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Abstract

We argue that the Nelson-Barr solution to the Strong CP Problem can be naturally real-
ized in an E6 Grand-Unified Theory. The chiral SM fermions reside in three generations
of E6 fundamentals together with heavy vectorlike down quarks, leptons doublets and
right-handed neutrinos. CP is imposed on the Lagrangian and broken only spontaneously
at high scales, leading to a mixing between chiral and vectorlike fields that allows to solve
the Strong CP Problem through the Nelson-Barr mechanism. The main benefit of the
E6 GUT structure is the predictivity in the SM fermion sector, and a perfect fit to all
SM observables can be obtained despite being over-constrained. Definite predictions are
made for the neutrino sector, with a Dirac CP phase that is correlated to the CKM phase,
allowing to test this model in the near future.
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1 Introduction

One of the most puzzling aspects of the Standard Model (SM) is the absence of CP violation
in strong interactions, as measured by the topological angle

θ̄ = θQCD − θF , (1.1)

where θQCD denotes the coefficient of α2
s/8πGG̃ and θF = arg detMuMd. From the contri-

bution to the neutron electric dipole moment one finds θ < 10−10 from the 95% CL bound
|dn| ≤ 3.6 × 10−26e cm [1], although generically one would expect θ to be of the order of the
observed CP violating phase in weak interactions, i.e. θ ∼ O(1). Indeed it is the presence of
the large CKM phase that prevents to forbid θ by imposing CP as a fundamental symmetry.

The most popular explanation for this puzzle is the Peccei-Quinn mechanism [2, 3], which
has the axion as a low-energy remnant [4, 5]. This prediction makes axion models testable in
upcoming experiments, which search for the axion with haloscopes like ADMX [6], helioscopes
like IAXO [7, 8] or even precision flavor experiments like NA62 [9–13].

An alternative explanation for the smallness of θ is provided by the Nelson-Barr mecha-
nism [14–17], where CP is broken spontaneously at high scales. The original Lagrangian is CP
invariant and hence θQCD is zero. CP is broken spontaneously by large vacuum expectation
values (VEVs), and CP violation is mediated to the low-energy Lagrangian only via mixing
with heavy vectorlike quarks. If the Lagrangians respects two simple conditions (the so-called
Barr-criteria), the resulting SM quark mass matrices are complex but have a real determinant,
thus providing the CKM phase but rendering θF = 0 at tree-level. Finite and calculable con-
tributions to θF arise at loop-level, but are generically suppressed by small Yukawa couplings
and/or small mass ratios [14, 16–18]. The general Nelson-Barr framework has been realized
in a minimal setup in Refs. [19, 20], and recently been combined with the idea of cosmological
relaxation [21] in Ref. [22].

In contrast to axion models, in Nelson-Barr scenarios the effective theory below the scale
VCP of spontaneous CP breaking is just the SM. This scale is in general required to be very
large in order to suppress loop corrections to θ that are proportional to v2/V 2

CP [19, 20]. Since
VCP sets the scale of the heavy vectorlike fermions, they are too heavy to be observed in the
near future. Therefore the main drawback of Nelson-Barr models is the lack of predictivity, in
addition to theoretical shortcomings discussed in e.g. Ref. [23].

In this paper, we address the issue of predictivity by embedding the Nelson-Barr mechanism
into an E6 Grand-Unified framework. This allows to connect the phases in the neutrino sector
to the CKM phase, and in particular to predict the Dirac CP phase that will be measured in the
near future. Indeed the heavy vectorlike quarks needed in the Nelson-Barr setup naturally find
their theoretical motivation in Grand-Unified theories (GUTs), as proposed already in Ref. [17].
Among the possible simple GUT groups, E6 [24–28] is ideally suited for the implementation of
the Nelson-Barr mechanism, because the fundamental representation of E6 contains in addition
to chiral SM fermions a vectorlike pair of right-handed (RH) down quarks, besides a vectorlike
pair of left-handed (LH) leptons and two RH neutrinos. Spontaneous CP breaking will induce
a mixing between these vectorlike fields with the chiral fermions, and complex phases will
enter low-energy quark, charged lepton and neutrino masses in a correlated manner. Definite
predictions in the neutrino sector are then possible because of the very restricted form of the
fundamental Yukawa sector, imposed by the E6 GUT structure together with spontaneous
CP violation. While in usual GUT scenarios the unification of Yukawa couplings is often
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problematic for light fermion generations, it turns out that the mixing with the heavy vector-
like fields allows to cure these problems and to obtain a perfect fit to the full SM fermion
sector.

Therefore in our model the Nelson-Barr mechanism becomes predictive in the neutrino
sector because of the E6 GUT structure, which in turn is phenomenologically viable because
of the mixing with the heavy fermions needed to generate the CKM phase.

The rest of this paper is organized as follows: in Section 2 we present the general setup
of the model and derive analytical expressions for the low-energy quark, charged lepton and
neutrino masses. In Section 3 we perform a numerical fit to fermion masses and mixings and
demonstrate that a perfect fit can be obtained for all observables with definite predictions
for the neutrino sector. In Section 4 we discuss loop corrections to θ, which will constrain
the overall scale of spontaneous CP breaking that is left undetermined by the fit. We finally
summarize and conclude in Section 5.

2 An E6 Nelson-Barr Model

We embed the SM fermions in three E6 fundamentals 27i that decompose under SU(5) as

27 = (10 + 5 + 1)16 + (5 + 5)10 + 11 , (2.2)

where the subscripts denote the SO(10) decomposition. Thus for each generation of chiral SM
fermions residing in the 1016 and 516, there is a vectorlike pair of RH down-quarks and LH
lepton doublets contained in (5 + 5)10 and two SM singlets 116 and 11.

The vectorlike (5 + 5)10 pair will get a large mass at an intermediate scale M ∼ 109 GeV,
and a mass term of similar order that mixes the heavy fermions in the 510 with the chiral RH
down quark and LH charged leptons in the 516. According to the Nelson-Barr mechanism, this
mixing is the only way how a complex phase enters the low-energy effective (down) Yukawa
couplings, which are of the form yd ∼ y · a, where y is a real and a a hermitian 3× 3 matrix.
Indeed this matrix has a physical phase while the determinant stays real.

The SM singlet 11 will acquire a mass at the GUT scale MGUT ∼ 1016 GeV from E6

breaking, while the other singlet 116 gets a mass at an intermediate scale Mν ∼ 1011 GeV and
induces neutrino masses via the Type-I seesaw mechanism.

All fermion mass terms and the breaking of E6 to the SM gauge group arise from adding
scalars in 27H , 351′H and 78H that develop large VEVs. The latter field is only responsible
for breaking SO(10) at MGUT, while the other two fields couple to fermions according to the
E6-invariant Yukawa Lagrangian

Lyuk = 27i27j
(
Y27,ij27H + Y351′,ij351

′
H

)
+ h.c. (2.3)

We impose CP as a symmetry of the Lagrangian, so that the couplings Y27 and Y351′ can be
taken as real and symmetric 3×3 matrices. Without loss of generality we can choose the flavor
basis such that Y351′ is diagonal. The E6 structure therefore drastically reduces the number of
flavor sector parameters, so that there are just 3+6 real parameters responsible for generating
masses and mixings for quarks, charged leptons and neutrinos. While in usual GUT models
such a unified structure often prevents to correctly account for all mass hierarchies, it turns
out that in our setup the additional mixing in the RH down and LH charged lepton sector
allows for an excellent fit to the full set of SM masses and mixings, as we are going to see in
the next section.
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We do not spell out the scalar potential, which is simply assumed to generate the appro-
priate VEVs and make all physical scalars except the SM Higgs ultra-heavy, around the scale
Mν or MGUT. Because of this largely model-dependent scalar sector we will not study gauge
coupling unification in detail, but simply assume that there are suitable threshold correction
at M and Mν that lead to unification around MGUT (it might be necessary to embed our
framework into a supersymmetric setup for this purpose). This approach is justified mainly
by phenomenology, since our model makes definite predictions for the neutrino sector that can
be tested in the near future.

According to this bottom-up spirit, we first allow only SM singlets s and doublets h, hc

in the 27H , 351′H and 78H to take VEVs, where the singlet VEVs are large, i.e O(MGUT),
O(Mν) or O(M), and the SU(2)L breaking VEVs are at most of the order of the electroweak
scale. The complete list of fields with the SM quantum numbers of s, h, hc contained in the
27H , the 78H and 351′H can be found in the Appendix. A second requirement on the scalar
VEVs comes from imposing the so-called Barr criteria, which ensure that the low-energy
quark mass matrices have real determinants at tree-level. With the shorthand notation for
the fermions in Eq. (2.2), t = 1016, f = 516, F = 510, F = 510, the Barr criteria require that

• i) No SU(2) breaking mass terms for t− F are present

• ii) Only mass terms for f − F are complex

If these criteria are fulfilled, one can easily check that the resulting down-quark mass matrix
has a real determinant , but has entries that are in general complex and thus can provide the
CKM phase. Decomposing the Lagrangian in Eq. (2.3) under SU(5), one can see from criterion
i) that the VEVs of the fields hc

27,16,5
, hc

351,144,45
, hc

351,144,5
have to vanish (the subscripts

denote the quantum numbers under E6, SO(10) and SU(5), see Appendix for details). Criterion
ii) implies that only the singlet VEVs s27,16,1, s351,144,24, are complex.

Apart from imposing these conditions on the VEVs, which have to be fulfilled to high
degree in order to solve the strong CP problem, we set some electroweak VEVs to zero that
merely lead to sub-leading corrections or can be absorbed into other VEVs. Moreover, for
simplicity we also assume that the singlet VEVs giving rise only to neutrino masses are real,
although they are not directly constrained by the Barr criteria. As we will discuss below, a
complex phase in those VEVs would only affect the Majorana phases, not the Dirac CP phase.
We therefore assume the following VEVs in the scalar sector:

〈h27,10,5〉 = vu1 , 〈h351,10,5〉 = vu2 , 〈hc
27,10,5

〉 = vd1 , 〈hc
351,10,5

〉 = vd2 ,

〈s27,16,1〉 ≡ V c
10 , 〈s351,144,24〉 ≡ V c

5 , 〈s27,1,1〉 ≡ V6 , 〈s351,54,24〉 ≡ V5 ,

〈s351,126,1〉 ≡ V10/2 , 〈s351,1,1〉 ≡ Ṽ6/2 , 〈s351,16,1〉 ≡ V
′

10 , 〈s78,45,24〉 ≡ Ṽ5 , (2.4)

where all VEVs are real and positive except V c
10, V

c
5 , of which at least one is complex. Here

the subscripts 6, 5, 10 denotes the breaking of E6, SU(5) and SO(10), respectively. Apart from
the electroweak VEVs, which are all of the order of the weak scale v = 174 GeV, there are
three heavy scales M , Mν and MGUT, which set the order of magnitude of the singlet VEVs
as

V6 ∼ V5 ∼ |V c
5 | ∼ |V c

10| ≡M ∼ 109 GeV ,

V ′10 ∼ V10 ≡Mν ∼ 1011 GeV ,

Ṽ6 ∼ Ṽ5 ≡MGUT ∼ 1016 GeV . (2.5)
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The VEVs determine the breaking pattern of E6 to the SM and set the scale of heavy gauge
boson and fermion masses. At MGUT the VEVs Ṽ6 and Ṽ5 break E6 to GSM×U(1)5, while the
residual U(1)5 factor is broken at Mν by V10 and V ′10. Via the Yukawa couplings in Eq. (2.3)
the VEVs in Eq. (2.4) generate all fermion masses, which we parametrize as

(m10)ij = Y27,ijvu1 + Y351′,ijvu2 , (m5)ij = Y27,ijvd1 + Y351′,ijvd2 ,

(MfF )ij = Y27,ijV
c

10 + Y351′,ijV
c

5 , (MFF )ij = Y27,ijV6 + Y351′,ijV5 , (2.6)

and

(MNN )ij = Y351′,ijV10 , (MN ′N ′)ij = Y351′,ij Ṽ6 (MNN ′)ij = Y351′,ijV
′

10 . (2.7)

Note that all mass matrices are real and symmetric except MfF . Neglecting Clebsch-Gordon
coefficients, the fermion masses can be written in SU(5) notation as

Lmass = titj(m10)ij + tif j(m5)ij

+ f iNj(m10)ij + F iN
′
j(m10)ij + FiN

′
j(m5)ij

+ f iFj(MfF )ij + F iFj(MFF )ij

+
1

2
NiNj(MNN )ij +

1

2
N ′iN

′
j(MN ′N ′)ij +

1

2
NiN

′
j(MNN ′)ij + h.c., (2.8)

where we have introduced the shorthand N = 116, N
′ = 11. The first and third line generate

masses for quarks and charged leptons, while the second and fourth line are responsible for
neutrino masses. The first two lines comprise weak scale SU(2) breaking masses, while the
last two lines are heavy mass terms for vector-like fields from the singlet VEVs in Eq. (2.5).
In particular the heavy RH down quarks and LH lepton doublets get a mass at M , while the
heavy RH neutrinos N ′ and N get a mass at MGUT and Mν , respectively. Together with the
scalars at Mν , we have thus fixed the mass scales of all heavy fields (apart from the additional
hierarchies for heavy fermions from hierarchical Yukawa couplings), which we summarize in
Fig. 1.

We will now first neglect the weak scale VEVs and diagonalize the heavy sector given
by the last two lines above. In this way we can identify the linear combination of f and F
that remains light and determine the SM quark and charged lepton masses. Similarly we can
integrate out the heavy neutrino mass eigenstates to obtain light neutrino masses.

2.1 Quark and Charged Lepton Sector

We first derive the light mass matrices in SU(5) language and include Clebsch-Gordon coeffi-
cients later on. We begin by rewriting f i, F i in terms of light fields fLi and heavy fields FHi
(that get a mass with Fi) with the ansatz

f = af · fL +Af · FH , F = aF · fL +AF · FH , (2.9)

with some 3×3 matrices af , Af , aF , AF . Requiring canonically normalized kinetic terms gives
three conditions

a†faf + a†FaF = 13 , A†fAf +A†FAF = 13 , a†fAf + a†FAF = 0 , (2.10)
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Gauge Bosons Scalars Fermions

MGUT

M

M⌫

109 GeV

1011 GeV

1016 GeV

E6/(SM⇥ U(1)5)

U(1)5

N 0

N

L+D

all scalars 
but hSM

Figure 1: Sketch of heavy particle scales, see text for details.

and imposing that the light field fL has no mass term with F yields a fourth condition

aTfMfF + aTFMFF = 0 . (2.11)

One can now solve these four equations, but since we are only interested in light fields we need
only af and aF , which are given by:

af =
[
13 + Z†Z

]−1/2
, aF = −Z · af , Z =

[
MfF (MFF )−1

]T
. (2.12)

The quark Lagrangian in terms of light fields fL is

L = titj(m10)ij + tifLj(m
eff
5 )ij + · · · (2.13)

with

meff
5 = m5 · af . (2.14)

Note that while m10 and m5 are real symmetric matrices, af is hermitian and therefore carries
a complex phase into the light Yukawa matrix meff

5 whose determinant is nevertheless real.
Upon including Clebsch-Gordon coefficients, quark and charged lepton masses Mi are

finally given by

Mu = mu , Md = md · ad , Me = aTe ·me , (2.15)

with the real symmetric matrices mi

mu = Hrβ1 + Frβ2 , (2.16)
md = H + F , (2.17)
me = H − 3F , (2.18)
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and the hermitian matrices ai

ad =
[
1 + Z†dZd

]−1/2
, Zd = r10,6 (H + Fr5,6)−1 (H + Fc5,10) , (2.19)

ae =
[
1 + Z†eZe

]−1/2
, Ze = r10,6

(
H − 3

2
Fr5,6

)−1(
H − 3

2
Fc5,10

)
. (2.20)

The masses depend on the two real symmetric matrices H and F (where we have chosen F
to be diagonal)

H ≡ Y27vd1 , (2.21)
F ≡ Y351′vd2 , (2.22)

and five VEV ratios rβ1, rβ2, r10,6, r5,6, c5,10

rβ1 ≡
vu1

vd1
, rβ2 ≡

vu2

vd2
,

r10,6 ≡
|V c

10|
V6

, r5,6 ≡
V5

V6

vd1

vd2
, c5,10 ≡

V c
5

V c
10

vd1

vd2
. (2.23)

Since only the ratio c5,10 is complex, the quark and charged lepton sectors depend in total on
6+3+5 = 14 real parameters and 1 complex phase. As we will see later, SM fermion masses
and mixings can be reproduced if all ratios are O(1).

2.2 Neutrino Sector

The heavy singlet mass terms are given by

LN,N ′ =
1

2

(
Ni, N

′
i

)
MN,ij

(
Nj

N ′j

)
, (2.24)

with the heavy 6× 6 neutrino mass matrix

MN,ij =

(
MNN,ij MNN ′,ij

MNN ′,ij MN ′N ′,ij

)
. (2.25)

Note that the 3 × 3 sub-matrices defined in Eq. (2.7) are all real and proportional to Y351′

that we have chosen to be diagonal. ThereforeMN,ij is a 2× 2 block matrix of diagonal (and
real) 3× 3 matrices. In order to diagonalize it, we therefore need only to diagonalize the real
symmetric 2× 2 matrixM defined by

M =

(
V10 V ′10

V ′10 Ṽ6

)
. (2.26)

The eigenvalues of this matrix set the scale of light neutrino masses via the Type-I seesaw
mechanism. Since we are taking strongly hierarchical VEVs V10 ∼ V ′10 � Ṽ6, we can neglect
the off-diagonal entries and the seesaw contribution of N ′, and integrate out N using the
couplings of the light neutrinos νL contained in fL

L = νTLa
T
e (Hrβ1 − 3Frβ2)N + h.c. (2.27)
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Fermion observables at the electroweak scale µ = MZ

md(MeV) 2.75± 0.29 ∆12(eV2) (7.50± 0.18)× 10−5

ms(MeV) 54.3± 2.9 ∆31(eV2) (2.52± 0.04)× 10−3

mb(GeV) 2.85± 0.03 sin θq12 0.2254± 0.0007
mu(MeV) 1.3± 0.4 sin θq23 0.0421± 0.0006
mc(GeV) 0.627± 0.019 sin θq13 0.0036± 0.0001
mt(GeV) 171.7± 1.5 sin2 θl12 0.306± 0.012
me(MeV) 0.4866± 0.0005 sin2 θl23 0.441± 0.024
mµ(MeV) 102.7± 0.1 sin2 θl13 0.0217± 0.0008
mτ (GeV) 1.746± 0.002 δCKM 1.21± 0.05

Table 1: SM input parameters at the electroweak scale, where quark and lepton masses and
the quark mixing parameters are taken from Ref. [29], and neutrino mixing parameters from
Ref. [30] for Normal Ordering (NO). As explained in the text, we use a 0.1% uncertainty for
the charged lepton masses in the fitting procedure. To simplify the fitting procedure, we used
for all observables the arithmetic average of the errors when not symmetric.

Light Majorana neutrino masses mν defined as Lν = −1/2mν,ijνL,iνL,j + h.c. , are given by

mν ≈ rε
[
aTe · (Hrβ1 − 3Frβ2) · F−1 · (Hrβ1 − 3Frβ2) · ae

]
, (2.28)

where have introduced the VEV ratio

rε ≡
vd2

V10
≪ 1 . (2.29)

Here we are neglecting contributions from the other heavy neutrinos at MGUT and the heavy
mixing due to the presence of V ′10, but we have checked that including these correction only
amounts to tiny corrections to Eq. (2.28), of the order of the naive scale suppression factor
Mν/MGUT ∼ 10−5. Therefore possible phases in V ′10 and Ṽ6 would not affect the light neutrino
sector, while a possible phase in V10 would only lead to an overall phase of the light neutrino
mass matrix, and thus only affects Majorana phases, not the Dirac CP phase.

Counting parameters, we see that the neutrino sector depends on a single additional real
VEV ratio rε compared to the quark and charged lepton sector. Therefore we have in total 15
relevant real parameters + 1 phase to describe the measured 17 + 1 SM parameters: 9 quark
and charged lepton masses, 2 neutrino mass differences, 6 mixing angles and 1 CKM phase.
This means that there are two predictions that make the fit of the parameters to experimental
data non-trivial. Moreover the model makes definite predictions for yet unmeasured observ-
ables in the neutrino sector (Dirac phase, two Majorana phases, overall neutrino mass scale,
effective scale for neutrinoless double beta decay) and is therefore testable. We discuss the fit
and these predictions in the next section.

3 Fit to Fermion Masses and Mixings

In order to verify whether the 17+1 fermion observables of the Standard Model (see Ta-
ble 1 for our input) can be successfully reproduced in our model, we have performed a fit
of the matrices H,F and the six VEV ratios rβ1, rβ2, r10,6, r5,6, c5,10, rε using Eq. (2.15) and
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Eq. (2.28), corresponding to 15 real parameters + 1 complex phase. The fit was done using the
Metropolis-Hastings algorithm [31, 32] following a top-down approach. The parameters were
chosen randomly at Q = 1016 GeV and used as boundary conditions for the Yukawa RGEs,
which were then solved numerically using REAP [33]. Afterwards, the computed values of
the observables at the electroweak scaleMZ were compared with the experimental values (fol-
lowing earlier studies, we assume a 0.1% uncertainty for the charged lepton masses [34, 35],
because otherwise a numerical fit would be very challenging). The quality of a fit point is
determined by

χ2 ≡
n∑
i=1

(
Oexp
i −Ofit

i

σexp
i

)2

, (3.30)

where Oexp
i denotes the experimental value of the observable Oi, σexp

i its experimental error
and Ofit

i the corresponding fit value.

Despite the overdetermination1 we find a perfect fit with χ2/dof ≈ 0.9 for NO in the neutrino
sector, with corresponding model parameters at the GUT scale given by

H =

 −0.00814 0.0292 −0.0894
0.0292 −0.217 2.49
−0.0894 2.49 −12.8

 , F =

 −0.00248 0. 0.
0. 0.0489 0.
0. 0. 30.7


rβ1 = −1.28 , rβ2 = 2.26 , r10,6 = 2.21 , r5,6 = −0.433 ,

c5,10 = 2.20 · e1.60 i , rε = 1.73 · 10−10 , (3.31)

and the fitted standard model fermion observables are summarized in Table 2. Using the

Fit result at the electroweak scale µ = MZ

fit pull fit pull
md(MeV) 3.44 −2.4 ∆12(eV2) 7.39× 10−5 0.63
ms(MeV) 50.4 1.4 ∆13(eV2) −0.76× 10−3 −0.19
mb(GeV) 2.85 0.27 sin θq12 0.225 0.56
mu(MeV) 1.32 −0.08 sin θq23 0.0414 0.1
mc(GeV) 0.63 −0.07 sin θq13 0.0035 1.1
mt(GeV) 171.58 0.08 sin2 θl12 0.302 0.37
me(MeV) 0.486 0.15 sin2 θl23 0.405 1.5
mµ(MeV) 102.76 −0.61 sin2 θl13 0.022 −0.26
mτ (GeV) 1.746 −0.04 δCKM 1.13 1.5

Table 2: Result of the fitting procedure, as described in the text. The pull of a fit value Ofit
i

is defined as pull(Ofit
i ) =

(
Oexp
i −Ofit

i

)
/σexp

i , where σexp
i is the corresponding experimental

error and Oexp
i the experimental value as given in Table 1.

above fit parameters, we can also make predictions for the neutrino Dirac phase, Majorana
phases and neutrino mass observables. Experiments that are sensitive to the absolute neutrino

1There must be two relations involving just SM observables, however due to the highly non-trivial depen-
dence on the fundamental parameters we were not able to find analytical expressions for these relations.
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mβ [meV] Σ [meV] mββ [meV] δ [◦] ϕ1 [◦] ϕ2 [◦]
Prediction 8.8± 0.5 59± 3 1.8± 0.1 157± 3 187± 4 159± 5

Current bound . 2000 [45] . 230 [45, 46] 200 [47, 48] - - -

Table 3: Predicted values and current bounds for the neutrino observables. The current
bounds were taken from Ref. [49]. As explained in the text, the ranges shown here correspond
to perturbations of the best fit point with χ2/dof . 10.

mass scale, like the KATRIN [36], MARE [37] , Project 8 [38], or ECHo [39] experiments,
measure the effective mass mβ defined by

mβ =
√∑

|Uei|2m2
i . (3.32)

In contrast, cosmology probes the sum of neutrino masses Σ =
∑
mi and neutrinoless double

beta decay experiments, like, for example, the GERDA [40], EXO-200 [41] or KamLAND-Zen
[42] experiments, tests the “effective Majorana mass"

mββ =
∣∣∣∑U2

eimi

∣∣∣ . (3.33)

To give an estimate for the robustness of these predictions in our model, we numerically
considered perturbations around the best fit point that reproduce the standard model fermion
observables with χ2/dof . 10. Our predictions and the resulting ranges for the above mass
observables and Dirac and Majorana phases are summarized in Table 3. While the mass
observables are all far below current and future sensitivity, we obtain a quite narrow range
for the Dirac phase δ ∈ [154, 157]◦, which might be verified or excluded with upcoming data
coming from neutrino oscillations, for example at Hyper-Kamiokande [43] or DUNE [44].

Finally we comment on the remaining free parameters that are left undetermined by the
fit to masses and and mixings. From 12 VEVs (see Eq. (2.4)) six are determined by the fit
and one by the electroweak scale (v2 = v2

u1 + v2
d1 + v2

u2 + v2
d2). From the remaining 5 VEVs,

V ′10 does not affect the neutrino sector given the hierarchy V ′10 ∼ V10 � Ṽ6, so for simplicity
we set V ′10 = V10 = Mν = vd2/rε ∼ 1011 GeV without any impact on the spectrum. We are
then left with four VEVs that are free parameters, which we take as vd1, |V c

10|, Ṽ6, Ṽ5. As the
two latter VEVs control the mass of heavy gauge bosons, they are bounded from below by
proton decay constraints, and we take Ṽ6 = Ṽ5 ≡ MGUT ∼ 5 · 1016 GeV. The VEV vd1 is
mainly bounded by requiring perturbative Yukawa couplings and does not have a big impact
on the spectrum, and for the sake of explicitness we fix vd1 = 70 GeV. The remaining scale M
is bounded from above by neutron EDM constraints, which require that the loop corrections
to the effective θ parameter remain sufficiently small. As we will discuss in the next section,
these higher-loop corrections are sufficiently suppressed if M ∼ 109 GeV.

4 Loop Contributions to θ

In Nelson-Barr models θ vanishes at tree-level by construction, but is generated at loop-level
due to higher order corrections to the effective Yukawa couplings. Therefore care has to be
taken to ensure that such corrections are sufficiently small in order to have θ < 10−10. The
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form of these (finite) corrections has already been discussed to large extent in the literature
for the original Nelson model [16] and in more general setups [18]. It turns out that such
corrections are in general suppressed by loop factors and small Yukawa couplings and/or
small mass ratios. While the contributions suppressed by Yukawas are always negligibly small
in Nelson-Barr type models where only the RH down quarks mix with heavy fields [18], the
contributions sensitive to UV physics are suppressed by ratios of the heavy RH down quark
masses over heavy gauge boson or heavy scalar masses [16, 19]. Thus they can be made
sufficiently small by lowering the mass scale of RH down quarks M , which in our setup is a
free parameter. In this section we (conservatively) estimate the leading corrections involving
heavy gauge bosons and scalars using a spurion analysis, showing that M ∼ 109 is enough to
render θ . 10−10.

In this spirit we work with a simplified Lagrangian before going to the light-heavy mass
basis, cf. Eq. (2.8)

L = qTλuuh+ qTλdd h̃+ dTmdDD + dTκ10DS10 + dTκ5DS5 +DTMDD + h.c. (4.34)

where we also included scalar couplings κ10, κ5 and all masses and couplings are real symmetric
3× 3 matrices except mdD that is complex symmetric

λu =
1

v
(Hrβ1 + Frβ2) , λd =

1

v
(H + F ) ,

mdD =
V c

10

vd1
(H + Fc5,10) , MD =

|V c
10|

vd1r10,6
(H + Fr5,6) ,

κ10 =
H

vd1

√
2
, κ5 =

F

vd2

√
2
. (4.35)

We are now interested in loop corrections to the Yukawa couplings λu,d that we write as

λtot
u = λu + ∆λu , λtot

d = λd + ∆λd . (4.36)

The effective SM Yukawa couplings yu,d are given by (cf. Eq. (2.15))

yu = λu + ∆λu = λu
[
1 + λ−1

u ∆λu
]
,

yd = (λd + ∆λd) ad = λdad
[
1 + a−1

d λ−1
d ∆λdad

]
. (4.37)

Therefore the effective θ parameter is

θ = arg det yuyd = Im tr log yu + Im tr log yd ,

= Im tr log
[
1 + λ−1

u ∆λu
]

+ Im tr log
[
1 + a−1

d λ−1
d ∆λdad

]
, (4.38)

where have used that λu, λd are real and ad is hermitian. Expanding the logarithms we finally
get

θ =
∑
n

1

n

[
Im tr

(
λ−1
u ∆λu

)n
+ Im tr

(
λ−1
d ∆λd

)n]
= Im tr

(
λ−1
u ∆λu + λ−1

d ∆λd
)

+ . . . (4.39)

We can now estimate the corrections ∆λu,d using a spurion analysis. Under unitary field
redefinitions f → Vff with f = q, u, d,D,D, the Lagrangian parameters transform as

λu → V T
q λuVu , λd → V T

q λdVd ,

mdD → V T
d mdDVD , MD → V T

DMDVD ,

κ10 → V T
d κ10VD , κ5 → V T

d κ5VD , (4.40)
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Since we can treat the masses mdD as insertions, the covariant expressions involving mdD and
MD that will enter the contributions to ∆λu,d can only be of the form

ξIR ≡ (mdD)∗(M−1
D )∗(M−1

D )T (mdD)T = Z†dZd ,

ξV ≡ m∗dDmT
dD/M

2
V , ξS ≡ κ∗imT

dDκ
∗
im

T
dD/M

2
S , (4.41)

where MV ,MS are the heavy gauge boson and scalar masses. These expressions transform as

ξIR,V,S → V †q ξIR,V,SVq , (4.42)

and are the only quantities that carry complex phases. The heaviest particle in the loop
diagram then determines the form of ξ, i.e. diagrams with only Higgs scalars, the “IR"
contributions, will involve ξIR, diagrams with heavy vectors ξV and diagrams with heavy
scalars ξS.

4.1 IR Contributions

For IR diagrams ξIR ∼ O(1), so one has to sum up all insertions leading effectively to a field
redefinition d→ add, and thus λd → λdad = yd which is the SM down Yukawa coupling. The
spurion analysis is then quite involved, since one has to take into account that the light quark
propagators can involve hermitian functions of yuy

†
u(ydy

†
d)
−1 arising from the integration over

loop momenta. In Ref. [18] it was shown that the leading contribution arises at three loop
and is given by

∆IRθ ∼
1

(4π2)3
Im tr

[
f1y
†
dyuy

†
uydf2y

†
dyd

]
∼ 10−16 , (4.43)

where the functions f1 6= f2 were taken to as O(1) hermitian matrices. Note that the strong
suppression is due to the fact that there is no mixing with heavy fields in the up and the LH
down sector.

4.2 Gauge Contributions

The most dangerous contributions involve the U(1)5 gauge boson, since all heavy gauge fields
live at MGUT. The spurion analysis is greatly simplified, because now the heavy gauge boson
dominates the loop momentum integration, and thus strongly suppresses the contributions
from propagators with non-trivial flavor structure. One can show that all one-loop contri-
butions vanish, and that the leading contribution arises from two-diagrams like Fig. 2 that
involve additional Higgs loops. An estimate gives

∆Vθ ∼
logM2

f /M
2
V

(4π2)2
Im tr

[
λ−1
d gqqλuλ

†
uλdξVgdd

]
, (4.44)

where gqq = g and gdd = −3g are the couplings of the U(1)5 gauge boson to quarks, MV is its
mass and Mf denotes the heaviest of the heavy vectorlike down quarks. All numerical values
depend only on M (fixing vd1 = 70 GeV). Taking M = 109 GeV implies MV = 2 · 1012 GeV
and Mf = 109 GeV, and taking for simplicity the GUT value of the U(1)5 gauge coupling
g ∼
√

4παGUT ∼
√

4π/24 ≈ 0.7, one finds

∆Vθ ∼ 3 · 10−11 . (4.45)
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h

VU(1)5

q d

h̃

Figure 2: Example of 2-loop diagram with heavy gauge fields.

4.3 Scalar Contributions

Analogously, all one loop diagrams with heavy scalars in the loop vanish, and the leading
contribution comes from a 2-loop diagram involving a U(1)Y and scalar loop, shown in Fig. 3.
This gives

S

VU(1)Y

q d

h̃

Figure 3: Example of 2-loop diagram with heavy scalar fields.

∆Sθ ∼
logM2

f /M
2
S

(4π2)2
Im tr

[
λ−1
d gYqqλdξSg

Y
dd

]
, (4.46)

where gYqq = gY /6 and gYdd = gY /3. Note that this term is simply proportional to the imaginary
part of the trace of ξS , which is in general not a hermitian matrix, and arises because we
assume an O(1) splitting between the masses of the scalar and pseudoscalar components of
the complex fields S5 and S10. For degenerate S5 and S10, the S5 contribution dominates since
it has larger couplings to the heavy fermions, and for M = 109 GeV, MS = Mν = 3 · 1011 GeV
and gY (109 GeV) ∼ 0.4 one gets

∆Sθ ∼ 4 · 10−11 . (4.47)

5 Summary and Conclusions

To summarize, we have shown that the Nelson-Barr mechanism can be naturally realized
in the context of an E6 GUT. The SM fermions are embedded in three generations of E6
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fundamentals together with the Nelson-Barr fields (vectorlike RH down quarks), a vectorlike
pair of LH lepton doublets and two RH neutrinos. All heavy mass terms arise from VEVs
of scalar fields in E6 representations, whose couplings to fermions are given by two 3 × 3
symmetric matrices. CP is imposed on the Lagrangian, and therefore all Yukawa couplings
are real. CP is broken spontaneously by two scalar VEVs that mix the chiral SM fermions
with the Nelson-Barr fields, through which CP violation is mediated to the low-energy theory.
By integrating out the heavy down-quarks, lepton doublets and neutrinos, we have derived
analytic formulas for all SM fermion mass matrices, including Majorana neutrino masses.
The resulting SM quark mass matrices are real (up sector) and the product of a real and a
hermitian matrix (down sector), thus implying that θ vanishes at tree-level.

Besides solving the strong CP problem with the Nelson-Barr mechanism, the main benefit
of the GUT setup is the predictivity in the fermion sector. The fundamental Yukawa matrices
contain just 9 parameters, which together with 6 real VEV ratios and a single complex phase
determine the complete SM fermion sector including neutrinos (17 real observables + 1 CKM
phase). Surprisingly, we nevertheless obtain a perfect fit with χ2/dof ≈ 0.9, implying that
there are two relations among SM observables that hold to good precision, but unfortunately
we were not able to derive them in closed form due to the complexity of the analytical expres-
sions. Since all low-energy parameters of the model are fixed, we obtain definite predictions
for the neutrino sector that makes this model testable in the near future, as shown in Table 3.
Particularly interesting is the prediction of the Dirac CP phase δCP = 157 ± 3◦, which is di-
rectly correlated with the CKM phase, and will be verified or excluded by future experiments
like Hyper-Kamiokande [43] or DUNE [44].

The fit to the fermion sector determines the absolute mass scales only in the neutrino
sector, fixing the mass of RH neutrinos at about Mν ∼ 1011 GeV (there is another SM singlet
around the GUT scale MGUT ∼ 5 · 1016 GeV). The overall mass scale in the heavy RH
down and LH lepton sector M is left undetermined, but bounded from above to keep loop
corrections to θ sufficiently small. The leading loop contributions from diagrams involving
heavy gauge bosons and heavy scalars are suppressed by mass ratios M2/M2

V,S , and we have
(conservatively) estimated that M = 109 GeV is enough to render θ < 10−10. This essentially
fixes all heavy mass scales in our model, as sketched in Fig. 1.
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A E6 Decomposition

E6 SO(10)× U(1)10 SU(5)× U(1)5 × U(1)10 SM
27F 161 101,1 = t q, u, e

5−3,1 = f d, l
15,1 N

10−2 52,−2 = F D,L

5−2,−2 = F D,L

14 10,4 N ′

27S 161 101,1

5−3,1 hc
27,16,5

15,1 s27,16,1

10−2 52,−2 hc
27,10,5

5−2,−2 h27,10,5

14 10,4 s27,1,1

78S 450 240,0 s78,45,24
104,0

10−4,0

10,0 s78,45,1

16−3 101,−3

5−3,−3 hc
78,16,5

15,−3 s78,16,1

163 10−1,3

53,3 h78,16,5
1−5,3 s78,16,1

10 10,0 s78,1,1

351′S 1441 45−3,1 hc
351,144,45

401,1

245,1 s351,144,24
151,1

101,1

5−7,1 h351,144,5
5−3,1 hc

351,144,5

126−2 50−2,−2

452,−2 hc
351,126,45

156,−2

10−6,−2

5−2,−2 h351,126,5
1−10,−2 s351,126,1

544 240,4 s351,54,24
154,4

15−4,4

16−5 10−1,−5

53,−5 h351,16,5
1−5,−5 s351,16,1

10−2 52,−2 hc
351,10,5

5−2,−2 h351,10,5

1−8 10,−8 s351,1,1
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