 0
− sin θ`12 cos θ`12 0

0 0 1

 . (43)

From this limit, we deduce the condition that the mixing angles in the 1 − 3 and 2 − 3
sectors should be only proportional to the ratios m1/m3 and m2/m3 such that they can
vanish whenever m3 →∞.
Another feature which can be introduced within this case is to also ask what happens
when comparing the two left ratios in Eqs. (42) and (43) one of them may be neglected?
We can infer then that mixing in this sector should majorly be due to only one fermion
type. For example, in the quark sector, we have md

ms
� mu

mc
, so we should expect the

dominant contribution to be mainly given by the down quark sector,

V
(

0, 0, md

ms

, 0
)
'

 cos Θd
12 sin Θd

12 0
− sin Θd

12 cos Θd
12 0

0 0 1

 , (44)

5A function, f(x), is said to be homogeneous with degree q if its argument is multiplied by a number t and
this is equivalent to have multiplied the original function by tq, f(tx) = tqf(x).
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where Θd
12 is the angle coming from Ld.

3.4 The Cabibbo–Kobayashi–Maskawa matrix
Let us apply the previous limits and see what we can infer from this picture in which we have
related mixing angles to mass ratios. Our only input is the phenomenological observation that
all the quark masses fulfill the hierarchy,

m2
3 � m2

2 � m2
1 , (45)

together with the fact that the ratios coming from the up-quark sector are all negligible com-
pared to the ones in the down sector, see Appendix B. Then, we are left with only two rotations
(Θd

23,Θd
12 � 1),6

VCKM '


1 0 0
0 1− (Θd23)2

2 −Θd
23

0 Θd
23 1− (Θd23)2

2


1− (Θd12)2

2 −Θd
12 0

Θd
12 1− (Θd12)2

2 0
0 0 1



'


1− (Θd12)2

2 −Θd
12 0

Θd
12 1− (Θd12)2

2 −Θd
23

Θd
23Θd

12 Θd
23 1− (Θd23)2

2

 ,

(46)

where we identify the mixing sum rules,

Θd
12 ' θCKM

12 Θd
23 ' θCKM

23 , (47)

in agreement to the more general form given in [44]. We may now roughly understand how
the hierarchy in the Cabibbo–Kobayashi–Maskawa (CKM) matrix is a direct consequence of
the strong hierarchy in the quark masses. In this sense, the smallness of mu/mt and md/mb

compared to the other ratios, and the fact that |Vub| is also observed to be the smallest element
in the mixing matrix supports this conclusion.

3.5 The Pontecorvo–Maki–Nakagawa–Sakata matrix
For the sake of illustration, in the following we consider Dirac neutrinos with normal ordered
masses. We will only assume the charged lepton masses as known parameters and look for any
possible hint into the spectra of neutrino masses. Again, as in the quark sector, the charged
lepton masses satisfy the same hierarchical pattern, m2

e � m2
µ � m2

τ , see Appendix B. From
the three ratios, the largest one is mµ/mτ ∼ 10−2. So we safely neglect the other two ratios
and take the limit me → 0. The Pontecorvo–Maki–Nakawa–Sakata (PMNS) matrix is then

6Realize that if one takes Θd
23 ∼ (Θd

12)2 ∼ λ2 one can directly reproduce the well established Wolfenstein
parametrization. Note that the |Vub| element rather has a hierarchy of O(λ4) instead of the conventional O(λ3)
so we can safely neglect it at this order [42,43].
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estimated as,

UPMNS '

1 0 0
0 1 Θ`

23
0 −Θ`

23 1


 cν12c

ν
13 −sν12c

ν
13 −sν13e

iδνCP

sν12c
ν
23 − cν12s

ν
23s

ν
13e
−iδνCP cν12c

ν
23 + sν12s

ν
23s

ν
13e
−iδνCP −sν23c

ν
13

sν12s
ν
23 + cν12c

ν
23s

ν
13e
−iδνCP cν12s

ν
23 − sν12c

ν
23s

ν
13e
−iδνCP cν23c

ν
13

 .

(48)
The latter matrix product will only slightly modify the second and third rows of the unitary
neutrino matrix. From which we can find the new mixing sum rules,

tan Θν
12 ' tan θPMNS

12 , sin Θν
13 ' sin θPMNS

13 ,
−Θ`

23 + tan Θν
23

1 + Θ`
23 tan Θν

23
' tan θPMNS

23 . (49)

For more examples on mixing sum rules we refer the interested reader to Refs. [44–47].
Hence, from the observed values of the leptonic mixing matrix, |Uαk| > |Vus| (α = e, µ, τ ,

k = 1, 2, 3), it is evident that neutrino masses should follow a rather different pattern from the
charged fermion ones.

3.5.1 µ− τ reflection symmetry

Let us introduce a µ− τ reflection symmetry in the neutrino sector [48], tan θν23 = 1. Through
the known values, |Uµ3| = 0.656 and |Uτ3| = 0.739, we can estimate the contribution coming
from the charged lepton matrix,

Θ`
23 ' 0.059 . (50)

Curiously enough, the same value may be reached through the ratio mµ
mτ

= 0.059. This
meaning that the reflection symmetry can be easily cured by adding a rotation equal to the
previous ratio, Θ`

23 = mµ
mτ

. This could be seen as a first possibility on how individual mixing
angles could be related to mass ratios.

3.6 CP violation
At this point, we need to understand how CP violation should be introduced. As we have
already chosen the mass ratios as the four mixing parameters there is no room left to have
a complex phase as an independent parameter. We then introduce by hand the assumption
that it should suffice to limit all complex phases to take only one of the four possibilities,
βij ∈ {0, π/2, π, 3π/2},

L =

 cos Θ12 sin Θ12e
−iβ12 0

− sin Θ12e
iβ12 cos Θ12 0

0 0 1


 cos Θ13 0 sin Θ13e

−iβ13

0 1 0
− sin Θ13e

iβ13 0 cos Θ13

×

×

1 0 0
0 cos Θ23 sin Θ23e

−iβ23

0 − sin Θ23e
iβ23 cos Θ23

 ,

(51)
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when bringing the mass matrices to diagonal form [13]. In fact, the nature of our ansatz is
strictly related to works where their mass matrix elements are either real or purely imagi-
nary [44,49,50].

We now show the statement that it is sufficient to keep one subsector of the mass matrices
as purely imaginary and take the rest as real. It is already well known that only one phase is
needed to produce CP violation, that is, from the nine complex phases each mass matrix has
only one from the eighteen is really independent.7 It can be shown by considering the following
hermitian matrix for a given fermion kind,

H = MM† =

 R1 aeiβ1 beiβ2

ae−iβ1 R2 ceiβ3

be−iβ2 ce−iβ3 R3

 , (52)

where R1, R2 and R3 are real elements. We then compute the weak basis transformation KHK†
where

K =

e
−iα1 0 0
0 e−iα2 0
0 0 e−iα3

 . (53)

After that we can see that the phases β1,2,3 can be easily reabsorbed through a convenient choice
of α1,2,3. That is, an orthogonal transformation is sufficient to diagonalize this mass matrix,
i.e. all complex phases from a sector could be taken as zero. On the other hand, the other
fermion type within the same sector has also three arbitrary phases, β′1,2,3. Two of the three
can be reabsorbed during the diagonalization process through phase redefinitions of the fields.
Hence, one unique phase remains that we intentionally localize it in the 1-2 sector,

V = Lu
12Lu

13Lu
23(Ld

23)†(Ld
13)†(Ld

12(π2 or 3π
2 ))† (54)

U = Le
12Le

13Le
23(Lν

23)†(Lν
13)†(Lν

12(π2 or 3π
2 ))† . (55)

Our mixing matrices will then be built as the product of five orthogonal matrices with a special
unitary one. For last, a freedom is left for the sense of rotation in the orthogonal matrices, i.e.
clockwise or counterclockwise.

Our choice for the phase in the 1-2 sector could also have been anticipated from the broken
symmetry chain U(3)3 m3−→ U(2)3 m2−→ U(1)3 m1−→ U(1)B(L):0 0 0

0 0 0
0 0 0

 m3−→

0 0 0
0 0 0
0 0 �

 m2−→

0 0 0
0 � �
0 � �

 −−→
L23

0 0 0
0 � 0
0 0 �

 m1−→

� � �
� � �
� � �

 −−→
L′23

� � �
� � 0
� 0 �

 −−→
L13

� � 0
� � 0
0 0 �

 −−→
L12

� 0 0
0 � 0
0 0 �


(56)

7In fact, this complex phase is a linear combination of the nine complex phases, but without any loss of
generality, one can put eight equal to zero.
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in which the last part of the diagonalization lies in the 1-2 sector. Then, one can only keep a
single independent phase located in the 1-2 sector of one fermion species within a given sector.

3.7 Relating angles to mass ratios
The rank of a matrix is strictly related to the number of non-zero singular values. It is through
this property that we will see what does hierarchical masses imply in the properties of a matrix
and extract the relation between the mass ratios and the mixing angles.

As we have noted, the full diagonalization occurs via rotations in three different two family
subspaces. Thus, it is enough to study the relation between eigenvectors and eigenvalues in a
two dimensional scenario. We denote the complex 2× 2 matrix,

m =
(
mss msl

mls mll

)
, (57)

where its four matrix elements are complex numbers and its SVD is given as,

m = L†ΣR , (58)

with Σ = diag(ms,ml), mi ≥ 0, ml > ms, and

Lmm†L† = Σ2 , R†m†mR = Σ2 . (59)

Its two invariants,

tr
(
mm†

)
= m2

s +m2
l , det

(
mm†

)
= m2

sm
2
l . (60)

In general, the left hermitian product is computed as,

mm† = L†Σ2L =
(
m2
sc

2 +m2
l s

2 e−iδcs(m2
s −m2

l )
eiδcs(m2

s −m2
l ) m2

ss
2 +m2

l c
2

)
, (61)

where we have defined c = cos Θ and s = sin Θ. We will now consider that due to ml � ms we
can take the matrix as a rank one, i.e. ms = 0. This implies,

mm† ≈
(

m2
l s

2 −m2
l cse

−iδ

−m2
l cse

iδ m2
l c

2

)
= m2

l

(
s2 −cse−iδ
−cseiδ c2

)
, (62)

whose invariants are now tr(mm†) = m2
l and det(mm†) = 0.

As already discussed, whenever ms = 0 we should also have Θ = 0. In other words, if we
are trying to build a unitary transformation whose angle of rotation is given by a ratio of the
masses then we should expect L (0) = I2×2 or for small ratios, ms � ml, to first order,

L
(
ms

ml

, δ
)
≈ 1√

1 + Θ2

(
1− Θ2

2 Θe−iδ
−Θeiδ 1− Θ2

2

)
, (63)

where the relation between Θ and the mass ratio is to be found next.
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After introducing ms we get,

mm†

m2
l

≈ 1
1 + Θ2

 m2
s

m2
l

+ Θ2 e−iδΘ(m
2
s

m2
l
− 1)

eiδΘ(m
2
s

m2
l
− 1) 1 + m2

s

m2
l
Θ2

 , (64)

and where we have Θ = Θ(ms
ml

). Notice how all the matrix elements won contributions related
to ms. This is important as we need to keep track of this effect.

We now need to establish a functional relation between the angle and the mass ratio. For
that, we want Θ to behave as Θ→ 0 whenever either ms → 0 or ml →∞. Thus, let us consider
the following simple kind of relation which behaves just as needed,

Θ ∼
(
ms

ml

)n
. (65)

After substitution we obtain,

mm†

m2
l

≈ 1
1 + Θ2

(
Θ2/n + Θ2 e−iδΘ(Θ2/n − 1)

eiδΘ(Θ2/n − 1) 1 + Θ2(n+1)/n

)
. (66)

For n > 1 (n ∈ Z), then,

mm†

m2
l

≈
(

Θ2/n −e−iδΘ
−eiδΘ 1 + Θ2(n+1)/n

)
. (67)

For example, consider the particular case of n = 2,

mm†

m2
l

≈
(

Θ −e−iδΘ
−eiδΘ 1

)
. (68)

On the other hand, for n = 1, we have,

mm†

m2
l

∼ 1
1 + Θ2

(
Θ2 −e−iδΘ
−eiδΘ 1

)
. (69)

Last, for the case Θ ∼ (ms
ml

)1/n (n > 1), we find,

mm†

m2
l

≈ 1
1 + Θ2

(
Θ2n + Θ2 e−iδΘ(Θ2n − 1)

eiδΘ(Θ2n − 1) 1 + Θ2(n+1)

)
. (70)

which, in general, can be approximated as,

mm†

m2
l

≈ 1
1 + Θ2

(
Θ2 −e−iδΘ
−eiδΘ 1

)
. (71)

Then, we arrive at the following conclusion. Similar hermitian mass matrix structures can have
different relations between the angle and the mass ratio. For example, for the linear relation,
Θ ∼ ms/ml, and the one given by Θ ∼ (ms/ml)1/n, we have the same left hermitian matrix.
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To clarify this ambiguity we consider, in the quark sector, the limit mb,t →∞ and only study
a two family mixing scenario,

|Vus| =

√√√√√(mu
mc

)2n + (md
ms

)2n − 2(mu
mc

)n(md
ms

)n cos(δu − δd)(
1 + (mu

mc
)2n
) (

1 + (md
ms

)2n
) . (72)

Figure 1 shows the allowed range for Cabibbo(-like) mixing, due to the given mass ratiosmu/mc

(mν1/mν2) and md/ms (me/mµ), see Table 2 (Table 3), in the quark (lepton) sector. Two main
observations are now given: i) Not any pair (δu − δd, n) is able to explain mixing. In fact, for
quark mixing close to the value n ' 0.55 and n ' 0.6 for the lepton sector, there is no chance to
reproduce the amount of observed mixing and ii) For very small values of n and a certain choice
of the phase difference one could reproduce any observed value for fermion mixing, however,
the exploited hierarchy in all the previous discussion would be lost and so its applicability. The
best scenario, of course, is that in which the same relation holds in both the quark and lepton
sectors.

Figure 1: The left plot shows the allowed range for Cabibbo mixing, due to the given mass ratios mu/mc and
md/ms. We have allowed the complex phases to take any possible value from [0, 2π) which is the cause for the
filling in between the extremum lines. The bottom (blue) line corresponds to a phase difference equal to zero,
the upper low opacity (green) line to a phase difference equal to π, and the medium (purple) line to a phase
difference equal to π/2. The horizontal (red) line corresponds to the observed value. The right plot shows
a similar situation but for a given hypothetical value for the mass ratio of the two lightest neutrino masses
(considering normal ordering).

4 Second approach: A particular implementation
The most known relation among an angle and a mass ratio is the GST relation [23], θC ∼
(md/ms)1/2, and it is in a way related to the Cheng–Sher ansatz in multi-Higgs models, Mij ∼√
mimj, which is normally introduced to help suppress flavor changing neutral transitions

thanks to the hierarchy in the fermion masses [51]. For a recent discussion of this relation and
its possible symmetrical origin please refer to [34].

In the following, we revisit the parametrization proposed in Ref. [13]. Its basic idea is to
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exploit the phenomenological observation of hierarchical fermion masses, m2
3 � m2

2 � m2
1,

together with the matrix properties related to approximations. In this sense, the low-rank
approximation theorem helps to build a systematic approach with a strong control on the
errors made by neglecting at different stages all contributions proportional to either m1 or m1
and m2. Moreover, the implementation of this idea can only be made through the assumption
of Minimal Flavor Violation, as it is required to set the initial weak basis.

4.1 The low-rank approximation theorem
For a better understanding of the second approach is worth studying first the low rank approxi-
mation theorem [52–55]. The goal of the low-rank approximation theorem is to approximate as
close as possible a given matrix S with rank r with another matrix Ŝ of lower rank (r− p) ≤ r.
Its results states that the closest matrix is the initial matrix, S, with its p smallest singular
values replaced by zeros,

||S− Ŝ||X ≥ ||S− S({σ1, ..., σp} = 0)||X , (73)

where we have denoted by σi the singular values of S and ordered them as σr ≥ σr−1 ≥ · · · �
σp ≥ · · · ≥ σ1 > 0, for any given norm ||A||X .

The proof can be sketched as follows. Let us define the singular value decomposition of our
initial matrix as,

S = L†DR (74)

where D is a diagonal matrix with their elements ordered as previously indicated and we assume
non-degeneracy. We only treat here the square complex case, Sr×r. L and R are the left and
right singular unitary matrices, respectively. There is a one to one correspondence between the
non-degenerate singular values and the corresponding singular vectors, up to a different phase
which must be shared between ~̀

i and ~ri. Recall that the rank of a matrix is defined as the
number of non-zero singular values. For our purpose we introduce the Frobenius norm,

||A||F =
√
tr[AA†] =

√√√√√rank(A)∑
i=1

a2
i . (75)

Now, take Ŝ as a matrix of lower rank (r − p) ≤ r with its singular value decomposition
given as,

Ŝ = L′†D′R′ , (76)

where we denote by λi its singular values and assume them ordered, λr−p > · · · > λ1 > 0.
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Then, we have,

||S− Ŝ||F =
√
tr
[(

S− Ŝ
) (

S† − Ŝ†
)]
,

=
√
tr [SS†]− tr

[
SŜ†

]
− tr

[
S†Ŝ

]
+ tr

[
ŜŜ†

]
,

=

√√√√ p∑
i=1

σ2
i +

r−p∑
i=1

(
σ2
p+i + λ2

i

)
− tr

[
SŜ†

]
− tr

[
S†Ŝ

]
.

(77)

In general, the upper value of the traces, tr
[
S†Ŝ

]
and tr

[
SŜ†

]
, can be associated with that in

which both matrices can be simultaneously diagonalized by the same biunitary transformation.
This can be understood via the Cauchy–Schwarz inequality, |〈~u,~v〉| ≤ ||~u||||~v|| = 1, among the
pair of products of the different left and right singular vectors. Therefore,

||S− Ŝ||F =

√√√√ p∑
i=1

σ2
i +

r−p∑
i=1

(σp+i − λi)2 . (78)

where we have used Von Neumann’s trace inequality [56,57],

|tr[AB]| ≤
n∑
i=1

aibi . (79)

Hence, we conclude that if λi = σ(p+i) (i = 1, ..., r − p) we reach the bottom limit and thus we
get,

||S− Ŝ||F ≥

√√√√ p∑
i=1

σ2
i , (80)

where we now know the equality is only satisfied when the p smallest singular values of the
original matrix are set to zero, Ŝ = S({σ1, ..., σp} = 0).

The importance of using this theorem lies in the fact that we wish to connect the properties
of the mixing matrices to the ones in the mass matrices under the limits m1 → 0 and m1,2 → 0.
This theorem guarantees that there will be no loss of generality within the approach and thus
we can trust our deductions.

4.2 Building the parametrization
Through the approach discussed in Section 3 we can now easily work our way to reproduce a
first example of such a parametrization as found in Ref. [13]. Although we will be a little bit
redundant we will repeat many of the previous arguments.

Our first step, as we have many times emphasized, is the idea of having a mixing parametriza-
tion in terms of the mass ratios,

V = V(mu

mc

,
mc

mt

,
md

ms

,
ms

mb

) = LuL†d , (81)
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and

U = U(me

mµ

,
mµ

mτ

,
mν1

mν2
,
mν2

mν3
) = LeL†ν . (82)

The first implication of such functional dependence is the following ansatz: complex phases δ
can only take one of the four possible discrete values δ = 0, π/2, π, and 3π/2. This ansatz has
shown to be sufficient to obtain an excellent agreement to the most recent global fits [13].

The next step is to break the arbitrariness in the left hermitian products of the mass
matrices,

LMM†L† = diag(m2
1,m

2
2,m

2
3) , (83)

and find a way to express L in terms of the masses.
Fortunately, in spite of this situation, one can work an approximate solution via the low-

rank approximation theorem. The mass spectra of all charged fermion species satisfy the double
mass hierarchy pattern, m2

1 � m2
2 � m2

3, which perfectly fits our problem and provide a way
to study the mass matrices as either rank one, two, or three. Neutrino masses do not stay
behind as their squared mass differences also satisfy an inequality ∆m2

21 � ∆m2
31. Moreover,

the cosmological limit on the sum of their masses, ∑imνi < 0.23 eV, favors the hierarchical
case over quasidegeneration [58]. Regarding different examples on how to produce hierarchical
masses we refer the interested reader to the Refs. [24, 25,59–62].

The parametrization is constructed by a series of successive three by three unitary rotations
in the three different two family planes. The transition from rank one to rank two implies
rotating first the 2 − 3 sector. Thereafter, two more rotations in this sector are introduced,
as an ansatz, in order to consider possible contributions proportional to the mass of the first
family which was neglected at this point. Then, the 1− 3 sector is rotated and followed by two
more rotations proportional to the mass of the second family, contributions neglected in the
previous rotation. Finally, the 1 − 2 sector is the only one left and needs no further rotations
as no mass is neglected at this step. This sequence of steps is written as,

L = L12L13L23 , (84)

with,

L23 = L(2)
23

(
m1m2

m2
3
, δ

(2)
23

)
L(1)

23

(
m1

m3
, δ

(1)
23

)
L(0)

23

(
m2

m3
, δ

(0)
23

)
, (85)

L13 = L(2)
13

(
m1m2

m2
3
, δ

(2)
13

)
L(1)

13

(
m2

2
m2

3
, δ

(1)
13

)
L(0)

13

(
m1

m3
, δ

(0)
13

)
, (86)

L12 = L(0)
12

(
m1

m2
, δ

(0)
12

)
. (87)

Each of the latter rotations has a two by two submatrix of the kind,

L
(
mi

mj

, δ
(k)
ij

)
=
 cos Θij e−iδ

(k)
ij sin Θij

−eiδ
(k)
ij sin Θij cos Θij

 , (88)

20



where the angle of rotation is chosen to satisfy the GST relation, tan2 Θij = mi/mj. For
example,

L(0)
12

(
m1

m2
, δ

(0)
12

)
=

 cos Θ12 e−iδ
(0)
12 sin Θ12 0

−eiδ
(0)
12 sin Θ12 cos Θ12 0

0 0 1

 , (89)

with tan2 Θ12 = m1/m2.

4.2.1 Complex phases, mixing, and CP violation

In total, either in the quark or lepton sector, fourteen complex phases has appeared at this
point, seven for each fermion type. The study of their effect can be briefly summarized into
this:

1. Complex phases appear always as a difference between two of them, δaij− δbij, one for each
fermion species,

2. the latter implies that we only need to use seven of them per fermion sector with the rest
equal to zero, δaij = 0.

3. The study of two fermion families mixing helps us to introduce two kinds of mixing:
minimal (δbij = 0) or maximal (δbij = π), as it can be seen from,

tan2 θij =
m̂a
ij + m̂b

ij − 2
√
m̂a
ijm̂

b
ij cos(δaij − δbij)

1 + m̂a
ijm̂

b
ij + 2

√
m̂a
ijm̂

b
ij cos(δaij − δbij)

=



δbij = 0,
[√

m̂aij−
√
m̂bij

1+
√
m̂aijm̂

b
ij

]2

δbij = π,

[√
m̂aij+
√
m̂bij

1−
√
m̂aijm̂

b
ij

]2
(90)

where m̂f
ij = mi/mj with mj > mi (j > i) and where in the last step we took δaij = 0.

4. For the two other cases, δbij = π/2 or 3π/2, one finds that the mixing angle has the same
output,

tan2 θij =
m̂a
ij + m̂b

ij

1 + m̂a
ijm̂

b
ij

, (91)

whereas the Jarlskog invariant changes its sign from positive to negative, respectively.

Moreover, one finds out when defining the concepts of minimal or maximal mixing that three
complex phases are enough to determine the kind of mixing, the other four will automatically
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δ12 δ
(0)
13 δ

(1)
13 δ

(2)
13 δ

(0)
23 δ

(1)
23 δ

(2)
23

Quarks π/2 0 π π 0 π π
Leptons 3π/2 0 π π π π 0

Table 1: The choice of phases in Eq. (85) leading to the mixing matrices shown in Eqs. (94) and (118). Their
value can be understood through the concepts of minimal, maximal, and CP violating mixing as shown in
Eqs. (92) and (93).

follow them; so our unitary rotations can be written as,

La
23 = L(2)

23

(
ma,1ma,2

m2
a,3

, 0
)

L(1)
23

(
ma,1

ma,3
, 0
)

L(0)
23

(
ma,2

ma,3
, 0
)
,

La
13 = L(2)

13

(
ma,1ma,2

m2
a,3

, 0
)

L(1)
13

(
m2
a,2

m2
a,3
, 0
)

L(0)
13

(
ma,1

ma,3
, 0
)
,

La
12 = L(0)

12

(
ma,1

ma,2
, 0
)
,

(92)

and

Lb
23 = L(2)

23

(
mb,1mb,2

m2
b,3

, δb23 − π
)

L(1)
23

(
mb,1

mb,3
, δb23 − π

)
L(0)

23

(
mb,2

mb,3
, δb23

)
,

Lb
13 = L(2)

13

(
mb,1mb,2

m2
b,3

, δb13 − π
)

L(1)
13

(
m2
b,2

m2
b,3
, δb13 − π

)
L(0)

13

(
mb,1

mb,3
, δb13

)
,

Lb
12 = L(0)

12

(
mb,1

mb,2
, δb12

)
,

(93)

where VF = LaL†b and Lf = Lf
12L

f
13L

f
23 with F = q, `, a = u, e, b = d, ν, and f = a, b. Four

possible values for each complex phase give 43 = 64 possible combinations. Nevertheless, due
to the fact that we have, in general, m3 � m1,2 all mass matrices can be approximated as rank
one matrices implying an approximate U(2)3 accidental global symmetry in the kinetic terms.
Due to this property, we expect that only in the 1 − 2 family sector our complex phases will
take one of the two values δij = π/2 or 3π/2 whereas in the 2−3 and 1−3 sectors δij = 0 or π.
This, then, restrains our combinations to 23 = 8 possible cases.

Only one of the eight possibilities gives an agreement to the most recent global fits and is
shown in Table 1. One finds that in the quark sector mixing phenomena is produced as two
initial minimal mixings with δd23 = δd13 = 0 and in order to have a positive Jarlskog invariant
we should choose δd12 = π/2. On the other hand, as we will shortly see in Section 4.5, leptonic
mixing can be produced with maximal mixing in the 2 − 3 sector, δν23 = π, minimal mixing
in the 1 − 3 sector, δν13 = 0, and in order to have a negative Jarlskog invariant the value of
the complex phase should be δν12 = 3π/2. We need to stress here that the leptonic mixing has
an unresolved feature which is that in the 2 − 3 sector the phase appearing in L(1)

23 (mν1
mν3

) is π
instead of zero. Nevertheless, until the precision in the neutrino mass squared differences and
the leptonic mixing angles do not improve it is an impossible task to try to solve it.
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Usually, against the fact of having fourteen complex phases, people is lead to consider that
these relations between mixing angles and mass ratios could just generate any desirable mixing
value under the right choice of complex phases. However, it is now our purpose to show that
given some range of mass ratios the mixing angles are restricted to be inside a region as large
as the order of the largest square root of a mass ratio. That is, the quark sector will then be
much more limited than the lepton one. Figure 2 shows how the possibilities of different mixing
values get reduced by restricting the value complex phases may take. If complex phases were
allowed to take on any value [0, 2π) one obtains the (blue) background. Next, if we impose on
the complex phases the ansatz to take only one of the four possible values, 0, π/2, π, and 3π/2,
the plots transform into the (yellow) small extended regions. For last, when introducing the
concepts of CP conserving with minimal or maximal mixing and CP violating mixing then the
plots become the (red) solitary dots.

Figure 2: Allowed regions for the quark mixing matrix elements due to the four quark mass ratios. The main
assumptions behind this particular parametrization are: Minimal Flavor Violation, all rotations have a GST-like
relation [23], and that complex phases have only four possible values. To show the effect of the complex phases
we consider them under three different scenarios. The background (blue) points refer to considering the fourteen
complex phases as taking any given value, δ ∈ [0, 2π). On the other hand, the small extended regions (yellow)
show the possible mixing values when considering the fourteen complex phases assuming only one of the four
cases 0, π/2, π and 3π/2. Already here one finds out that it becomes quite limited, specially for the two upper
plots. For last, the solitary (red) square points, refer to the introduced ansatz where one has considered seven
null phases while the rest in relation to the concepts of minimal, maximal, and CP violating mixing.
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4.3 Quark mixing angles
To calculate the theoretical mixing matrix we need to run all quark masses to theMZ scale, see
Appendix B. We do this via the RunDec 3.0 package [63], which considers five-loop corrections
to the QCD beta functions and four-loop decoupling effects. Thereafter through the substitution
of the mass values the following theoretical values of the CKM matrix are obtained as,

|Vth
CKM| =

 0.975+0.003
−0.002 0.22± 0.01 0.003± 0.001

0.22± 0.01 0.974+0.003
−0.002 0.039± 0.003

0.0086+0.0006
−0.0005 0.038± 0.003 0.999± 0.0001

 , (94)

which is in good agreement within the present precision to the experimental values as depicted
in the Appendix A. Also we find the following amount of CP violation as measured by the
Jarlskog invariant,

J th
q ≡ =(VusVcbV

∗
ubV

∗
cs) =

(
2.1+1.2
−0.9

)
× 10−5, (95)

to be in good agreement. In the standard or PDG parametrization,

sin θq,th
12 = 0.22± 0.01 , sin θq,th

13 = 0.003± 0.001 , (96)
sin θq,th

23 = 0.039± 0.003 , δq,th
CP = (62+28

−30)◦ . (97)

A curious and interesting feature of these formulae is that they are very stable against the
running of the masses to the scale of grand unification (1019 GeV) [64].

4.4 Connection to other parametrizations
In the following, we show useful expressions of other parametrizations in terms of the mass
ratios.

4.4.1 The strong hierarchical approximation

Let us show the short expressions one gets by considering the dominant contributions coming
from the strong hierarchies in the quark masses,

|Vth
us| ≈

√
md

ms

, |Vth
cb| ≈ −

(√
mu

mt

+
√
md

mb

+
√
mc

mt

−
√
ms

mb

)
, (98)

|Vth
ub| ≈ |Vth

cb|
√
mu

mc

−
(√

mu

mt

+ mc

mt

−
√
md

mb

+
√
mdms

m2
b

+ ms

mb

)
. (99)
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4.4.2 Connection to the standard parameters

The standard convention for the mixing parameters can be expressed in terms of the quark
mass ratios as,

δq,th
CP ≈ arctan

√√√√ md
ms

(1 + md
ms

)
mu
mc

(1 + mu
mc

)

 , (100)

sin θq,th
12 ≈

√√√√ md/ms +mu/mc

(1 +md/ms)(1 +mu/mc)
, (101)

sin θq,th
23 ≈ −

(√
mu

mt

+
√
md

mb

+
√
mc

mt

−
√
ms

mb

)
, (102)

sin θq,th
13 ≈ sin θq,th

23

√
mu

mc

−
(√

mu

mt

+ mc

mt

−
√
md

mb

+
√
mdms

m2
b

+ ms

mb

)
. (103)

We may immediately observed the following three good features and one not adequate from
the naturalness viewpoint in this particular parametrization:

1. when mu,d,s,c → 0 there is no mixing, V(0, 0, 0, 0) = 1,

2. when mt,b →∞ we only get contributions from the 1− 2 sector, V(mu
mc
, 0, md

ms
, 0) = L12,

3. CP violation is directly related to the masses of the first two families and its large value
is a major consequence of mu

mc
→ 0, and for last,

4. when mu,d → we do not only have contributions from the 2− 3 sector as needed but also
from the 1 − 3 sector. This is not adequate from the naturalness point of view and we
consider it as the main aspect which suggests a careful revision of the procedure and the
ansätze taken.

4.4.3 Connection to the Wolfenstein parameters

Two of the four Wolfenstein parameters can be directly expressed in terms of the quark mass
ratios,

λ ≈

√√√√ md/ms +mu/mc

(1 +md/ms)(1 +mu/mc)
, (104)

A ≈ −(1 +md/ms)(1 +mu/mc)
md/ms +mu/mc

(√
mu

mt

+
√
md

mb

+
√
mc

mt

−
√
ms

mb

)
. (105)

However, in order to find the other two we first need to rephase both the up and down type
quark fields,

V′ = χuVχ†d , (106)
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in such a way that we are able to produce the following structure,

V′ ∼

< < C
C C <
C C <

 , (107)

where χf = diag(eiφf , 1, 1) and < and C mean real and complex entries. It is actually possible
to calculate the approximate expressions for the two phases in terms of the masses,

φu ≈ − arctan
√√√√ md

ms
(1 + md

ms
)

mu
mc

(1 + mu
mc

)

 , (108)

φd ≈ arctan
√√√√ md

ms
mu
mc

(1 + md
ms

)(1 + mu
mc

)

− arctan
√√√√ md

ms
(1 + md

ms
)

mu
mc

(1 + mu
mc

)

 . (109)

Then, the other two Wolfenstein parameters are,

ρ ≈ u cos
√√√√ md

ms
(1 + md

ms
)

mu
mc

(1 + mu
mc

)

 , η ≈ −u sin
√√√√ md

ms
(1 + md

ms
)

mu
mc

(1 + mu
mc

)

 , (110)

where we have defined,

u ≡

(√
mu
mt

+
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md
mb

+
√

mc
mt
−
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ms
mb

)√
mu
mc

+
(√

mu
mt

+ mc
mt
−
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md
mb

+
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mdms
m2
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mb

)
√

md/ms+mu/mc
(1+md/ms)(1+mu/mc)

(√
mu
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+
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md
mb

+
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mc
mt
−
√

ms
mb

) , (111)

and the relation between the bar parameters and the ones expressed before is,

ρ̄ ≈ ρ

[
1− λ2

2 +O(λ4)
]
, η̄ ≈ η

[
1− λ2

2 +O(λ4)
]
. (112)

4.5 Leptonic mixing angles and neutrino masses
The elusive nature of massive neutrinos is as elusive as the problem at hand [65]. From the
theory side, neutrinos are electrically neutral and except for the possibility of having total
lepton number as a conserved charge, all indications point to the fact that they should satisfy
the Majorana condition [66],

νc = ν , (113)

and be their own antiparticle, thus violating total lepton number. As this work does not
need to specify their nature and only focuses on their effective mass matrix, we put aside this
question and consider both possibilities and refer the interested reader to some reviews on this
subject [21, 67].

In the following, we study the two allowed cases coming from the oscillation picture, see
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Appendix B: Normal Ordering (NO) and Inverted Ordering (IO),

NO: mν3 > mν2 > mν1 , (114)
IO: mν2 > mν1 > mν3 . (115)

4.5.1 Normal ordering

Although it might seem impossible to study lepton mixing if the absolute scale of neutrino
masses is still unknown, through the measured squared mass differences ∆m2

ij and the sin2 θPMNS
12 =

0.307+0.013
−0.012 mixing angle is possible to determine them as first shown in Ref. [13],

mν1

mν2

=
sin2 θPMNS

12

(
1 + me

mµ

)
− me

mµ

1− sin2 θPMNS
12

(
1 + me

mµ

) . (116)

There are three main advantages for computing it in the 1− 2 sector: i) it is the cleanest part
as there is no need to work in a lower rank approximation, ii) we expect the phase to be either
π/2 or 3π/2, and iii) we know that the neutrino mass ratio mν1

mν2
is the dominant contribution

to this mixing angle (see Section 3.5),

mν1 = (4.2± 0.5) meV, mν2 = (9.6± 0.2) meV, mν3 = (50.1± 0.3) meV , (117)

with their sum being way below the cosmological limit, ∑mν = 0.064±0.001 eV < 0.23 eV [58].
Then, the mixing matrix for the lepton sector is,

|Uth
PMNS| =

0.83± 0.01 0.53± 0.01 0.14± 0.01
0.38+0.26

−0.15 0.59+0.25
−0.49 0.71± 0.28

0.40+0.14
−0.27 0.61+0.29

−0.23 0.68+0.29
−0.62

 , (118)

with a Jarlskog invariant given as,

J th
` = −(0.03+0.01

−0.02) , (119)

and where the mixing angles in the PDG parametrization are:

sin2 θ`,th12 = 0.54± 0.01 , sin2 θ`,th13 = 0.14± 0.01 , sin2 θ`,th23 = 0.72± 0.28 . (120)

We have considered an additional source of error in the 2 − 3 sector due to the size of the
assumption taken when changing a phase from 0 to π, see Table 1. In Figure 3, we show the
allowed regions for the magnitude of the lepton mixing matrix elements as implied by the four
leptonic mass ratios. There, we have only taken into account the propagation of error coming
from the computed neutrino masses.

4.5.2 Inverted ordering

Dirac neutrinos follow a symmetrical treatment compared to the quark sector, that is, we may
only expect them to have a normal ordering. Therefore, the inverted scenario to be studied
at this stage uniquely applies to the Majorana nature which furthermore has the well known
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Figure 3: Allowed regions, in the normal ordering case, for the magnitude of the lepton mixing matrix elements
as implied by the parametrisation with four leptonic mass ratios. The main assumptions behind this particular
parametrization are: Minimal Flavor Violation, all rotations have a GST-like relation [23], and that complex
phases have only four possible values. To show the effect of the complex phases we consider them under three
different scenarios. The background (blue) points refer to considering the fourteen complex phases as taking
any possible value, δ ∈ [0, 2π). On the other hand, the small extended regions (yellow) show the possible mixing
values when considering the fourteen complex phases to take only one of the four possible phases: 0, π/2, π and
3π/2. The large value of the neutrino mass ratios makes no clear distinction between these two cases (the blue
and yellow points). On the other hand, the solitary (red) square points, refer to the introduced ansatz where
one has considered seven null phases while the rest in relation to the concepts of minimal, maximal, and CP
violating mixing (3 × 3 × 3 = 27 different combinations). The black (circular) spot is the observed value for
mixing. Notice how the two upper plots show a discrepancy in the 2− 3 mixing angle. To correct this, a small
modification is included, changing one phase from 0 to π, in the 2 − 3 rotations. These are the purple points
(closer to the black spot). By this the agreement is recovered.

advantage of producing small neutrino masses via the seesaw mechanism [6, 68, 69]. As the
masses should satisfy,

mν2 > mν1 > mν3 , (121)
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then we can infer the sequence of rotations that should be used in the neutrino sector,0 0 0
0 0 0
0 0 0

 mν2−−→

0 0 0
0 � 0
0 0 0

 mν1−−→

� � 0
� � 0
0 0 0

 −−→
L12

� 0 0
0 � 0
0 0 0

 mν3−−→

� � �
� � �
� � �

 −−→
L′12

� 0 �
0 � �
� � �

 −−→
L23

� 0 �
0 � 0
� 0 �

 −−→
L13

� 0 0
0 � 0
0 0 �


, (122)

where of course we have assumed a hierarchical pattern to provide a similar picture as before
and make clearer how we should rotate, in general, however, we could have for example, quasi-
degeneration in the heaviest masses and a very small one, in consistency with the cosmological
limit.

Open to the possibility of having a different phase than π/2 we also estimate the neutrino
masses for 0 and π, obtaining,

mν2 = (49.7± 0.3) meV , mν1 = (48.9± 0.3) meV , mν3 =


(1.4± 0.3) meV δν = 0
(8.8± 0.3) meV δν = π

(1.1± 0.3) meV δν = (3)π
2

(123)

which clearly shows that the heaviest masses are quasi-degenerate with the lightest one different
in each case. In Figure 4, we show the allowed regions for the magnitude of the lepton mixing
matrix elements as implied by the four leptonic mass ratios. In general, through the concepts
of minimal, maximal, and CP violating mixing we cannot reproduce the observed values.
Nevertheless, it is still possible to have an agreement if we limit ourselves to the values δν =
0, π/2, π, 3π/2. Our intention is not to find the perfect combination but to comment on when
it is or not possible.

4.6 Effective Majorana mass
A clear signal of neutrinos as their own antiparticles may be reached through the study of
processes where total lepton number is violated. In this sense, the rare decay called neutrinoless
double beta decay (0νββ), where total lepton number is violated by two units, offers a way
to not only unveil the true massive nature of neutrinos but also to test predictions of left-
right symmetric models and other models including right-handed currents and heavy neutral
leptons [70, 71]. This rare process consists in an atom decaying into another one with the
emission of two electrons in the following way,

(A,Z)→ (A,Z + 2) + 2e− , (124)

where (A,Z) are the mass and charge number, for the present status in these experiments see
Ref. [72].

The survey of this decay is made by the effective mass parameter 〈mee〉 which, in the PDG
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Figure 4: Allowed regions, in the inverted ordering case, for the magnitude of the lepton mixing matrix elements
as implied by the parametrisation with four leptonic mass ratios. The main assumptions behind this particular
parametrization are: Minimal Flavor Violation, all rotations have a GST-like relation [23], and that complex
phases have only four possible values. To show the effect of the complex phases we consider them under three
different scenarios. The background (blue) points refer to considering the fourteen complex phases as taking
any possible value, δ ∈ [0, 2π). On the other hand, the not so extended regions (red) show the possible mixing
values when considering the fourteen complex phases to take only one of the four possible phases: 0, π/2, π and
3π/2. The large value of the neutrino mass ratios makes no clear distinction between these two cases (the blue
and red points). On the other hand, the solitary (yellow) X points, refer to the introduced ansatz where one has
considered seven null phases while the rest in relation to the concepts of minimal, maximal, and CP violating
mixing (3× 3× 3 = 27 different combinations). The right bottom panel plots the Jarlskog invariant versus the
|Ue2| matrix element. The black (circular) spot is the observed value for each case. Notice how three of the four
plots show a discrepancy.

parametrization, is expressed as,

〈mee〉 = |
∑
j

U2
ejmj| = |m1e

2iα cos2 θ12 cos2 θ13 +m2e
2iβ sin2 θ12 cos2 θ13 +m3e

2iδ sin2 θ13| , (125)

where α and β are the Majorana phases and δ is the Dirac phase.
We now make a short account on the sensitivities of the leading experiments in 0νββ.

The Cryogenic Underground Observatory for Rare Events (CUORE) which makes use of TeO2
crystals [73]. They recently found no evidence for this decay in a limit on the effective Majorana
neutrino mass 〈mee〉 < (0.11− 0.52) eV [74]. The GERmanium Detector Array (GERDA) uses
high purity germanium detectors enriched with 76Ge [75]. In their most present result they
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excluded the range 〈mee〉 < (0.12 − 0.26) eV [76]. The Enriched Xenon Observatory (EXO)
experiment uses as a source and detector a pressurized time projection chamber filled with
liquid Xenon [77]. In a first stage EXO-200 has established the limit 〈mee〉 < (0.15− 0.40) eV
where still no evidence of the rare decay has been seen [78]. The KAMioka Liquid Acintillator
Anti-Neutrino Detector (KamLAND) is a multi-purpose detector that recently started the
KamLAND-Zen experiment which in its second phase has reached the best measured limit so
far, 〈mee〉 < (0.06− 0.16) eV [79].

Figure 5: Allowed regions for the effective Majorana mass parameter, 〈mee〉, as a function of the lightest neutrino
mass. The vertical (purple) band depicts the 1σ values of the masses and mixing angles, in the Normal Ordering
(NO) case, as deduced from the mass ratios parametrization. The left (orange), center (green), and right (olive)
correspond to the Inverted Ordering (IO) case, and show the 1σ regions for the three phase possibilities 0,
π/2, and π. A significant overlap occurs among them and one could then take the three regions as a single
one, as allowed by the present uncertainties. The light-blue (IO) and -red (NO) bands are computed from the
present experimental data on neutrino oscillations at 1σ. The four horizontal lines correspond to the different
experimental bounds. The gray vertical band corresponds to the upper boundary on the total of the three
neutrino masses,

∑
νmν < 0.23 eV as implied by cosmology [58].

5 Discussion
The purpose of this work is not to promote a particular parametrization but to promote an
idea: the idea of understanding fermion mixing through the corresponding fermion mass ratios
of each sector. In this sense, we consider the naturalness criteria of ’t Hooft as the main support
of such instance. Already its application to the parametrization of Ref. [13] shows how the limit
m1 → 0 is not properly fulfill in the 1−3 sector, θ13 6= 0 (recall we expect a single mixing angle
acting in the 2 − 3 sector). After a careful look at this problematic one finds that mixing in
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the 1 − 3 sector is not simultaneously homogeneous in mu,md or me,mν1 . A way to solve it,
for example, if assuming the neutrino masses of Eq. (117), could be,

|Vub| '
√
mdms

m2
b

−
√
mumc

m2
t

= (4.2+0.2
−0.3)× 10−3 (126)

|Ue3| '
√
mν1mν2

m2
ν3

−
√
memµ

m2
τ

= 0.12± 0.01 . (127)

It is beyond the scope of this work to find the correct form of the relations between the mixing
angles and the mass ratios. Our emphasis has been put in the need to found some true guidelines
to be followed and in which the theory should thus be extended until the real theory of flavor
is found.

Another observation is the role this parametrization may play in the study of the strong
CP problem [80,81], in particular, within the Nelson–Barr type of models [82–84] which main
challenge consists in understanding why the two parameters related to CP violation in the
quark sector, δKM and Θ̄, are so different if they seem to share the same source [85].

6 Conclusions
The flavor puzzle stands as the most intriguing set of still not understood aspects of the SM. All
of them originating from the fact that Nature has three fermion families. Here we have proposed
and investigated, under two different approaches, the idea of connecting the mixing angles to
the fermion mass ratios. That is, of building the concept of a new mixing parametrization whose
four parameters are chosen to be the four independent mass ratios in each fermion sector. By
virtue of it, the observed values in the Cabibbo–Kobayashi–Maskawa (CKM) together with the
ones appearing in the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrices, can be clearly
understood. The strong hierarchical nature in the masses of the quark sector, translated into
four very small ratios, gives as a consequence very small mixing angles. Thus, the closeness of
the CKM matrix to the identity. On the other hand, even though the absolute scale of neutrino
masses is still unclear, through the same analysis we inferred that neutrino masses should have
either a very mild hierarchy in the two ratios or at least in one of them, in order to produce
such an anarchical structure in the PMNS matrix elements.

The first approach has consisted in exploring the consequences of solely demanding that
the mixing matrices inherit the properties of the mass matrices under the limits of one, two,
and/or three massless fermion families, and the third family with an infinite mass. To this
end, the naturalness criteria of ’t Hooft [29] is taken into consideration as the main argument
to support this connection. The properties to be fulfilled by the mixing matrices then are:
i) V = V

(
mu
mc
, mc
mt
, md
ms
, ms
mb

)
, ii) V = V

(
0, mc

mt
, 0, ms

mb

)
= L23, iii) V = V (0, 0, 0, 0) = 1, iv) if

mt,b → ∞ then V = V
(
mu
mc
, 0, md

ms
, 0
)

= L12, and a similar situation for the leptonic mixing
matrix.

In the second approach, we have studied a recently proposed realization [13] to much greater
detail. We have revisited it and discussed the importance that plays the low-rank approximation
theorem in its construction, as it guarantees the robustness in which each approximation is
made. Although some of the above "natural" properties are satisfied there is one which is
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not. In this sense, we see the importance which the first approach has in analyzing this or
any particular new implementation. We have scrutinized the proposed parametrization and
studied its connection to other well known parametrizations, thus reexpressing, for example,
the Wolfenstein parameters in terms of the quark masses. Furthermore, in the lepton sector,
we have studied the implied mixing in both possible scenarios: normal and inverted ordering.
We have found that the former case is favored as it easily agrees with the observed mixing.
For last, we have also included the allowed range for the effective Majorana mass parameter
obtaining, 〈mth

ee〉 ≈ 0.05 eV and 〈mth
ee〉 ≈ 0.009 eV, for the inverted and normal ordering cases,

respectively.
We have explictly not tried to give here a model but rather to leave the question open to

model builders. As it has frequently happened in the past, the empirical relations have come
first than the actual theory giving rise to them.
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A Present status in fermion mixing
The most recent global fit from the PDG for the updated values of the Cabibbo–Kobayashi–
Maskawa (CKM) mixing matrix shows [86],

|VCKM| =

 0.97434+0.00011
−0.00012 0.22506± 0.00050 0.00357± 0.00015

0.22492± 0.00050 0.97351± 0.00013 0.0411± 0.0013
0.00875+0.00032

−0.00033 0.0403± 0.0013 0.99915± 0.00005

 (128)

with the Jarlskog invariant equal to JCKM = (3.04+0.21
−0.20) × 10−5. This set of numbers can be

summarized by virtue of the standard parametrization,

sin θCKM
12 = 0.22506± 0.00050 , sin θCKM

13 = 0.00357± 0.00015 , (129)
sin θCKM

23 = 0.0411± 0.0013 , and δCKM
CP = (71.6+1.3

−1.0)◦. (130)

Whereas the fit for the improved Wolfenstein parameters gives [86],

λ = 0.22506± 0.00050 , A = 0.811± 0.026 , (131)
ρ̄ = 0.124+0.019

−0.018 , η̄ = 0.356± 0.011 . (132)
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On the other hand, the current global fit values for the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) mixing matrix at 3σ are [87]:

|UPMNS| =

0.799→ 0.844 0.516→ 0.582 0.141→ 0.156
0.242→ 0.494 0.467→ 0.678 0.639→ 0.774
0.284→ 0.521 0.490→ 0.695 0.615→ 0.754

 , (133)

with the Jarlskog invariant at 1σ as Jmax
PMNS = −(0.0329 ± 0.0007). When expressed in the

standard parametrization [87],

sin2 θPMNS
12 = 0.307+0.013

−0.012 , sin2 θPMNS
13 = 0.02206± 0.00075 , (134)

sin2 θPMNS
23 = 0.538+0.033

−0.069 , and δPMNS
CP = (234+43

−31)◦ . (135)

B Present status in fermion masses
Using the mass values as shown in Tables 2 and 3, we can numerically define the four mass
ratios that parametrize the mixing matrices for both quarks and leptons as we used them along
the paper (we only show here the ratios for the Normal Ordering scenario),

mu

mc

= 0.0021+0.0008
−0.0005 ,

mc

mt

= 0.0036+0.0002
−0.0001 ,

ms

mb

= 0.019+0.003
−0.001 ,

md

ms

= 0.049+0.009
−0.006 , (136)

me

mµ

= 0.00473 , mµ

mτ

= 0.0588 , mν1

mν2

= 0.44+0.03
−0.02 ,

mν2

mν3

= 0.192± 0.004 . (137)

QUARK MASSES

Experimental masses
Input (GeV)

Masses at Mz scale
Output (GeV)

mu(2 GeV) = 0.0022+0.0006
−0.0004 mu(Mz) = 0.0013+0.0003

−0.0002

md(2 GeV) = 0.0047+0.0005
−0.0004 md(Mz) = 0.0027+0.0003

−0.0002

ms(2 GeV) = 0.096+0.008
−0.004 ms(Mz) = 0.055+0.004

−0.002

mc(mc) = 1.27± 0.03 mc(Mz) = 0.626± 0.02

mb(mb) = 4.18+0.04
−0.03 mb(Mz) = 2.86+0.02

−0.02

mt(OS) = 173.21± 0.87 mt(Mz) = 172.29± 0.06

Table 2: Here we present in the left column the most recent measured masses as taken from [86]. By virtue
of the RunDec package they are run to the Z boson mass scale [63]. RunDec takes into account the five-loop
corrections of the QCD beta function and four-loop effects when decoupling the heavy quarks below their energy
scale.

34



LEPTON MASSES

Charged lepton
(MeV)

Neutrino mass differences
(eV2)

me(Mz) = 0.4861410527 ∆m2
21

10−5 = 7.40+0.21
−0.20

mµ(Mz) = 102.627051 IO: ∆m2
32

10−3 = −2.465+0.032
−0.031

mτ (Mz) = 1744.614156 NO: ∆m2
31

10−3 = +2.494+0.033
−0.031

Table 3: This table presents the charged lepton masses as taken from Ref. [88] and the updated neutrino mass
differences [87]. We have denoted by NO and IO the Normal and Inverted Ordering scenarios, respectively. We
have omitted the experimental error from the charged leptons due to their size which makes no difference in
the error propagation.
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