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Abstract

The forthcoming precision data on lepton flavour violating (LFV) decays require
precise and efficient calculations in New Physics models. In this article lepton flavour
violating processes within the Minimal Supersymmetric Standard Model (MSSM)
are calculated using the method based on the Flavour Expansion Theorem, a re-
cently developed technique performing a purely algebraic mass-insertion expansion
of the amplitudes. The expansion in both flavour-violating and flavour-conserving
off-diagonal terms of sfermion and supersymmetric fermion mass matrices is con-
sidered. In this way the relevant processes are expressed directly in terms of the
parameters of the MSSM Lagrangian. We also study the decoupling properties of
the amplitudes. The results are compared to the corresponding calculations in the
mass eigenbasis (i.e. using the exact diagonalization of the mass matrices). Using
these methods, we consider the following processes: ` → `′γ, ` → 3`′, ` → 2`′`′′,
h → ``′ as well as µ → e conversion in nuclei. In the numerical analysis we up-
date the bounds on the flavour changing parameters of the MSSM and examine the
sensitivity to the forthcoming experimental results. We find that flavour violating
muon decays provide the most stringent bounds on supersymmetric effects and will
continue to do so in the future. Radiative ` → `′γ decays and leptonic three-body
decays `→ 3`′ show an interesting complementarity in eliminating ”blind spots” in
the parameter space. In our analysis we also include the effects of non-holomorphic
A-terms which are important for the study of LFV Higgs decays.
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1 Introduction

So far, the LHC did not observe any particles beyond those of the Standard Model (SM).
Complementary to direct high energy searches at the LHC, there is a continuous effort
in indirect searches for new physics (NP). In this respect, a promising approach is the
search for processes which are absent – or extremely suppressed – in the SM such as lepton
flavour violation (LFV) which is forbidden in the SM in the limit of vanishing neutrino
masses. The experimental sensitivity for rare LFV processes such as ` → `′γ, µ → e
conversion in nuclei and `→ `′µ+µ− or `→ `′e+e− will improve significantly in the near
future, probing scales well beyond those accessible at foreseeable colliders. Furthermore,
the discovery of the 125 GeV Higgs boson h [1,2] has triggered an enormous experimental
effort in measuring its properties, including studies of its LFV decays. The most recent
experimental limits on the LFV processes are given in Table 2 in Sec. 5.

Many studies of LFV processes within the MSSM (and possible extensions of it) exist
(see e.g. Refs. [3–27] and Ref. [28] for a recent review). In this article we revisit this subject
in the light of the new calculational methods which have been recently developed [29,30].
These methods allow for a systematic expansion of the amplitudes of the LFV processes in
terms of mass insertions (MI), i.e. in terms of off-diagonal elements of the mass matrices.
We show that a transparent qualitative behaviour of the amplitudes of the LFV processes
is obtained by expanding them not only in the flavour-violating off-diagonal terms in the
sfermion mass matrices but also in the flavour conserving but chirality violating entries
related to the tri-linear A-terms as well as in the off-diagonal terms of the gaugino and
higgsino mass matrices. This procedure is useful because in the MI approximation we work
directly with the parameters of the Lagrangian and can therefore easily put experimental
bounds on them. We compare the results of the calculations performed in the mass
eigenbasis (i.e. using a numerical diagonalization of the slepton mass matrices) with those
obtained at leading non-vanishing order of the MI approximation, in different regions of
the supersymmetric parameter space and considering various decoupling limits. Of course,
the MI approximation [31, 32] has already been explored for many years as a very useful
tool in flavour physics. However, a detailed comparison between the full calculation and
the MI approximation is still lacking, partly because a fully systematic discussion of the
MI approximation [29] to any order and the technical tools facilitating it [30] have not
been available until recently.

Concerning the phenomenology, we summarise and update the bounds on the flavour
violating SUSY parameters, show their complementarity and examine the impact of the
anticipated increase in the experimental sensitivity. We investigate in detail the decay
h → µτ showing the results in various decoupling limits and analyse the role of the so-
called non-holomorphic A-terms [33, 34], which are usually neglected in literature. As
another novel feature, we avoid simplifying assumptions on the sparticle spectrum and
assume neither degeneracies nor hierarchies among the supersymmetric particles.

This article is structured as follows: in Sec. 2 we establish our conventions and present
the results for the 2-point, 3-point, and 4-point functions related to flavour violating
charged lepton interactions in the mass eigenbasis, i.e. expressed in terms of rotation
matrices and physical masses. Sec. 3 contains the formula for the decay rates of the
processes under investigation. In Sec. 4 we discuss the MI expansion and summarise
important properties of the decoupling limits MSUSY → ∞ and MA → ∞. In Sec. 5 we
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present the numerical bounds on LFV parameters obtained from current experimental
measurements and discuss the dependence of the results on the SUSY spectrum. We also
discuss the correlations between the radiative decays and the 3-body decays of charged
lepton as well as the non-decoupling effects in LFV neutral Higgs decays. Finally we
conclude in Sec. 6. All required Feynman rules used in our calculations are collected in
appendix A. The definitions of loop integrals can be found in appendix B. In appendix C
we explain the notation for the “divided differences” of the loop functions used in the
expanded form of the amplitudes. The expression for the 4-lepton box diagrams and for
the MI-expanded expression of the amplitudes are given in the appendices D and E,
respectively.

2 Effective LFV interactions

In this Section we collect the analytical formula in the mass eigenbasis for flavour violating
interactions generated at the one-loop level1. We use the notation and conventions for
the MSSM as given in Ref. [33,34]2.

In our analysis, we include the so-called non-holomorphic trilinear soft SUSY breaking
terms:

Lnh =
3∑

I,J=1

2∑
i=1

(
A

′IJ
l H2?

i L
I
iR

J + A
′IJ
d H2?

i Q
I
iD

J + A
′IJ
u H1?

i Q
I
iU

J + H.c.
)
, (2.1)

which couple up(down)-sfermions to the down(up)-type Higgs doublets. Here, as through-
out the rest of the paper, capital letters I, J = 1, 2, 3 denote flavour indices and the small
letters i = 1, 2 are SU(2)L indices.

2.1 γ − `− `′ interactions

We define the effective Lagrangian for flavour violating couplings of leptons to on-shell
photons as

L`γ = −e
∑
I,J

(
F JI
γ

¯̀JσµνPL`
I + F IJ∗

γ
¯̀JσµνPR`

I
)
F µν , (2.2)

The SM contribution to F JI
γ is suppressed by powers of m2

ν/M
2
W and thus completely

negligible. In the mass eigenbasis the supersymmetric contributions to F JI
γ come from

the diagrams displayed in Fig. 1. Let us decompose Fγ in the following way

F JI
γ = F JI

γA −mJF
JI
γLB −mIF

JI
γRB , (2.3)

1Note that these expressions are not valid in the flavour conserving case where additional terms should
be included and renormalization is required.

2The conventions of [33, 34] are very similar to the later introduced and now widely accepted
SLHA2 [35] notation, up to the minor differences summarised in the Appendix A.
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lI lJ

γ

L̃kL̃k

Nn
lI lJ

γ

CnCn

ν̃K
lI

lJ
lJ

γ

L̃k(ν̃K)

Nn(Cn)

Figure 1: One-loop supersymmetric contributions to the LF violating effective lepton-photon
interaction (mirror-reflected self-energy diagram not shown).

with

(4π)2F JI
γA =

3∑
K=1

2∑
n=1

V JKn∗
`ν̃C,R V

IKn
`ν̃C,L mCnC11(mCn ,mν̃K )

− 1

2

6∑
k=1

4∑
n=1

V Jkn∗
`L̃N,R

V Ikn
`L̃N,L

mNnC12(mL̃k
,mNn) ,

(4π)2F JI
γLB = −

3∑
K=1

2∑
n=1

V JKn∗
`ν̃C,L V

IKn
`ν̃C,L C23(mCn ,mν̃K )

+
1

2

6∑
k=1

4∑
n=1

V Jkn∗
`L̃N,L

V Ikn
`L̃N,L

C23(mL̃k
,mNn) . (2.4)

Here, V abbreviates the tree-level lepton-slepton-neutrino and lepton-sneutrino-chargino
vertices, i.e. the subscripts of V stand for the interacting particles and the chirality of
the lepton involved. The super-scripts refer to the lepton or slepton flavour as well as to
the chargino and neutralino involved. The specific form of the chargino and neutralino
vertices VL(R) is defined in Appendix A and the 3-point loop functions Cij are given in
Appendix B. FγA (FγLB) denotes the parts of the amplitude which is (not) proportional
to the masses of fermions exchanged in the loop. FγRB can be obtained from FγLB by
exchanging L↔ R on the RHS of Eq. (2.4).

Gauge invariance requires that LFV (axial) vectorial photon couplings vanish for on-
shell external particles. However, off-shell photon contributions are necessary to calculate
three body decays of charged leptons. The vectorial part of the amplitude for the γ``′

vertex can be written as

iAJI µγ = ieq2ūJ(pJ)
(
ΓJIγLPL + ΓJIγRPR

)
γµuI(pI) , (2.5)

where q = pI − pJ and ΓJIγL is at the leading order in p2/M2
SUSY momentum independent

and reads

ΓJIγL =
3∑

K=1

2∑
n=1

V JKn∗
`ν̃C,L V

IKn
`ν̃C,L C01(mCn ,mν̃K )

−
6∑

k=1

4∑
n=1

V Jkn∗
`L̃N,L

V Ikn
`L̃N,L

C02(mNn ,mL̃k
) . (2.6)
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lI lJ

Z0

L̃k(ν̃K)L̃k(ν̃K)

Ni(Ci)
lI lJ

Z0

Ni(Ci)Ni(Ci)

L̃k(ν̃K)
lI

lJ
lJ

Z0

L̃k(ν̃K)

Ni(Ci)

Figure 2: One-loop supersymmetric contributions to the LFV effective lepton-Z0 interaction
(the mirror-reflected self-energy diagram not shown).

ΓJIγR can be obtained by replacing L↔ R. Again, the loop functions C01, C02 are defined
in Appendix B.

Finally, one should note that for heavy MSSM spectrum the 2-loop Barr-Zee dia-
grams [36] involving the non-decoupling LFV Higgs interactions (see Sec. 5.4) are impor-
tant and have to be included [37–42].

2.2 Z − `− `′ interactions

In order to calculate the three body decays of charged leptons as to be considered in
Sec. 3.3 it is sufficient to calculate the effective Z − ` − `′ interactions in the limit of
vanishing external momenta. The Wilson coefficients of the effective Lagrangian for the
Z coupling to charged leptons are generated at one-loop level by the diagrams shown in
Fig. 2 and can be written as

LJI`Z =
(
F JI
ZL

¯̀JγµPL`
I + F JI

ZR
¯̀JγµPR`

I
)
Zµ , (2.7)

with

F JI
ZL = ΓJIZL −

e(1− 2s2
W )

2sW cW
ΣJI
V L(0) ,

F JI
ZR = ΓJIZR +

esW
cW

ΣJI
V R(0) . (2.8)

Here, ΓZL(R) denote the contribution originating from the one-particle irreducible (1PI)
vertex diagram and ΣV L(R) is the left-(right-)handed part of the lepton self-energy defined
as

ΣJI(p2) = ΣJI
V L(p2) /pPL + ΣJI

V R(p2) /pPR + ΣJI
mL(p2)PL + ΣJI

mR(p2)PR . (2.9)

Contrary to the left- and right-handed magnetic photon-lepton couplings, which change
chirality, the Z ¯̀I`J coupling is chirality conserving. Therefore, the Wilson coefficients of
the left-handed and right-handed couplings are not related to each other but rather satisfy
F IJ
ZL(R) = F JI∗

ZL(R). In the mass eigenbasis the vectorial part of the lepton self-energy and
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the 1PI triangle diagrams are given by (see Appendix A for definitions of vertices V )

(4π)2ΣJI
V L(p2) =

2∑
i=1

3∑
K=1

V IKi
`ν̃C,LV

JKi ∗
`ν̃C,LB1(p,mν̃K ,mCi

)

+
4∑
i=1

6∑
j=1

V Iji

`L̃N,L
V Jji ∗
`L̃N,L

B1(p,mLj
,mNi

) , (2.10)

(4π)2ΓJIZL =
1

2

2∑
i,j=1

3∑
K=1

V IKi
`ν̃C,LV

JKj∗
`ν̃C,L

(
V ij
CCZ,LC2(mν̃K ,mCi

,mCj
)

− 2V ij
CCZ,RmCi

mCj
C0(mν̃K ,mCi

,mCj
)
)

+
e

4sW cW

2∑
i=1

3∑
K=1

V IKi
`ν̃C,LV

JKi∗
`ν̃C,L C2(mν̃K ,mν̃K ,mCi

)

+
1

2

6∑
j=1

4∑
i,k=1

V Iji

`L̃N,L
V Jjk ∗
`L̃N,L

(
V ik
NNZ,LC2(mLj

,mNi
,mNk

)

− 2V ik
NNZ,RmNi

mNk
C0(mLj

,mNi
,mNk

)
)

− 1

2

6∑
j,k=1

4∑
i=1

V Iji

`L̃N,L
V Jki ∗
`L̃N,L

V jk
LLZC2(mLj

,mLk
,mNi

) , (2.11)

at vanishing external momenta with obvious replacements L↔ R for ΣJI
V R, ΓJIZR.

2.3 LFV Higgs interactions

To compactify the notation, we denote the CP-even Higgs boson decays by HK
0 → ¯̀I`J ,

where, following again the notation of [33, 34], H ≡ H1
0 , h ≡ H2

0 . As usual, we denote
CP-odd neutral Higgs boson by A0.

In order to study h → ``′ decays precisely, we keep the terms depending on the
external Higgs mass. Therefore, we assume the following effective action governing the
LFV Higgs-lepton interaction:

A`Heff = ¯̀J(kJ)(F JIK
h` (kJ , kI)PL + F IJK∗

h` (kJ , kI)PR)`I(kI)H
K
0 (kI − kJ)

+ ¯̀J(kJ)(F JI
A` (kJ , kI)PL + F IJ∗

A` (kJ , kI)PR)`I(kI)A0(kI − kJ) . (2.12)

In addition, to calculate the µ → e conversion rate one needs to include the effective
Higgs-quark couplings. For this purpose, one can set all external momenta to zero and
consider the effective Lagrangian

LqHeff = ūJ(F JIK
hu PL + F IJK∗

hu PR)uIHK
0 + d̄J(F JIK

hd PL + F IJK∗
hd PR)dIHK

0 . (2.13)

However, in this article we consider only the lepton sector and therefore do not give
the explicit forms of Higgs quark couplings. The relevant 1-loop expressions in the same
notation as used in the current paper are given in Ref. [43] and the formulae that take into
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lI
kI

lJ
kJ

HK
0 (A0)

q

L̃lL̃i

N j
lI lJ

HK
0 (A0)

N lN i

L̃j

lI lJ

HK
0 (A0)

N i

L̃j

Figure 3: Slepton-neutralino diagrams contributing to the HK
0 → `I ¯̀J and A0 → `I ¯̀J decays

in the MSSM (the mirror-reflected self-energy diagram is omitted).

account also non-decoupling chirally enhanced corrections and 2-loop QCD corrections in
the general MSSM can be found in Refs. [44–46]3.

At the 1-loop level there are eight diagrams contributing to the effective lepton Yukawa
couplings. The ones with slepton and neutralino exchange are displayed in Fig. 3, while
diagrams with the chargino exchange can be obtained by the obvious replacements N →
C,L→ ν̃.

The expressions for Fh are obtained from 1PI triangle diagrams and the scalar part of
lepton self-energies (see Eq. (2.9)) while the chirality conserving parts of the self-energies
are absorbed by a field rotation required to go to the physical basis with a diagonal lepton
mass matrix. Therefore,

F JIK
h (kJ , kI) = ΓJIKh (kJ , kI)−

Z1K
R

v1

ΣJI
mL(0) ,

F JI
A (kJ , kI) = ΓJIA (kJ , kI)−

i sin β

v1

ΣJI
mL(0) , (2.14)

where the ZR denotes the CP-even Higgs mixing matrix (see Appendix A) and the scalar
self-energy contributions are evaluated at zero momentum transfer and given by:

(4π)2ΣJI
mL(0) =

2∑
i=1

3∑
L=1

mCi
V ILi
`ν̃C,LV

JLi ∗
`ν̃C,R B0 (0,mν̃L ,mCi

)

+
4∑
i=1

6∑
j=1

mNi
V Iji

`L̃N,L
V Jji ∗
`L̃N,R

B0 (0,mLj
,mNi

) (2.15)

The neutralino-slepton contributions to the 1PI vertex diagrams can be written as (the

3Earlier accounts on chiral resummation can be found in Refs. [47–55]
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lI lJ

lK(qK)

lL(qL)

Figure 4: Box diagrams with external charged leptons or quarks

symbols in square brackets denote common arguments of the 3-point functions)4

(4π)2ΓJIKh (kJ , kI) = −
4∑

n=1

6∑
l,m=1

V Jmn∗
`L̃N,L

V Iln
`L̃N,L

V Klm
HL̃L̃

mNnC0[kJ , kI − kJ ,mNn ,mL̃m
,mL̃l

]

−
4∑

l,n=1

6∑
m=1

V Jnm∗
`L̃N,R

V Inl
`L̃N,L

(V lKm
NHN,RC2 + V lKm

NHN,LmNl
mNmC0)[kJ , kI − kJ ,mL̃n

,mNm ,mNl
] ,

(4π)2ΓJIA (kJ , kI) = −
4∑

n=1

6∑
l,m=1

V Jmn∗
`L̃N,L

V Iln
`L̃N,L

V 1lm
AL̃L̃

mNnC0[kJ , kI − kJ ,mNn ,mL̃m
,mL̃l

]

−
4∑

l,n=1

6∑
m=1

V Jnm∗
`L̃N,R

V Inl
`L̃N,L

(V l1m
NAN,RC2 + V l1m

NAN,LmNl
mNmC0)[kJ , kI − kJ ,mL̃n

,mNm ,mNl
] ,

(2.16)

while the chargino-sneutrino triangle diagram is obtained by replacing L̃ → ν̃, N → C
and adjusting the summation limits appropriately in vertex factors V ...

... (see Appendix A).

2.4 Box contributions

4-fermion interactions are also generated by box diagrams. The corresponding conventions
for incoming and outgoing particles are shown in Fig. 4. We calculate all box diagrams
in the approximation of vanishing external momenta. The effective Lagrangian for the
4-lepton interactions involves the quadrilinear operators

OJIKL
V XY = (¯̀JγµPX`

I)× (¯̀KγµPY `
L) ,

OJIKL
SXY = (¯̀JPX`

I)× (¯̀KPY `
L) ,

OJIKL
TX = (¯̀Jσµν`I)× (¯̀KσµνPX`

L) , (2.17)

4As we shall see later using MI expanded formulae (see Appendix E.3), due to strong cancellations the
leading order terms in Eqs. (2.15, 2.16) are suppressed by the ratios of m`/MW or A′

l/MSUSY . Additional
terms linear in m`/MW , not included in Eq. (2.16), appear in 1PI vertex diagrams when external lepton
masses are not neglected. We calculated such terms and proved explicitly that after performing the MI
expansion they are suppressed by additional powers of v2/M2

SUSY and therefore, a posteriori, negligible.
Thus, we do not display such terms in Eq. (2.16).
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where X, Y stands for the chirality L or R5. The Wilson coefficients of these operators
are calculated from the box diagrams in Fig. 4 and are denoted by BJIKL

NXY with N = V ,S,
or BJIKL

TX .
The operator basis in Eq. (2.17) is redundant. First, we note that

OJIKL
NXY = OKLJI

NY X for N = V, S,

OJIKL
TX = OKLJI

TX . (2.18)

Second, there are Fierz relations among different operators:

OJIKL
V XX = OKIJL

V XX ,

OJIKL
V XY = − 2OKIJL

SXY for X 6= Y,

OJIKL
TX =

1

2
OKIJL
TX − 6OKIJL

SXX ,

OJIKL
SXX = −1

2
OKIJL
SXX −

1

8
OKIJL
TX . (2.19)

Furthermore, we have

OJIKL †
V XY = OIJLK

V XY , OJIKL †
SLL = OIJLK

SRR ,

OJIKL †
SLR = OIJLK

SRL , OJIKL †
TL = OJILK

TR . (2.20)

Eqs. (2.18) to (2.20) must be taken into account when deriving the effective Lagrangian.

2.4.1 Leptonic operators with J 6= K and I 6= L

The case with both J 6= K and I 6= L covers the decays τ∓ → µ∓e∓`± with ` = e or
µ, but does not appear in µ∓ decays. We can therefore specify to I = 3 for the effective
Lagrangian. Furthermore, we can choose either (J,K) = (1, 2) or (J,K) = (2, 1) without
the need to sum over both cases: The Fierz identities in Eq. (2.19) permit to bring all
operators into the form (e . . . τ) × (µ . . . `) (corresponding to the case (J,K) = (1, 2)) or
into an alternative form with e interchanged with µ. Thus we have

LJ3KL
4` =

∑
L=1,2

 ∑
N=V,S

X,Y=L,R

BJ3KL
NXY O

J3KL
NXY +

∑
X=L,R

BJ3KL
TX OJ3KL

TX

 + h.c.

with J 6= K and J,K, L ≤ 2, (2.21)

as the four-lepton interaction in the Lagrangian. Note that the “+h.c.” piece of LJK4`

describes τ+ decays.
The Wilson coefficients BJ3KL

NXY and BJ3KL
TX in Eq. (2.21) are simply identical to the

results of the sum of all contributing box diagrams to the decay amplitude. The latter
is given in Eq. (3.7) with the coefficients of the spinor structure in the right column of
Tab. 1. The relation to the analytic expressions in Eqs. (D.3) to (D.6) is

BJIKL
NXY = BJIKL

ANXY +BJIKL
BNXY +BJIKL

C NXY +BJIKL
DNXY , for N = V, S (2.22)

and an analogous expression for BJIKL
TX .

5Recall that (¯̀JσµνPL`
I)× (¯̀KσµνPR`

L) = 0.
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2.4.2 Leptonic operators with J = K and I 6= L

The case J = K occurs for the decays µ± → e±e±e∓ and τ± → `±`±`∓′ with `, `′ = e, µ.
Thanks to the Fierz identities in Eq. (2.19) we may restrict the operator basis to

OJIJL
V XX , OJIJL

V XY = −2OJIJL
SXY , OJIJL

SXX = − 1

12
OJIJL
TX ,

with X, Y = L,R and X 6= Y. (2.23)

The four-lepton piece of the effective Lagrangian for the decay `I∓ → `J∓`J∓`L± reads:

LJIJL4` =
∑
L=1,2

[ ∑
X,Y=L,R

C̃JIJL
V XY O

JIJL
V XY +

∑
X=L,R

C̃JIJL
SXXO

JIJL
SXX

]
+ h.c.

with L, J < I. (2.24)

For the matching calculation it is useful to quote the tree-level matrix elements of the
operators:

〈lJ−(pJ , sJ)lJ−(p′J , s
′
J)lL+(pL, sJ)|OJIJL

V XX |lI−(pI , sI)〉
= [ū(pJ , sJ)γµPXu(pI , sI)][ū(p′J , s

′
J)γµPXv(pL, sL)]

− [ū(p′J , s
′
J)γµPXu(pI , sI)][ū(pJ , sJ)γµPXv(pL, sL)]

= 2 [ū(pJ , sJ)γµPXu(pI , sI)][ū(p′J , s
′
J)γµPXv(pL, sL)]

〈lJ−(pJ , sJ)lJ−(p′J , s
′
J)lL+(pL, sJ)|OJIJL

V XY |lI−(pI , sI)〉
= [ū(pJ , sJ)γµPXu(pI , sI)][ū(p′J , s

′
J)γµPY v(pL, sL)]

− [ū(p′J , s
′
J)γµPXu(pI , sI)][ū(pJ , sJ)γµPY v(pL, sL)]

= [ū(pJ , sJ)γµPXu(pI , sI)][ū(p′J , s
′
J)γµPY v(pL, sL)]

− 2 [ū(pJ , sJ)PXu(pI , sI)][ū(p′J , s
′
J)PY v(pL, sL)], for X 6= Y,

〈lJ−(pJ , sJ)lJ−(p′J , s
′
J)lL+(pL, sJ)|OJIJL

SXX |lI−(pI , sI)〉
= [ū(pJ , sJ)PXu(pI , sI)][ū(p′J , s

′
J)PXv(pL, sL)]

− [ū(p′J , s
′
J)PXu(pI , sI)][ū(pJ , sJ)PXv(pL, sL)]

=
1

2
[ū(pJ , sJ)PXu(pI , sI)][ū(p′J , s

′
J)PXv(pL, sL)]

− 1

8
[ū(pJ , sJ)σµνPXu(pI , sI)][ū(p′J , s

′
J)σµνPXv(pL, sL)] (2.25)

Here we have used the Fierz transform to group the spinors into the canonical order
[ū(pJ , ...)...u(pI , ...)][ū(p′J , ...)...v(pL, ...)]. This allows us to use the same formula for spin-
summed squared matrix elements as in the case of J 6= K of Sec. 2.4.1.

To quote the Wilson coefficients C̃JIJL
NXY , N = V, S in terms of the box diagrams BJIJL

NXY

in Eq. (2.22) we must compare the results of the MSSM decay amplitude in Eq. (3.6) with
the matrix elements in Eq. (2.25) and read off coefficients of the various Dirac structures.
The result is

C̃JIJL
V XX =

1

2
BJIJL
V XX ,

C̃JIJL
V XY = BJIJL

V XY for X 6= Y,

C̃JIJL
SXX = 2BJIJL

SXX . (2.26)
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The Fierz identities further imply the equalities

BJIJL
SXY = −2BJIJL

V XY for X 6= Y,

BJIJL
TX = −1

4
BJIJL
SXX . (2.27)

2.4.3 Leptonic operators with J = K and I = L

These operators do not appear in lepton decays, but trigger muonium-antimuonium tran-
sitions and describe muon or tau pair production in e−–e− collisions at energies far below
MSUSY . Their Wilson coefficients are tiny in the MSSM.

2.4.4 Operators with two leptons and two quarks

The analogous Lagrangian for the 2-lepton–2-quark interactions reads

LIJKL2`2q =
∑
N,X,Y

BIJKL
qNXYO

JIKL
qNXY (2.28)

where

OIJKL
q V XY = (¯̀

Iγ
µPX`J)× (q̄KγµPY qL) ,

OIJKL
q SXY = (¯̀

IPX`J)× (q̄LPY qK) ,

OIJKL
q TX = (¯̀

Iσ
µν`J)× (q̄KσµνPXqL) . (2.29)

Again, we consider only purely leptonic contributions here in detail but do not give explicit
expressions for the 2-lepton–2-quark box diagrams. The relevant expressions in the mass
eigenbasis can be found using formulae of Appendix D and inserting proper quark vertices
from Refs. [33,34] into these.

3 Observables

In this Section we collect the formulae for the LFV observables in terms of the effective
interactions defined in Sec. 2. All the processes listed here will be included in the future
version of the SUSY FLAVOR numerical library calculating an extensive set of flavour
and CP-violating observables both in the quark and leptonic sectors [56–58].

3.1 Radiative lepton decays: `I → `Jγ

The branching ratios for the radiative lepton decays `I → `Jγ are given by

Br(`I → `Jγ) =
48π2e2

m2
IG

2
F

(
|F JI
γ |2 + |F IJ

γ |2
)

Br(`I → eνν) . (3.1)

Here we used Γ(`I → eνν) ≈ G2
Fm

5
I/(192π3) for the tree-level leptonic decay width and

the factors Br(µ → eνν) ≈ 1, Br(τ → eνν) = 0.1785 ± 0.0005 [59] are introduced to
account for the hadronic decay modes of the τ lepton.
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Even though in our numerical analyses we restrict ourselves to LFV processes, we
remind the reader that the expressions for the anomalous magnetic moments and electric
dipole moments of the charged leptons can be also calculated in term of the quantities
defined in Eq. (2.4) and read:

∆aI = −4mI Re
[
F II
γA −mI

(
F II
γLB + F II

γRB

)]
, (3.2)

dIl = −2e ImF II
γA (3.3)

3.2 h(H)→ ¯̀I`J decays

The decay branching ratios for the CP-even and CP-odd Higgs bosons read:

Br(HK
0 → `I+`J−) =

mHK
0

16πΓHK
0

(∣∣F IJK
h

∣∣2 +
∣∣F JIK

h

∣∣2)
Br(A0 → `I+`J−) =

mA

16πΓA

(∣∣F IJ
A

∣∣2 +
∣∣F JI

A

∣∣2) (3.4)

with F IJK
h , F IJ

A defined in Eq. (2.14). Note that summing over lepton charges in the final
state, `I+`J− and `J+`I−, would produce an additional factor of 2.

3.3 `I → `J`K ¯̀L decays

The LFV decays of charged lepton into three lighter ones can be divided into 3 classes,
depending on the flavours in the final state:

(A) `→ `′`′`′: Three leptons of the same flavour, i.e. µ± → e±e+e−, τ± → e±e+e− and
τ± → µ±µ+µ−, with a pair of opposite charged leptons.

(B) `± → `′±`′′+`′′−: Three distinguishable leptons with `′ carrying the same charge as
`, i.e. τ± → e±µ+µ− and τ± → µ±e+e−.

(C) `± → `′∓`′′+`′′−: Three distinguishable leptons with `′ carrying the opposite charge
as `, i.e. τ± → e∓µ±µ± and τ± → µ∓e±e±.

Class (C), representing a ∆L = 2 processes, is tiny within the MSSM: it could only
be generated at 1-loop level by box diagrams suppressed by double flavour changes, or at
the 2-loop level by double penguin diagrams involving two LFV vertices. Therefore, we
will not consider these process in our numerical analysis.
In order to calculate Br(`I → `J`K ¯̀L) we decompose the corresponding amplitude A as

A = A0 + Aγ , (3.5)

The relevant diagrams are displayed in Fig. 5. A0 contains contributions from 4-lepton
box diagrams and from penguin diagrams (including vector-like off-shell photon couplings,
see Eq. (2.5)) which in the limit of vanishing external momenta can be represented as the
4-fermion contact interactions. Aγ is the on-shell photon contribution originating from
the magnetic operator (see Eq. (2.2)) which has to be treated separately with more care
as the photon propagator becomes singular in the limit of vanishing external momenta.

13



I)

ℓI
pI

ℓJpJ

ℓ̄L
pL

ℓK
pK

II)

ℓI

ℓJ

V

ℓ̄K

ℓK

Figure 5: Diagrams contributing to `I → `J`K ¯̀L decay. I): 1PI irreducible box diagrams; II):
penguin diagrams with V = Z, γ, h,H or A. For K = J crossed diagrams must be also included.

We further decompose A0 for the two cases (A) and (B) according to its Lorentz
structure:

A
(A)
0 =

∑
Q=V,S,T

C
(A)
Q,XY [ū(pJ)Γ′QPXu(pI)][ū(p′J)ΓQPY v(pL)]] , (3.6)

A
(B)
0 =

∑
Q=V,S,T

C
(B)
Q,XY [ū(pJ)Γ′QPXu(pI)][ū(pK)ΓQPY v(pL)]] . (3.7)

with X, Y = L,R. Note that the amplitude A
(A)
0 in general contains a second term

which is obtained from the one given in Eq. (3.6) by replacing (pJ ↔ p′J). However, one
can use Fierz identities to reduce it to the structure given in Eq. (3.6). The basis of
Dirac quadrilinears ΓQ is the same as the one used to decompose 4-lepton box diagrams
in Eq. (2.17):

ΓS = 1 , ΓV = γµ , ΓT = σµν , (3.8)

and Γ′Q is obtained from ΓQ by lowering the Lorentz indices.
The amplitudes originating from on-shell photon exchange are given by

A(A)
γ =

e

(pI − pJ)2
[ū(pJ)iσµν(CγLPL + CγRPR)(pI − pJ)νu(pI)][ū(p′J)γµv(pL)]

−(pJ ↔ p′J)

A(B)
γ =

e

(pI − pJ)2
[ū(pJ)iσµν(CγLPL + CγRPR)(pI − pJ)νu(pI)][ū(pK)γµv(pL)].(3.9)

The full form of the coefficients C
(A,B)
N , Cγ is displayed in Table 1, where we compact-

ified the expressions by using the following abbreviations for the Higgs penguin contribu-
tions6:

V JI
H =

2∑
N=1

Z1N
R

m2
HN

0

F JIN
h , V JI

A =
i sin β

m2
A0

F JI
A . (3.10)

Note that in Eq. (3.7) and Eq. (3.9) we do not explicitly display flavour indices, but they
are specified in Table 1.

6Note that we define lepton Yukawa coupling appearing in Table 1 to be negative, Y Il = −
√

2mI
l /v1
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Decay (A) Decay (B)

CV LL BJIJJ
V LL −

e(1−2s2W )

sW cWM2
Z
F JIZL + 2e2V JI

γL BJIKK
V LL − e(1−2s2W )

2sW cWM2
Z
F JIZL + e2V JI

γL

CV RR BJIJJ
V RR + 2esW

cWM2
Z
F JIZR + 2e2V JI

γR BJIKK
V RR + esW

cWM2
Z
F JIZR + e2V JI

γR

CV LR BJIJJ
V LR + esW

cWM2
Z
F JIZL + e2V JI

γL + 1
2Y

J
l (V IJ∗

H − V IJ∗
A ) BJIKK

V LR + esW
cWM2

Z
F JIZL + e2V JI

γL

CV RL BJIJJ
V RL −

e(1−2s2W )

2sW cWM2
Z
F JIZR + e2V JI

γR + 1
2Y

J
l (V JI

H − V JI
A ) BJIKK

V RL − e(1−2s2W )

2sW cWM2
Z
F JIZR + e2V JI

γR

CSLL BJIJJ
SLL + 3

2Y
J
l (V JI

H + V JI
A ) BJIKK

SLL + Y K
l (V JI

H + V JI
A )

CSRR BJIJJ
SRR + 3

2Y
J
l (V IJ∗

H + V IJ∗
A ) BJIKK

V RR + Y K
l (V IJ∗

H + V IJ∗
A )

CSLR −2BJIJJ
V LR −

2esW
cWM2

Z
F JIZL − 2e2V JI

γL + Y J
l (V JI

H − V JI
A ) BJIKK

SLR + Y K
l (V JI

H − V JI
A )

CSRL −2BJIJJ
SRL +

e(1−2s2W )

sW cWM2
Z
F JIZR − 2e2V JI

γR + Y J
l (V IJ∗

H − V IJ∗
A ) BJIKK

SRL + Y K
l (V IJ∗

H − V IJ∗
A )

CTL −1
4B

JIJJ
SLL + 1

8Y
J
l (V JI

H + V JI
A ) BJIKK

TL

CTR −1
4B

JIJJ
SRR + 1

8Y
J
l (V IJ∗

H + V IJ∗
A ) BJIKK

TR

CγL −2eF JIγ −2eF JIγ

CγR −2eF IJ∗γ −2eF IJ∗γ

Table 1: Coefficients CN , Cγ of Eq. (3.7) and Eq. (3.9) for decay types (A) and (B). BQXY ,BTX
denote the irreducible box diagram contributions (see Eq. (2.21)), the terms with FZ stem from
the Z penguin Lagrangian (Eq. (2.7)), Vγ is the sum of the vector-like photon contributions
(Eq. (2.5)), Higgs contributions are defined in Eq. (3.10) and the coefficients Fγ of the magnetic
operator are defined in Eq. (2.2).

Neglecting the lighter lepton masses whenever possible, the expression for the branch-
ing ratios can be written down as (for comparison see [23]):

Br(`I → `J`K ¯̀L) =
NcBr(`I → eνν)

32G2
F

(
4
(
|CV LL|2 + |CV RR|2 + |CV LR|2 + |CV RL|2

)
+ |CSLL|2 + |CSRR|2 + |CSLR|2 + |CSRL|2

+ 48
(
|CTL|2 + |CTR|2

)
+Xγ

)
(3.11)

where Nc = 1/2 if two of the final state leptons are identical (decays (A)), Nc = 1 for
decays (B) and Xγ denotes the contribution to matrix element from the photon penguin
Aγ, including also its interference with the A0 part of the amplitude (m denotes the mass
of the heaviest final state lepton)

X(A)
γ = − 16e

m`I
Re

[
(2CV LL + CV LR −

1

2
CSLR) C?

γR + (2CV RR + CV RL −
1

2
CSRL) C?

γL

]
+

64e2

m2
`I

(
log

m2
`I

m2
− 11

4

)
(|CγL|2 + |CγR|2)

X(B)
γ = − 16e

m`I
Re
[
(CV LL + CV LR)C?

γR + (CV RR + CV RL)C?
γL

]
+

32e2

m2
`I

(
log

m2
`I

m2
− 3

)
(|CγL|2 + |CγR|2) . (3.12)
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3.4 µ→ e conversion in Nuclei

The full 1-loop expressions for the µ→ e conversion in Nuclei depend on both the squark
and slepton SUSY breaking terms. Thus, in principle the resulting upper bounds on the
slepton mass insertions depend to some extent on the squark masses. Therefore, we do not
include µ→ e conversion in nuclei in our numerical analysis7. However, for completeness
we collect here the complete set of formulae required to calculate the rate of this process.

µ → e conversion in nuclei is produced by the dipole, the vector, and the scalar
operators already at the tree level [61]. Following the discussion of Ref. [62] we use the
effective Lagrangian

Lµ→e =
∑
N,X,Y

CN XY
qIqI

OqIqI
N XY + Cgg

X O
gg
X (3.13)

where N = V, S and X, Y = L,R with the operators defined as

OqIqI
V XY = (ēγµPXµ) (q̄IγµPY qI)

OqIqI
S XY = (ēPXµ) (q̄IPY qI)

Ogg
X = αsmµGF (ēPXµ)Ga

µνG
µν
a (3.14)

Using the notation introduced in previous Sections, the corresponding Wilson coefficients
can be expressed as

CdIdI
V XL = C12II

d`V XL −
1

m2
Z

e

2sW cW

(
1− 2

3
s2
W

)
F 12
ZX −

1

3
e2V JI

γX

CdIdI
V XR = C12II

d`V XR +
1

m2
Z

e

3sW cW
s2
WF

12
ZX −

1

3
e2V JI

γX

CuIuI
V XL = C12II

u`V XL +
1

m2
Z

e

2sW cW

(
1− 4

3
s2
W

)
F 12
ZX +

2

3
e2V JI

γX

CuIuI
V XR = C12II

u`V XR −
1

m2
Z

e

sW cW

2

3
s2
WF

12
ZX +

2

3
e2V JI

γX

CdIdI
S LX = C12II

d`SLX +
1

(mK
0 )

2F
12K
h F IIK

hd

CuIuI
S LX = C12II

u`SLX +
1

(mK
0 )

2F
12K
h F IIK

hu

CdIdI
S RX = C12II

d`SRX +
1

(mK
0 )

2F
21K∗
h F IIK

hd

CuIuI
S RX = C12II

u`SRX +
1

(mK
0 )

2F
21K∗
h F IIK

hu (3.15)

For this process, a Lagrangian involving only quark, lepton and photon fields is not
sufficient. Instead, an effective Lagrangian at the nucleon level containing proton and
neutron fields is required. It can be obtained in two steps. First, heavy quarks are

7Recent discussion of interplay between the bounds on MI’s in the slepton and squark sectors can be
found in Ref. [60].
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integrated out. This results in a redefinition of the Wilson coefficient of the gluonic
operator [63]

Cgg
L → C̃gg

L = Cgg
L −

1

12π

∑
q=c,b

Cqq
S LL + Cqq

S LR

GF mµmq

(3.16)

with an analogous equation for CR
gg. Second, the resulting Lagrangian is matched at the

scale of µn = 1 GeV to an effective Lagrangian at the nucleon level. Following [64] the
transition rate ΓNµ→e = Γ(µ−N → e−N) can then be written as

ΓNµ→e =
m5
µ

4

∣∣∣−eCD
L F 12

γ /mµ + 4
(
GFmµmpC̃

(p)
SLS

(p)
N + C̃

(p)
V R V

(p)
N + (p→ n)

)∣∣∣2
+ (L↔ R), (3.17)

where p and n denote the proton and the neutron, respectively. The effective couplings
in Eq. (3.17) can be expressed in terms of our Wilson coefficients as

C̃
(p/n)
V R =

∑
q=u,d,s

(Cqq
V RL + Cqq

V RR) f
(q)
V p/n , (3.18)

C̃
(p/n)
SL =

∑
q=u,d,s

(Cqq
S LL + Cqq

S LR)

mµmqGF

f
(q)
Sp/n + C̃gg

L fGp/n (3.19)

with analogous relations for L↔ R. The Wilson coefficients in Eqs. (3.18) and (3.19) are
to be evaluated at the scale µn.

The nucleon form factors for vector operators are fixed by vector-current conservation,
i.e. f

(u)
V p = 2, f

(u)
V n = 1, f

(d)
V p = 1, f

(d)
V n = 2, f

(s)
V p = 0, f

(s)
V n = 0. Hence, the sum in Eq. (3.18) is

in fact only over q = u, d. The calculation of the scalar form factors is more involved. The
values of the up- and down-quark scalar couplings f

(u/d)
Sp/n (based on the two-flavour chiral

perturbation theory framework of [65]) can be found in Refs. [66, 67], while the values

of the s-quark scalar couplings f
(s)
Sp/n can be borrowed from a lattice calculation [68]. In

summary, one has

f
(u)
Sp = (20.8± 1.5)× 10−3, f

(u)
Sn = (18.9± 1.4)× 10−3,

f
(d)
Sp = (41.1± 2.8)× 10−3, f

(d)
Sn = (45.1± 2.7)× 10−3,

f
(s)
Sp = f

(s)
Sn = (53± 27)× 10−3. (3.20)

The form factor for the gluonic operator can be obtained from a sum rule. In our nor-
malisation

fGp/n = −8π

9

(
1−

∑
q=u,d,s

f
(q)
Sp/n

)
. (3.21)

The quantities DN , S
(p/n)
N , and V

(p/n)
N in Eq. (3.17) are related to the overlap integrals [69]

between the lepton wave functions and the nucleon densities. They depend on the nature
of the target N . Their numerical values can be found in Ref. [61]:

DAu = 0.189, S
(p)
Au = 0.0614, V

(p)
Au = 0.0974, S

(n)
Au = 0.0918, V

(n)
Au = 0.146;

DAl = 0.0362, S
(p)
Al = 0.0155, V

(p)
Al = 0.0161, S

(n)
Al = 0.0167, V

(n)
Al = 0.0173; (3.22)
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for gold and aluminum, respectively.
Finally, the branching ratio is defined as the transition rate, (see Eq. (3.17)), divided

by the capture rate, the latter given in Ref. [70]:

Γcapt
Au = 8.7× 10−15 MeV, Γcapt

Al = 4.6× 10−16 MeV . (3.23)

4 Mass eigenstates vs. mass insertions calculations

For each process, we have given the exact one-loop expressions calculated in the mass
eigenbasis (ME). These formulae are compact and well suited for numerical computations,
however, do not allow for an easy understanding of the qualitative behaviour of the LFV
amplitudes for various choices of the MSSM parameters. Therefore, in this Section we
expand the Wilson coefficients in terms of the “mass insertions”, defined as the off-diagonal
elements (both flavour violating and flavour conserving) of the mass matrices. Such an
expansion allows us to:

• Recover the direct analytical dependence of the results on the MSSM Lagrangian
parameters.

• Prove analytically the expected decoupling features of the amplitudes in the limit
of a heavy SUSY spectrum. In the case of Higgs boson decays, we also identify
explicitly the terms decoupling only with the heavy CP-odd Higgs mass MA (which
also determines the heavy CP even and the charged Higgs masses). The decou-
pling properties serve also as an important cross-check of the correctness of our
calculations.

• Test the dependence of the results on the pattern of the MSSM spectrum and the
size of the mass splitting between SUSY particles. Such analyses are missing in
most of the existing literature on the subject.

• Better understand the possible cancellations between various types of contributions
and correlations between different LFV processes.

The mass insertion expansion in flavour off-diagonal terms has been used for a long
time in numerous articles on the subject. However, always some simplifying assumptions
have been made, i.e. some terms have been neglected and a fully general non-degenerate
slepton spectrum was never considered. This is understandable as a consistent MI ex-
pansion of the amplitudes for the LFV processes in the MSSM, mediated by the virtual
chargino and neutralino exchanges, is technically challenging. The standard approach
used in literature is to calculate diagrammatically the LFV amplitudes with the “mass
insertions” treated as the new interaction vertices. We follow the common practice and
normalise such slepton mass insertions to dimensionless “∆-parameters”8:

∆IJ
LL =

(M2
LL)IJ√

(M2
LL)II(M2

LL)JJ
, ∆IJ

RR =
(M2

RR)IJ√
(M2

RR)II(M2
RR)JJ

,

∆IJ
LR =

AIJl

((M2
LL)II(M2

RR)JJ)
1/4

, ∆
′IJ
LR =

A
′IJ
l

((M2
LL)II(M2

RR)JJ)
1/4

, (4.1)

8We assume that trilinear Al, A
′
l terms scale linearly with the slepton mass scale.
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where M2
LL,M

2
RR, Al, A

′
l are the slepton soft mass matrices and trilinear terms.

As lepton flavour violation is already strongly constrained experimentally, it is suffi-
cient to expand the amplitudes up to the first order in flavour-violating ∆’s. For instance,
the effective vertices listed in Sec. 3 take the schematic form:

F IJ =
1

(4π)2

(
F IJ
LL∆IJ

LL + F IJ
RR∆JI

RR

+ F IJ
ALR∆JI

LR + F IJ
BLR∆IJ∗

LR + F
′IJ
ALR∆

′JI
LR + F

′IJ
BLR∆

′IJ∗
LR

)
. (4.2)

The MSSM contributions to FLL, . . . , F
′
BLR can be classified according to their decoupling

behaviour, distinguishing the following types (M denotes the average SUSY mass scale):

1. Effects related to the diagonal trilinear slepton soft terms or to the off-diagonal
elements of supersymmetric fermion mass matrices, decoupling as v2/M2.

2. Effects related to the external momenta of the (on-shell) Higgs or Z0 bosons, de-
coupling as M2

h/M
2 or M2

Z/M
2 (we did not include the MZ dependence as it is not

necessary for the considered processes).

3. Non-decoupling effects related to the 2HDM structure of the MSSM. Such effects
are constant in the limit of heavy M but decouple as v2/M2

A. They are proportional
either to the lepton Yukawa couplings or to the non-holomorphic A′l terms.

The structure of the box diagrams is more complicated as they carry 4 flavour indices.
Their MI expansion is given in Appendix E.5. All box diagram contributions decouple at
least as v2/M2.

Calculating consistently the quantities FLL, . . . , F
′
BLR to the order v2/M2 is not triv-

ial for chargino and neutralino contributions. If the MI expansion is used only for the
sfermion mass matrices but the calculations for the supersymmetric fermions are done
in the mass eigenbasis, the direct dependence on the Lagrangian parameters is hidden
and the decoupling properties of the amplitude cannot be seen directly. However, one
can also treat the off-diagonal entries of the chargino and neutralino mass matrices as
“mass insertions”. With such an approach, the final result is expressed explicitly in terms
of Lagrangian parameters, but the computations can get very complicated. At the or-
der v2/M2 one needs to include diagrams with all combinations of two fermionic mass
insertions (each providing one power of v/M1, v/M2 or v/µ) or flavour diagonal slepton
terms originating from trilinear A-terms (providing powers of vAl/M

2, vA′l/M
2). Thus,

to obtain an expansion of the F ’s in Eq. (4.2), one needs to formally go to the 3rd order
of MI expansion, adding all diagrams with up to two flavour conserving and one flavour
violating mass insertion. Therefore, the number of diagrams grows quickly with the order
of the expansion and such a method is tedious and prone to calculational mistakes.

In our paper, we employ a recently developed technique using a purely algebraic MI
expansion of the ME amplitudes listed in Sec. 3, without the need for direct diagrammatic
MI calculations (“FET theorem”) [29], automatised in the specialised MassToMI Mathe-
matica package [30, 71]. The use of this package and full automation of the calculations
allows us to perform the required 3rd order MI expansion for a completely general SUSY
mass spectrum, without making any simplifying assumptions. Such a result would be
very difficult to obtain diagrammatically, as in the intermediate steps of the calculations
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(before accounting for the cancellations and simplifications between various contributions)
the expressions may contain up to tens of thousand terms, even if the final results collected
in Appendix E are again relatively compact. In detail:

• We perform the expansion always up to the lowest non-vanishing order in the slepton
LFV terms, taking into account the possible cancellations. Compared to previous
analyses, we consider the non-holomorphic trilinear soft terms as well.

• In the MI expanded expressions we include all terms decreasing with the SUSY
mass scale as v2/M2

SUSY (or slower), where MSUSY denotes any of the relevant
mass parameters in the MSSM Lagrangian (apart from the soft Higgs mass terms):
diagonal soft slepton masses, gaugino masses M1,M2 or the µ parameter.

• Contrary to previous analyses, we do not assume degeneracy or any specific hierarchy
for the sleptons, sneutrinos or supersymmetric fermion masses.

• In calculating the LFV Higgs decays we keep the leading terms in the external Higgs
boson mass (m2

h(H)/M
2
SUSY ).

The full set of the expanded expressions in the MI approximation for the photon, Z0

and CP-even Higgs leptonic penguins and for the 4-lepton box diagrams is collected in
Appendix E.

We illustrate the accuracy of the derived MI formulae in Fig. 6. The plots show the
ratio of the MI expanded couplings over the ones obtained in the mass eigenbasis with
exact diagonalization. For this purpose, we start from the following setup where all mass
parameters are given in GeV:

tan β = 5 mµ̃L = 300 Aµµ = A′µµ = 0.1
√
mµ̃Lmµ̃R

µ = 200 + 100i mτ̃L = 330
M1 = 150 mµ̃R = 300 Aττ = A′ττ = 0.1

√
mτ̃Lmτ̃R

M2 = 300 mτ̃R = 350

(4.3)

Next, to see the decoupling effects we scale this spectrum uniformly up to slepton masses
of 2 TeV. For each of the six penguin Wilson coefficients describing the transition between
2nd and 3rd generation, F 23

γL(R) (Eq. (2.2)), F 23
ZL(R) (Eq. (2.7)) and F 23

hL ≡ F 232
h , F 23

hR ≡ F 322
h

(Eq. (2.13)) we plot the quantity

∆F =

∣∣∣∣ FMI

FME

∣∣∣∣− 1 , (4.4)

as a function of the average slepton mass. The accuracy of left-handed (right-handed)
Wilson coefficients is illustrated with red(blue) lines. As can be seen from Fig. 6, the
accuracy of MI expanded amplitudes is very good even for light SUSY particles and for
MSUSY > 500 GeV always better than 95%.

Most analyses published to date for simplicity did not include the complete set of
the contributions scaling like v/M order and/or assumed a partially or fully degenerate
SUSY spectrum. This procedure is inconsistent with non-zero off-diagonal elements of
mass matrices, because the latter enforce unequal eigenvalues of the corresponding mass
matrix. To illustrate the numerical effects arising from the incorrect neglect of SUSY
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Figure 6: Accuracy of MI expansion for the penguin amplitudes. The curves show the ratio
defined in Eq. (4.4). Red and blue lines: ∆F for left and right couplings assuming a spectrum
of Eq. (4.3) for both the MI and ME expressions. Brown and green lines: ∆F (again for left
and right couplings, respectively) assuming spectrum (4.3) for ME expressions but an universal
degenerate sfermion mass in MI expressions. This assumption is inconsistent with non-zero
off-diagonal elements of the mass matrices, which imply non-degenerate mass eigenstates. The
plots show that the associated error can be numerically sizeable. The average SUSY mass scale
M (assumed to be equal to M2 = mµ̃L = mµ̃R) is shown on the horizontal axis.

mass splitting we plot the ratio of our expressions in the MI approximation for penguin
Wilson coefficients calculated for degenerate slepton masses (equal to 300 GeV rescaled
by a common factor; other parameters as in Eq. (4.3)) and the exact mass eigenbasis
formulae (calculated with non-degenerate sfermion spectrum of Eq. (4.3)) in Fig. 6. The
accuracy of left-handed (right-handed) MI expanded Wilson coefficients with degenerate
slepton spectrum is shown in green(brown). In this case discrepancy is much larger, of
the order of 10%-40%, and does not disappear when increasing the total SUSY scale.

5 Phenomenological analysis

5.1 Generic bounds on LFV parameters

As outlined in the introduction, flavour violation in the charged lepton sector is strongly
constrained experimentally. In Table 2 we collect the current and expected future exper-
imental bounds on the processes discussed so far.

Assuming the absence of fine-tuned cancellations between different flavour violating
parameters, the order of magnitude of the bounds on a given flavour violating entry ∆
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Experimental upper bound CL Future sensitivity CL
τ → eγ 3.3× 10−8 [72] 90% 10−9 [73] 90%
τ → µγ 4.4× 10−8 [72, 74] 90% 10−9 [73] 90%
µ→ eγ 5.7× 10−13 [75] 90% 6× 10−14 [76] 90%
Z → µe 7.5× 10−7 [77] 95%
Z → µτ 1.2× 10−5 [78] 95%
Z → τe 9.8× 10−6 [78] 95%
µ→ e−e+e− 1.0× 10−12 [79] 90% 10−16 [80, 81] 90%
τ → e−e+e− 2.7× 10−8 [82] 90%
τ → µ−µ+µ− 2.1× 10−8 [82] 90%
τ → e−µ+µ− 2.7× 10−8 [82] 90%
τ → e+µ−µ− 1.7× 10−8 [82] 90%
τ → µ−e+e− 1.8× 10−8 [82] 90%
τ → µ+e−e− 1.5× 10−8 [82] 90%
h→ eτ 6.1× 10−3 [83] 90%
h→ µτ 2.5× 10−3 [83] 90%
h→ µe 3.6× 10−4 [84] 90%
(µ→ e)Au 7.0× 10−13 [85] 90%
(µ→ e)Al 10−16 [86] 90%

Table 2: Upper bounds on LFV decays of charged leptons. h denotes the SM-like Higgs boson

can be obtained by assuming that it is the only source of flavour violation. At the lowest
order in the MI expansion, any LFV observable X scales like ∆2:

X ≈ f(m1, . . . ,mn)|∆|2 , (5.1)

where f is a known (non-negative) function of diagonal mass parameters - for any given
process it can be extracted from the expanded expressions listed in Appendix E. Thus,
the experimental bound on ∆ from a given measurement can be written as:

|∆| ≤

√
Xexp

f(m1, . . . ,mn)

√
X future

Xexp
≡ ∆(m1, . . . ,mn)

√
X future

Xexp
(5.2)

where by Xexp we denote one of the current experimental bounds listed in Sec. 5.1 and
X future is the expected future sensitivity.

To estimate the order of magnitude of the bounds on all types of mass insertions, we
assume a common mass scale M for all flavour diagonal SUSY parameters:

mẽLI
= mẽRI

= M1 = M2 = µ = MA = M ,

AII` = A
′II
` = Y I

` M . (5.3)

Currently, the strongest bounds on the dimensionless LFV parameters ∆ defined in Eq. (4.2)
originate from the radiative lepton decays `→ `′γ. We list such bounds for the parameter
setup defined in Eq. (5.3) and for the SUSY scale of M = 400 GeV in Table 3.

The 3-body decays of charged lepton lead to bounds which are approximately one order
of magnitude weaker. In Table 4 we display the relative strength of such bounds comparing
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Process (I, J) ∆IJ
LL ∆IJ

RR ∆IJ
LR ∆IJ

RL ∆
′IJ
LR ∆

′IJ
RL

tan β = 2
µ→ eγ (2, 1) 8.4 · 10−4 5.0 · 10−3 8.4 · 10−6 8.3 · 10−6 4.1 · 10−6 4.1 · 10−6

τ → µγ (3, 2) 5.3 · 10−1 O(1) 9.1 · 10−2 9.1 · 10−2 4.5 · 10−2 4.5 · 10−2

τ → eγ (3, 1) 4.6 · 10−1 O(1) 7.8 · 10−2 7.8 · 10−2 3.9 · 10−2 3.8 · 10−2

tan β = 20
µ→ eγ (2, 1) 1.0 · 10−4 4.5 · 10−4 7.5 · 10−5 7.4 · 10−5 3.7 · 10−6 3.7 · 10−6

τ → µγ (3, 2) 6.5 · 10−2 2.9 · 10−1 8.2 · 10−1 8.2 · 10−1 4.0 · 10−2 4.0 · 10−2

τ → eγ (3, 1) 5.7 · 10−2 2.5 · 10−1 7.0 · 10−1 7.0 · 10−1 3.4 · 10−2 3.4 · 10−2

Table 3: Upper bounds on the LFV parameters ∆ from radiative charged lepton decays for the
MSSM spectrum defined in Eq. (5.3) and a SUSY scale of M = 400 GeV. All bounds scale (i.e.
weaken) like M2.

Process (I, J) ∆IJ
LL ∆IJ

RR ∆IJ
LR ∆IJ

RL ∆
′IJ
LR ∆

′IJ
RL

tan β = 2
µ→ eee (2, 1) 1.7 · 10+1 1.5 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1

τ → µµµ (3, 2) 1.5 · 10+1 1.2 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1

τ → µe+e− (3, 2) 1.3 · 10+1 1.1 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1

τ → eee (3, 1) 8.6 · 10+0 8.2 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0

τ → eµ+µ− (3, 1) 6.9 · 10+0 6.7 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0

tan β = 20
µ→ eee (2, 1) 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1

τ → µµµ (3, 2) 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1

τ → µe+e− (3, 2) 1.3 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1

τ → eee (3, 1) 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0

τ → eµ+µ− (3, 1) 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0

Table 4: Ratios of upper bounds on the LFV parameters ∆ from the searches for 3-body and
radiative decays of charged leptons. The MSSM spectrum is defined in Eq. (5.3).

them to the ones obtained from the radiative lepton decays, i.e. the ratios of bounds from
radiative decays over the ones from 3-body decays. Such ratios remain constant with
increasing M up to the scale where the non-decoupling Higgs penguin contributions start
to contribute. However, such effects occurs for M >∼ 30 TeV for τ± → µ±µ±µ∓ and
τ± → e±µ±µ∓ decays and for even higher M for the decays with electron pair in the final
state. For such a large M the branching ratios for all 3-body decays are, anyway, below
the current experimental sensitivities even for O(∆IJ) ∼ 1.

We do not display the bounds from LFV violating Z0 decays as they are much weaker
(3 to 8 orders of magnitude depending on which parameter ∆ is chosen). This can be
attributed to the large Z boson width – for comparable Γ(Z → ``′) and Γ(`→ `′γ) partial
decay widths the difference in total widths leads to Br(` → `′γ) � Br(Z → ``′). Thus,
bounds from Br(Z → ``′) are not competitive (nor they will be in the foreseeable future)
compared to these from other observables.
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Process (I, J) ∆IJ
LL ∆IJ

RR ∆IJ
LR ∆IJ

RL ∆
′IJ
LR ∆

′IJ
RL

tan β = 2
h→ µe (2, 1) 1.8 · 10+7 1.7 · 10+6 2.6 · 10+7 2.6 · 10+7 1.0 · 10+7 1.0 · 10+7

h→ τµ (3, 2) 4.4 · 10+3 3.8 · 10+2 6.3 · 10+3 6.3 · 10+3 2.5 · 10+3 2.5 · 10+3

h→ τe (3, 1) 8.0 · 10+3 7.5 · 10+2 1.1 · 10+4 1.1 · 10+4 4.9 · 10+3 4.9 · 10+3

tan β = 20
h→ µe (2, 1) 3.9 · 10+6 8.3 · 10+6 5.1 · 10+7 5.1 · 10+7 1.2 · 10+6 1.2 · 10+6

h→ τµ (3, 2) 9.5 · 10+2 1.9 · 10+3 1.3 · 10+4 1.2 · 10+4 2.9 · 10+2 2.9 · 10+2

h→ τe (3, 1) 1.7 · 10+3 3.5 · 10+3 2.3 · 10+4 2.2 · 10+4 5.3 · 10+2 5.4 · 10+2

Table 5: Ratios of upper bounds on the LFV ∆ parameters from leptonic Higgs boson decays
and from radiative decays of charged leptons. The MSSM spectrum is defined in Eq. (5.3) (with
the exception of setting A′IIl = 0) and a SUSY scale of M = 400 GeV. The ratios for ∆IJ

LL, ∆IJ
RR,

∆
′IJ
LR, ∆

′IJ
RL decrease with M2, assuming fixed masses and mixing angles in the Higgs sector.

As can be seen in Table 5, the bounds on ∆ parameters from LFV flavour Higgs boson
decay searches are much weaker than those from the radiative charged lepton decays.
However, in the Higgs sector some effects proportional to lepton Yukawa couplings or to
the non-holomorphic terms are non-decoupling and are not weakened by increasing M
like other contributions, for fixed Higgs sector parameters. In Table 5 we assume

α− β =
π

2
− γ , (5.4)

with γ = π/100. Using the tree-level relations of the MSSM Higgs sector in the limit of
tan β > 1 and small values of γ one has

MA = MZ

√
sin 2(α + β)

sin 2(α− β)
≈MZ

√
− sin 4β

2γ
, (5.5)

this corresponds to MA ∼ 350 GeV for tan β = 2 and MA ∼ 190 GeV for tan β = 20
(the exact value including loop corrections may vary, depending on the squark parameters
which we do not specify here).

The bounds on ∆IJ
LL,∆

IJ
RR,∆

′IJ
LR,∆

′IJ
RL from the leptonic Higgs boson decay would decou-

ple only if also MA is scaled up simultaneously with SUSY particle masses (thus assuring
that the Higgs decay rates do not violate the Appelquist-Carrazone theorem [87]). This
interesting feature is discussed in more details in Sec. 5.4.

5.2 Dependence on the mass splitting

The formulae derived in the previous Sections allow to analyse how the bounds on LFV
mass insertions depend on the splitting between different SUSY masses. However, any
process involving transition between the generations I and J depends in general, even at
lowest order in the flavour violating MI’s, on many mass parameters: µ, gaugino masses
M1,M2, left and right diagonal slepton soft masses mẽLI

,mẽLJ
,mẽRI

,mẽRJ
, and for the

Higgs decays also on MA or on α angle. To simplify the discussion, we only take into
account the bounds from `→ `′γ decays, which are currently most constraining.
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Figure 7: Upper bounds on the flavour violating parameters from µ → eγ for tanβ = 2 and
M = 800 GeV as a function of the splitting between the masses of gaugino and sleptons of
different chiralities. The normalised slepton masses xL(R) = mL(R)/M are plotted on the axes.
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In Fig. 7 we illustrate the dependence of the upper bounds on the ∆ parameters
originating from µ→ eγ on the mass splitting between left and right-handed sleptons for

tan β = 2 , µ = M1 = M2 ≡M = 800 GeV

mẽL = mµ̃L = mL , mẽR = mµ̃R = mR ,

Aee` = A
′ee
` = Ye

√
mLmR , Aµµ` = A

′µµ
` = Yµ

√
mLmR .

We have chosen here an average SUSY mass scale of M = 800 GeV, higher than
M = 400 GeV used in Tables 3-5, to avoid the experimental bounds on slepton masses
even in the case of a large splitting between the left and right-handed masses.

The features of plots in Fig. 7 can be understood using the expanded expressions for
effective photon couplings collected in Appendix E.1. As an example, let us consider the
interesting cancellation between different contributions in the case of ∆12

RR (right upper
panel of Fig. 7). For our parameter setup, the coefficient Xeµ

γN2 multiplying the RR
parameter (see Eq. (E.4)) can be reduced to the form

Xeµ
γN2 =

v1Yµ
M2

f(xL, xR) , (5.6)

where f(xL, xR) is a known, although complicated, dimensionless, rational and logarith-
mic function of mass ratios whose analytical form can be obtained using Eq. (E.4), the
loop integrals collected in Appendix B and the definitions of divided differences from Ap-
pendix C. The properties of this function can be examined analytically and numerically.
One finds

• For xR in the wide range 0.1 − 4 the function f vanishes for xL ∼ 0.45 (the exact
value depends only weakly on xR). As a result, the bounds on ∆12

RR disappear
completely for mL ∼ 0.45M .

• For large values of xR >∼ 5 the position where the function f becomes zero shifts
towards bigger values of xL. In addition, in this limit f is suppressed by an overall
factor 1/xR, thus the bounds on ∆12

RR become weaker for a larger values of xR.

• For large values of xL the function f depends on xR only. Therefore, the contour
lines become horizontal.

• For small values of xL the function f behaves like 1/xL. Thus, the bounds on ∆12
RR

become stronger.

A similar analysis can be done for the bounds on ∆12
LL. However, the coefficient multiplying

∆12
LL contains contributions from both chargino and neutralino loops and does not vanish

for any mass pattern. Therefore, there is no cancellation area in the upper left panel of
Fig. 7. In this case, the bound on ∆12

LL is strongest for mL ∼ M and mR
<∼M . For the

case in which the left slepton masses are much lighter or much heavier than the masses
of the SUSY fermion, the bounds become weaker.

Bounds on LR parameters, both holomorphic and non-holomorphic, are typically 1-
2 orders of magnitude stronger than for LL and RR ones. In this case, the coefficient
Xeµ
γN1 multiplying the LR terms has a much simpler functional form. Therefore, it never

vanishes and in addition is explicitly symmetric (as follows from the properties of divided
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Figure 8: Upper bounds on the flavour violating LL and RR parameters using the current
experimental limit on Br(µ → eγ) for tanβ = 2 and M = 800 GeV as a function of splitting
between the masses of gaugino and sleptons of various flavours. The normalised selectron and
smuon masses, xe(µ) = mẽ(µ̃)/M are plotted on the axes.

differences) under the exchange of slepton mass arguments, as visible in both lower panels
of Fig. 7. Furthermore, one can see that bounds on LR parameters are strongest for
mL,mR

<∼M and become weaker when the slepton masses are much heavier than the
chargino and neutralino masses. More quantitatively, Xeµ

γN1 is proportional to the divided
difference of the function C12, which for x ≡ xL = xR (corresponding to the diagonal of
lower plots in Fig. 7) has the simple asymptotic behaviour

C12({mL,mR},M) =

{
− 5

2M2 x� 1

1
2M2x2

x� 1
. (5.7)

From the form of Eq. (5.7) it is immediately visible that the bounds become constant for
small x and fall like 1/x2 for large x, as illustrated in the plots.

Using the formulae collected in Appendix E, a similar discussion can be, if necessary,
performed to explain the features or cancellation areas of other plots presented in this
Section. However, as the general analytical formulae in the MI approximation are rather
complicated, we illustrate here other scenarios with numerical plots only.

Fig. 8 shows similar bounds assuming identical left-and right-handed slepton masses
which however differ among the generations, so that we choose

tan β = 2 , µ = M1 = M2 ≡M = 800 GeV ,

mẽL = mẽR = mẽ mµ̃L = mµ̃R = mµ̃ ,

Aee` = A
′ee
` = Ye mẽ , Aµµ` = A

′µµ
` = Yµ mµ̃ ,

and plot the results in terms of xe = mẽ/M and xµ = mµ̃/M . Again, a cancellation only
exists for the bounds on ∆12

RR, for an almost constant ratio mµ̃ ∼ 2.5M . In this case,
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the bounds on ∆12
LL are strongest for small splitting between slepton and SUSY fermion

masses, while the bounds on ∆12
RR are, apart from the cancellation region, stronger for

mµ̃
<∼M . It is obvious from the form of Xeµ

γN1 in Eq. (E.4) that the bounds on the LR
parameters, both holomorphic and non-holomorphic, have an identical behaviour as in
the case of the mL − mR splitting plotted in Fig. 7, with the replacements xL ↔ xe,
xR ↔ xµ.

Finally in Fig. 9 we assume an identical mass of m = 400 GeV for all sleptons but
vary M1 = M2 and µ. The results are displayed as a function of x2 = M2/M , xµ = µ/M
(we do not plot small values of |µ| < 100 GeV which are excluded by the direct searches
for charginos and neutralinos). The structure of cancellation areas is more complicated,
but again the “blind spots”, where the bounds on MI’s disappear, exist only for ∆12

RR. As
expected from the form of Xeµ

γN1 in Eq. (E.4), the bounds on ∆12
LR, ∆

′12
LR are at leading

order independent of the µ parameter. They are also correlated with the bounds displayed
in lower plots of Fig. 7, as for a fixed slepton mass and varied M2 the coefficient Xeµ

γN1 is
now proportional to

C12({m,m},M2) =


1

2m2 x� 1

− 5
2m2x22

x� 1
(5.8)

so that again the bounds saturate for small x2 and fall like 1/x2
2 in the opposite limit.

Similar plots constraining 13 and 23 mass insertions have almost identical shape; the
bounds are just rescaled by constant factors. The bounds on ∆13

LL and ∆13
RR (∆23

LL and
∆23
RR) are approximately 550 (650) times weaker than the bounds on ∆12

LL and ∆12
RR,

respectively. The bounds on ∆
13(31)
LR and ∆

′13(31)
LR (∆

23(32)
LR and ∆

′23(32)
LR ) are respectively

9000 (11000) times weaker than the bounds on ∆
12(21)
LR and ∆

′12(21)
LR .

5.3 Correlations between LFV processes

The correlations between various leptonic decays, in particular radiative and 3-body
charged lepton decays, are important for designing new experiments searching for the
LFV phenomena. In the photon penguin domination scenario the ratio of decay rates for
both processes is given by the simple formula:

Br(`→ 3`′)

Br(`→ `′γ)
≈ αem

3π

(
log

m2
`

m2
`′
− 11

4

)
. (5.9)

In this case the decision which measurement is more promising depends purely on ex-
perimental accuracy achievable for each of them. However, other type of contributions,
like Z-penguin and box diagrams, can modify the ratio (5.9). Such contributions may be
particularly important for a “blind spot” scenario, like the weakened limit on ∆RR for
some ratios of slepton and gaugino masses.

In Fig. 10 we plot the quantity R``′ defined as

R``′ =
αem
3π

(
log

m2
`

m2
`′
− 11

4

)
Br(`→ `′γ)

Br(`→ 3`′)
, (5.10)

as a function of the SUSY mass splittings, in the same scenarios as described in Fig. 7 and
Fig. 8. We assume non-vanishing ∆12

LL and ∆12
RR terms. For LR terms, both holomorphic
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Figure 9: Upper bounds on the LFV parameters using the current experimental limit on the
Br(µ→ eγ) for degenerate slepton masses M = 800 GeV as a function of mass splitting between
the gaugino and the µ related parameters, xµ = µ/M , x2 = M1/M = M2/M .
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Figure 10: The ratio R``′ as a function of the mass splitting between left and right slepton
masses (upper row) and between the selectron and smuon masses (lower row) for M = 800 GeV
as a function of the normalised slepton masses xL(R) = mL(R)/M and xẽ(µ̃) = mẽ(µ̃)/M .

and non-holomorphic, a photon penguin dominated scenario is always realised and R``′ is
very close to 1.

As one can see from Fig. 10, radiative and 3-body decays are almost always closely
correlated, with R``′ differing from 1 by a few % at most. Exceptions are only possible
for parameter combinations for which Br(`→ `′γ) becomes small due to cancellations or
some other type of suppression, like in scenarios with large mass splitting (compare Figs. 7
and 8). Simultaneously, Br(` → 3`′) is given by the more complicated expression (3.11),
which in the limit of small photon penguin contribution becomes the sum of positive terms
and cannot vanish. Thus, although both decays are usually strongly correlated and only
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relative experimental sensitivities decide which of them has better chances to discover
generic LFV effects mediated by the slepton sector, for some particular ranges of MSSM
parameter searches for 3-body charged lepton decays are a safer choice, allowing to avoid
blind spots appearing for such setups due to the suppression of `→ `′γ decay rates.

5.4 Non-decoupling effects in LFV Higgs decays

LFV Higgs decays in the SM are absent at the tree level and strongly suppressed also at
the loop level. Examining LFV Higgs boson decays within the MSSM is very interesting
because, contrary to the other processes discussed in this paper, some contributions to
the Higgs decay amplitudes proportional to the lepton Yukawa couplings or to the non-
holomorphic trilinear slepton soft terms do not decouple in the limit of heavy SUSY
masses and can be potentially large.

As can be seen from Tables 5, for an average SUSY mass scale of M = 400 GeV and
the parameter setup of Eq. (5.3) the upper bounds on the flavour violating parameters
from Higgs decays are much weaker than from the other processes. However, the bounds
from Higgs decays on the ∆IJ

LL, ∆IJ
RR and on the non-holomorphic LR terms ∆

′IJ
LR do not

scale like 1/M2. Thus, comparing the limits on ∆
′13
LR and ∆

′23
LR entries from h → ``′ and

`→ `′γ decays one can check that e.g. for tan β = 20 and

MSUSY
>∼

1.5√
| cos(α− β)|

TeV , (5.11)

the latter are becoming weaker. For ∆
′12
LR the same occurs at much higher scale

MSUSY
>∼

220√
| cos(α− β)|

TeV . (5.12)

The bounds on ∆IJ
LL, ∆IJ

RR are obtained assuming that the flavour diagonal A′l terms vanish,
so that all non-decoupling LL and RR contributions are proportional to the Yukawa
couplings (see Eq. (E.24)). In this case the Higgs decays become most constraining for
slightly higher SUSY scales, again for tan β = 20 and α angle of Eq. (5.4) bounds on ∆IJ

LL

and ∆IJ
RR from Higgs decays become stronger than the bounds from ` → `′γ decays for

MSUSY
>∼ 2/

√
| cos(α− β)| TeV for τµ transitions, MSUSY

>∼ 3/
√
| cos(α− β)| TeV for

τe transitions and MSUSY
>∼ 200/

√
| cos(α− β)| TeV for µe transitions.

The Higgs decays in supersymmetric extensions of the SM have been already studied
e.g. in [88–94]. In this Section we analyse within the general MSSM the decays of the
lighter CP-even Higgs boson h. The mass eigenstates formulae for the MSSM contribu-
tions to the effective leptonic Yukawa couplings of h are given in Eqs. (2.14 – 2.16) while
the relevant MI expressions are collected in Appendix E.3. The potentially largest contri-
butions to h→ ``′ decays come from the effects non decoupling in the limit of large SUSY
masses and proportional to non-holomorphic trilinear terms (see Eq. (E.23)). Assuming
that flavour violating A

′IJ
l terms are the only source of LFV and using Eqs. (3.4), (E.23)

and (A.8), one can write

Br(h→ `I ¯̀J) ≈ e4Mh

8192π5c4
WΓh

cos2(α− β)

cos2 β

(
g(xẽLI

, xẽRJ
)2
∣∣∣∆′IJ

LR

∣∣∣2
+ g(xẽLJ

, xẽRI
)2
∣∣∣∆′JI

LR

∣∣∣2) , (5.13)
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Figure 11: Dependence of function g(xL, xR) of Eq. (5.15) on the splitting between the slepton
and bino masses.

where α, β are the mixing angles in the Higgs sector (see Appendix A), the dimensionless
mass ratios are

xẽL(R)I
=
mẽL(R)I

|M1|
, (5.14)

and we defined

g(x, y) = −√xy C0(x, y, 1) . (5.15)

As can be seen from of Fig. 11, for reasonable mass splittings g(x, y) ∼ O(1) and,
inserting the numerical values of known quantities, one has

Br(h→ `I ¯̀J) ∼ 2 · 10−4 cos2(α− β)

cos2 β

∣∣∣∆′IJ(JI)
LR

∣∣∣2 . (5.16)

Even if for large SUSY mass scale ∆
′IJ
LR insertions are not constrained experimentally by

other LFV measurements, Br(h→ `I ¯̀J) cannot be arbitrarily large in the MSSM because
∆

′IJ
LR are constrained to O(1) by the vacuum stability conditions and the requirement of

the absence of charge and colour breaking (CCB) minima of the scalar potential (see e.g.
discussion in [95]).

The Higgs mixing angle α is subject to strong radiative corrections from the squark
sector and thus from the point of view of pure leptonic sector can be treated as a free
parameter. However, the allowed values of the Higgs mixing angles α, β are limited by
the existing experimental constraints (see e.g. Fig. 6 in Appendix B of ref. [92]), thus

also the overall prefactor cos2(α−β)
cos2 β

in Eq. (5.16) can be at most O(1). Summarising, the

maximal Br(h→ `I ¯̀J) which can be generated with the non-holomorphic trilinear terms
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is O(10−4), not much below the current experimental sensitivities collected in Table 2 (in-
cluding of decoupling contributions does not change this conclusion even for a light SUSY
spectrum [91, 92]). Further searches may therefore find the effects of non-holomorphic
trilinear terms or provide stricter bounds on them.

Similar analysis could be done for non-decoupling contributions proportional to ∆IJ
LL

and ∆IJ
RR parameters. However, in this case non-decoupling terms are proportional also

either to the diagonal A′l soft terms or to lepton Yukawa couplings, so the formulae become
complicated and a more involved numerical analysis is required. Terms proportional to
∆IJ
LL and ∆IJ

RR multiplied by diagonal A′l terms can generate similar LFV Higgs decay
rates as the flavour off-diagonal non-holomorphic A′l-terms. However, assuming that all
non-holomorphic terms vanish, and including only the Yukawa suppressed contributions
one has a much stricter bound Br(h→ `I ¯̀J) <∼ 10−4(Y I

l )2 in the MSSM.
For a complete phenomenological analysis of LFV Higgs decays in the MSSM one would

need to go beyond the one-loop analysis of this article. First, one would need to perform
the matching of the MSSM on the 2HDM with generic Yukawa couplings including the
resummation of the higher order chirally enhanced effects (see for example [44–46]). Then,
one has to calculate the loop effects for flavour observables within this generic 2HDM [96].

6 Conclusions

New precision data in the lepton flavour sector are expected to come in the foreseeable
future. In the search for beyond the SM effects, they will require precision and efficient cal-
culations in various BSM models. In this article lepton flavour violating processes within
MSSM have been calculated using the Flavour Expansion Theorem, a recently developed
new technique of a purely algebraic mass-insertion expansion of the amplitudes [29]. Both
flavour-violating off-diagonal terms and flavour-conserving mass-insertions are considered.
The expansion in the flavour conserving off-diagonal mass terms leads to a transparent
qualitative understanding of the coefficients in front of the flavour violating mass insertions
(see Eq. (4.2)) in various decoupling limits. Most flavour violating one-loop amplitudes
decouple as v2/M2 where M is one of the soft SUSY breaking mass parameters. The ex-
ception are the Higgs flavour violating decays where the amplitudes decouple as v2/M2

A.
We find that our full MI approximation, both in flavour violating and flavour conserving
off-diagonal mass terms is an excellent approximation to the calculations in the mass
eigenstates basis for a very broad pattern of supersymmetric spectra, in particular for
highly non-degenerate spectra. This is useful because in the MI approximation we work
directly with the Lagrangian parameters and can constrain them with experimental limits.

On the physics side, the considered processes are: `→ `′γ, `→ 3`′, `→ 2`′`′′, h→ ``′

as well as µ→ e conversion in nuclei. The bounds on the flavour changing parameters of
the MSSM have been updated and their sensitivity to the forthcoming experimental results
in different channels has been discussed. We have emphasised that, given the foreseen
experimental progress, precision measurements of different processes have very different
potential for the discovery of supersymmetric effects. The radiative and leptonic muon
decays are likely to remain the most important source of information on supersymmetric
LFV. The leptonic decays play a complementary role to the radiative ones in eliminating
some ”blind spots” of weakly constrained by the latter LFV mass insertions. This is
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illustrated in Sections 5.2 and 5.3. Our complete analytical MI expansion facilitates the
investigation of the LFV processes when the SUSY spectra are non-degenerate and finding
such ”blind spots” with suppressed branching ratios and regions of correlations between
various processes. This is illustrated in Sections 5.2 and 5.3. The LFV Higgs decays
are discussed in some detail. For the supersymmetric spectrum of order of 1 TeV, the
current experimental limits on the LFV Higgs decays give several orders of magnitude
weaker bounds on lepton violating MI than the radiative lepton decays. However, for
the superpartner masses of several TeV Higgs decays provide stronger bounds than the
latter because the bounds from Higgs decays do not scale with superpartner masses.
We have also analysed the role of the so-called non-holomorphic A-terms in the flavour-
violating Higgs boson decays, which can give branching ratios not much below the present
experimental sensitivity.
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A MSSM Lagrangian and vertices

Throughout this article we use the notation of Refs. [33,34] which is very similar to SLHA2
conventions [35], up to minor differences listed in Table 6.

For completeness, we collect here the definitions of the mass and mixing matrices for
the supersymmetric particles and the relevant MSSM Feynman rules. The slepton and
sneutrino mass and mixing matrices are defined as:

Z†ν

(
M2

LL +
M2

Z cos 2β

2
1̂

)
Zν = diag

(
m2
ν1
. . .m2

ν3

)
, (A.1)

Z†L

(
(M2

L)LL (M2
L)LR

(M2
L)
†
LR (M2

L)RR

)
ZL = diag

(
m2
L1
. . .m2

L6

)
, (A.2)

(
M2

L

)
LL

= (M2
LL)T +

M2
Z cos 2β

2
(1− 2c2

W )1̂ +
v2

1Y
2
l

2
, (A.3)(

M2
L

)
RR

= M2
RR −

M2
Z cos 2β

2
s2
W 1̂ +

v2
1Y

2
l

2
, (A.4)(

M2
L

)
LR

=
1√
2

(
v2(Ylµ

? − A′

l) + v1Al

)
, (A.5)

where, as usual, we use tan β = v2/v1 and M2
LL, M2

RR, Al, A
′

l, Yl = −
√

2ml/v1 are 3 × 3
matrices in flavour space.

The neutralino and chargino mass and mixing matrices can be written down as:

ZT
N


M1 0 − ev1

2cW

ev2
2cW

0 M2
ev1
2sW

− ev2
2sW

− ev1
2cW

ev1
2sW

0 −µ
ev2
2cW

− ev2
2sW

−µ 0

ZN = diag
(
mχ0

1
. . .mχ0

4

)
, (A.6)

(Z−)T

(
M2

ev2√
2sW

ev1√
2sW

µ

)
Z+ = diag (mχ1 ,mχ2) . (A.7)

We also use the following abbreviation for the matrix ZR parametrizing the mixing in the
CP-even Higgs sector:

ZR =

(
cosα −sinα
sinα cosα

)
. (A.8)

Below we list the vertices used in calculations of the LFV processes expressed in terms
of the mixing matrices defined above.
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SLHA2 [35] Ref. [33, 34]

T̂U , T̂D, T̂E −ATu , +ATd , +ATl
m̂2
Q̃

, m̂2
L̃

m2
Q, m2

L

m̂2
ũ, m̂

2
d̃
, m̂2

l̃
(m2

U)T , (m2
D)T , (m2

E)T

M2
ũ, M2

d̃
(M2

U)T , (M2
D)T

Table 6: Comparison of SLHA2 [35] and ref. [33, 34] conventions.

1) Lepton-slepton-neutralino and lepton-sneutrino-chargino vertices (for an incoming charged
lepton of flavour I):

V Iij

`L̃N,L
=

e√
2sW cW

ZIi
L (Z1j

N sW + Z2j
N cW ) + Y I

l Z
(I+3)i
L Z3j

N ,

V Iij

`L̃N,R
=
−e
√

2

cW
Z

(I+3)i
L Z1j?

N + Y I
l Z

Ii
L Z

3j?
N ,

V IKj
`ν̃C,L = − e

sW
Z1j

+ , ZIK?
ν

V IKj
`ν̃C,R = −Y I

l Z
2j?
− ZIK?

ν . (A.9)

2) Z-chargino and Z-neutralino vertices:

V ij
CCZ,L = − e

2sW cW

(
Z1i∗

+ Z1j
+ + δij(c2

W − s2
W )
)
,

V ij
CCZ,R = − e

2sW cW

(
Z1i
−Z

1j∗
− + δij(c2

W − s2
W )
)
,

V ij
NNZ,L = −V ji

NNZ,R =
e

2sW cW

(
Z4i∗
N Z4j

N − Z
3i∗
N Z3j

N

)
. (A.10)

3) CP-even-Higgs-slepton and CP-even-Higgs-sneutrino vertices:

V Kil
HLL =

3∑
C=1

(
e2

2c2
W

(
v1Z

1K
R − v2Z

2K
R

)(
δil +

1− 4s2
W

2s2
W

ZCi?
L ZCl

L

)
− (Y C

l )2v1Z
1K
R (ZCi?

L ZCl
L + Z

(C+3)i?
L Z

(C+3)l
L )

− Z2K
R√
2

(Y C∗
l µ∗ZCi?

L Z
(C+3)l
L + Y C

l µZ
Cl
L Z

(C+3)i?
L )

)
− 1√

2

3∑
C,D=1

(
Z1K
R (ACD?l ZCl

L Z
(D+3)i?
L + ACDl ZCi?

L Z
(D+3)l
L )

− Z2K
R (A

′CD?
l ZCl

L Z
(D+3)i?
L + A

′CD
l ZCi?

L Z
(D+3)l
L )

)
,

V KLI
Hν̃ν̃ = − e2

4s2
W c

2
W

(v1Z
1K
R − v2Z

2K
R )δLI . (A.11)
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4) CP-odd-Higgs-slepton and CP-odd-Higgs-sneutrino vertices:

V 1il
ALL =

i cos β√
2

3∑
C,D=1

(
(ACD∗l tan β + A

′CD∗
l − Y C

l µδ
CD)ZCj

L Z
(D+3)i?
L

− (ACDl tan β + A
′CD
l − Y C

l µ
∗δCD)ZCi?

L Z
(D+3)j
L

)
,

V 1LI
Aν̃ν̃ = 0 . (A.12)

5) CP-even-Higgs-neutralino and CP-even-Higgs-chargino vertices:

V iKl
NHN,L = V iKl ∗

NHN,R =
e

2sW cW

(
(Z1K

R Z3l
N − Z2K

R Z4l
N )(Z1i

N sW − Z2i
N cW )

+ (Z1K
R Z3i

N − Z2K
R Z4i

N )(Z1l
NsW − Z2l

NcW )
)
,

V iKl
CHC,L = V iKl ∗

CHC,R = − e√
2sW

(
Z1K
R Z2i

−Z
1l
+ + Z2K

R Z1i
−Z

2l
+

)
. (A.13)

6) CP-odd-Higgs-neutralino and CP-odd-Higgs-chargino vertices:

V i1l
NAN,L = V i1l ∗

NAN,R =
−ie2

4s2
W c

2
WMZ

(
(v2Z

3j
N − v1Z

4j
N )(Z1i

N sW − Z2i
N cW )

+ (v2Z
3i
N − v1Z

4i
N )(Z1j

N sW − Z
2j
N cW )

)
,

V i1l
CAC,L = V i1l ∗

CAC,R =
ie2

2
√

2s2
WMW

(v2Z
2i
−Z

1j
+ + v1Z

1i
−Z

2j
+ ) . (A.14)

7) Z-slepton vertex:

V ij
LLZ =

e

2sW cW

(
Zki∗
L Zkj

L − 2s2
W δ

ij
)
. (A.15)

B Loop integrals

We define the following loop integrals for 2-point and 3-point functions with non-vanishing
external momenta p and q:

i

(4π)2
B0(p,m1,m2) =

∫
d4k

(2π)4

1

(k2 −m2
1)((k − p)2 −m2

2)
,

i

(4π)2
pµB1(p,m1,m2) =

∫
d4k

(2π)4

kµ
(k2 −m2

1)((k − p)2 −m2
2)
, (B.1)

i

(4π)2
C2n(p, q,m1,m2,m3) =

∫
d4k

(2π)4

(k2)n

(k2 −m2
1)((k + p)2 −m2

2)((k + p+ q)2 −m2
3)
,

i

(4π)2
(pµC11(p, q,m1,m2,m3) + qµC12(p, q,m1,m2,m3))

=

∫
d4k

(2π)4

kµ
(k2 −m2

1)((k + p)2 −m2
2)((k + p+ q)2 −m2

3)
.
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In our expanded results we need only the integrals above, their derivatives and higher
point 1-loop integrals calculated at vanishing external momenta. Let us define

i

(4π)2
L2n
i (m1, . . . ,mi) =

∫
d4k

(2π)4

(k2)n

i∏
j=1

(k2 −m2
j)

. (B.2)

In common notation L2n
3 = C2n, L

2n
4 = D2n, L

2n
5 = E2n etc.

For i ≥ 3 one has:

L0
i (m1, . . . ,mi) = −

i∑
j=2

m2
j log

m2
j

m2
1

i∏
k=1,k 6=j

(m2
j −m2

k)

,

L2
i (m1, . . . ,mi) =

i∑
j=2

m4
j log

m2
j

m2
1

i∏
k=1,k 6=j

(m2
j −m2

k)

, (B.3)

(with the exception of L2
3 ≡ C2 having also an infinite part, which however is always

cancelled out in flavour violating processes and is thus not given here explicitly).
To simplify our formulae, we use the relation

2L0
i (m1,m2, . . . ,mi) = L2

i+1(m1,m1,m2, . . . ,mi) + L2
i+1(m1,m2,m2, . . . ,mi)

+ . . .+ L2
i+1(m1, . . . ,mi−1,mi,mi) , (B.4)

which can be obtained by differentiating with respect to λ the integral form of the homo-
geneity property

L0
i (λm1, . . . , λmi) = λ4−2iL0

i (m1, . . . ,mi) , (B.5)

and using the relation (k = 1, . . . , i)

m2
kL

0
i+1(m1, . . . ,mk,mk, . . . ,mi) = L2

i+1(m1, . . . ,mk,mk, . . . ,mi)

− L0
i (m1, . . . ,mk, . . . ,mi) . (B.6)

In addition, we define the following integrals:

C ′0(m1,m2,m3) =
∂C0(p, q,m1,m2,m3)

∂q2

∣∣∣∣
p=q=0

=
2m2

2m
2
3 −m2

1(m2
2 +m2

3)

2(m2
1 −m2

2)(m2
1 −m2

3)(m2
2 −m2

3)2
(B.7)

+
m4

1 log
m2

1

m2
2

2(m2
1 −m2

2)2(m2
1 −m2

3)2
+
m2

3(m4
3 − 2m2

1m
2
2 +m2

2m
2
3) log

m2
3

m2
2

2(m2
1 −m2

3)2(m2
2 −m2

3)3
,
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C11(m1,m2) = − m2
1 − 3m2

2

4(m2
1 −m2

2)2
+

m4
2

2(m2
1 −m2

2)3
log

m2
2

m2
1

, (B.8)

C12(m1,m2) = − m2
1 +m2

2

2(m2
1 −m2

2)2
− m2

1m
2
2

(m2
1 −m2

2)3
log

m2
2

m2
1

, (B.9)

C23(m1,m2) = −m
4
1 − 5m2

1m
2
2 − 2m4

2

12(m2
1 −m2

2)3
+

m2
1m

4
2

2(m2
1 −m2

2)4
log

m2
2

m2
1

, (B.10)

C01(m1,m2) =
7m4

1 − 29m2
1m

2
2 + 16m4

2

36(m2
1 −m2

2)3
+
m4

2(−3m2
1 + 2m2

2)

6(m2
1 −m2

2)4
log

m2
2

m2
1

, (B.11)

C02(m1,m2) =
11m4

1 − 7m2
1m

2
2 + 2m4

2

36(m2
1 −m2

2)3
+

m6
1

6(m2
1 −m2

2)4
log

m2
2

m2
1

. (B.12)

C Divided differences

The expansion of the amplitudes given in the mass eigenbasis in terms of mass insertions
can be naturally expressed [29] in via of so-called divided differences of the loop functions.

In case the function has a single argument (e.g. f(x)) divided differences are defined
recursively as:

f [0](x) = f(x) ,

f [1](x, y) =
f [0](x)− f [0](y)

x− y
,

f [2](x, y, z) =
f [1](x, y)− f [1](x, z)

y − z
,

. . . . (C.1)

As can be easily checked, a divided difference of order n is symmetric under permutation
of any of its n arguments. It also has a smooth limit for degenerate arguments:

lim
{x0,...,xm}→{ξ,...,ξ}

f [k](x0, . . . , xk) =
1

m!

∂m

∂ξm
f [k−m](ξ, xm+1 . . . , xk) . (C.2)

To compactify the formulae for functions of many arguments, we use the notation

f [k](x0, . . . , xk) ≡ f({x0, . . . , xk}) , (C.3)

where the order of the divided difference is defined by the number of arguments inside
curly brackets. Then, for example a divided difference of the 1st order in the 1st argument
and of the 3rd order in the 2nd argument for the function of 3 variables, g(x, y, z), can
be written down as:

g({x1, x2}, {y1, y2, y3, y4}, z) . (C.4)

For the loop functions defined in Appendix B one should note that their natural arguments
are squares of masses. However, we use mi’s instead of m2

i ’s to compactify the notation.
Thus, for loop functions we write divided differences as

L(m1, . . . , {mi,m
′
i}, . . . ,mn) =

L(m1, . . . ,mi, . . . ,mn)− L(m1, . . . ,m
′
i, . . . ,mn)

m2
i −m

′2
i

, (C.5)
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with squared masses in the denominator.
The notion of the divided differences is naturally encoded in the structure of 1-loop

functions: a divided difference of a n-point function is a (n+ 1)-point function. Thus, for
example, the scalar functions with vanishing external momenta (see [29] for the discussion
of more general case) one has

B0(m1, {m2,m3}) = B0({m1,m2},m3) = C0(m1,m2,m3)

B0(m1, {m2,m3,m4}) = C0(m1,m2, {m3,m4}) = D0(m1,m2,m3,m4) (C.6)

. . .

We use such relations extensively to find cancellations between various terms and to
identify the lowest non-vanishing order of mass insertion expansion for a given process.

D Box diagrams in the mass eigenstates basis

There are four types of box diagrams with four external leptons involving slepton (sneutri-
nos) and neutralinos (charginos) in the loop, displayed in Fig. 12. Both chargino-sneutrino
and neutralino-slepton pairs contribute to diagrams A) and B), while only neutralinos
(Majorana fermions) can be exchanged in the “crossed” diagrams C) and D).

Using whenever necessary Fierz identities, the amplitudes describing each of the dia-
grams N = A,B,C,D can be brought into the form

iAJIKLN = i
∑

Q=V,S,T

BJIKL
N QXY [ū(pJ)ΓQPXu(pI)][ū(pK)ΓQPY v(pL)] (D.1)

with ΓV = γµ, ΓS = 1 and ΓT = σµν . Note that for ΓT only the case X = Y is non
vanishing. Assuming that the generic couplings for an incoming lepton `I - an incoming
scalar particle Sk and an outgoing fermion fi takes the form

iV Iki
`Sf = i(AIki`SfPL +BIki

`SfPR) , (D.2)

the contribution from diagram A) in Fig. 12) to the Wilson coefficients BQXY can be
written down as:

(4π)2BJIKL
A V LL =

1

4
AIki`SfA

Jli∗
`SfA

Kkj∗
`Sf ALlj`SfD2 ,

(4π)2BJIKL
A V RR =

1

4
BIki
`SfB

Jli∗
`Sf B

Kkj∗
`Sf BLlj

`SfD2 ,

(4π)2BJIKL
A V LR =

1

4
AIki`SfA

Jli∗
`SfB

Kkj∗
`Sf BLlj

`SfD2 ,

(4π)2BJIKL
A V RL =

1

4
BIki
`SfB

Jli∗
`Sf A

Kkj∗
`Sf ALlj`SfD2 ,

(4π)2BJIKL
A SLL = AIki`SfB

Jli∗
`Sf B

Kkj∗
`Sf ALlj`SfmfimfjD0 ,

(4π)2BJIKL
A SRR = BIki

`SfA
Jli∗
`SfA

Kkj∗
`Sf BLlj

`SfmfimfjD0 ,

(4π)2BJIKL
A SLR = AIki`SfB

Jli∗
`Sf A

Kkj∗
`Sf BLlj

`SfmfimfjD0 ,

(4π)2BJIKL
A SRL = BIki

`SfA
Jli∗
`SfB

Kkj∗
`Sf ALlj`SfmfimfjD0 ,

(4π)2BJIKL
A TL = 0 ,

(4π)2BJIKL
A TR = 0 . (D.3)
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Figure 12: MSSM box diagrams with 4 external charged leptons

where D0, D2 above are the abbreviations for 4-point loop functions with respective mass
arguments, D0 = D0(mfi ,mfj ,mSk

,mSl
), D2 = D2(mfi ,mfj ,mSk

,mSl
) (see Appendix B).

Using the same notation, the contributions from diagram B), C), D) are:

(4π)2BJIKL
B V LL =

1

4
AIki`SfA

Jkj∗
`Sf A

Kli∗
`Sf A

Llj
`SfD2 ,

(4π)2BJIKL
B V RR =

1

4
BIki
`SfB

Jkj∗
`Sf B

Kli∗
`Sf B

Llj
`SfD2 ,

(4π)2BJIKL
B V LR = −1

2
AIki`SfA

Jkj∗
`Sf B

Kli∗
`Sf B

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B V RL = −1

2
BIki
`SfB

Jkj∗
`Sf A

Kli∗
`Sf A

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B SLL = −1

2
AIki`SfB

Jkj∗
`Sf B

Kli∗
`Sf A

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B SRR = −1

2
BIki
`SfA

Jkj∗
`Sf A

Kli∗
`Sf B

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B SLR = −1

2
AIki`SfB

Jkj∗
`Sf A

Kli∗
`Sf B

Llj
`SfD2 ,

(4π)2BJIKL
B SRL = −1

2
BIki
`SfA

Jkj∗
`Sf B

Kli∗
`Sf A

Llj
`SfD2 ,

(4π)2BJIKL
B TL = −1

8
AIki`SfB

Jkj∗
`Sf B

Kli∗
`Sf A

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B TR = −1

8
BIki
`SfA

Jkj∗
`Sf A

Kli∗
`Sf B

Llj
`SfmfimfjD0 , (D.4)
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(4π)2BJIKL
C V LL =

1

2
AIki`SfA

Lli
`SfA

Jlj∗
`Sf A

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C V RR =

1

2
BIki
`SfB

Lli
`SfB

Jlj∗
`Sf B

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C V LR =

1

4
BIki
`SfA

Lli
`SfB

Jlj∗
`Sf A

Kkj∗
`Sf D2 ,

(4π)2BJIKL
C V RL =

1

4
AIki`SfB

Lli
`SfA

Jlj∗
`Sf B

Kkj∗
`Sf D2 ,

(4π)2BJIKL
C SLL = −1

2
AIki`SfA

Lli
`SfB

Jlj∗
`Sf B

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C SRR = −1

2
BIki
`SfB

Lli
`SfA

Jlj∗
`Sf A

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C SLR =

1

2
BIki
`SfA

Lli
`SfA

Jlj∗
`Sf B

Kkj∗
`Sf D2 ,

(4π)2BJIKL
C SRL =

1

2
AIki`SfB

Lli
`SfB

Jlj∗
`Sf A

Kkj∗
`Sf D2 ,

(4π)2BJIKL
C TL =

1

8
AIki`SfA

Lli
`SfB

Jlj∗
`Sf B

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C TR =

1

8
BIki
`SfB

Lli
`SfA

Jlj∗
`Sf A

Kkj∗
`Sf mfimfjD0 , (D.5)

(4π)2BJIKL
D V LL =

1

2
AIki`SfA

Lli
`SfA

Jkj∗
`Sf A

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D V RR =

1

2
BIki
`SfB

Lli
`SfB

Jkj∗
`Sf B

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D V LR = −1

4
BIki
`SfA

Lli
`SfB

Jkj∗
`Sf A

Klj∗
`Sf D2 ,

(4π)2BJIKL
D V RL = −1

4
AIki`SfB

Lli
`SfA

Jkj∗
`Sf B

Klj∗
`Sf D2 ,

(4π)2BJIKL
D SLL = −1

2
AIki`SfA

Lli
`SfB

Jkj∗
`Sf B

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D SRR = −1

2
BIki
`SfB

Lli
`SfA

Jkj∗
`Sf A

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D SLR = −1

2
BIki
`SfA

Lli
`SfA

Jkj∗
`Sf B

Klj∗
`Sf D2 ,

(4π)2BJIKL
D SRL = −1

2
AIki`SfB

Lli
`SfB

Jkj∗
`Sf A

Klj∗
`Sf D2 ,

(4π)2BJIKL
D TL =

1

8
AIki`SfA

Lli
`SfB

Jkj∗
`Sf B

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D TR =

1

8
BIki
`SfB

Lli
`SfA

Jkj∗
`Sf A

Klj∗
`Sf mfimfjD0 , (D.6)

To obtain the actual MSSM contributions to the 4-lepton operators, one should add
terms from eqs. (D.3,D.4) with replacements f → C, S → ν̃, A`Sf → V`ν̃C,L, B`Sf → V`ν̃C,R
and f → N,S → L̃, A`Sf → V`L̃N,L, B`Sf → V`L̃N,R (summing over repeated indices of loop

particles) and terms from eqs. (D.5,D.6), substituting there only f → N,S → L̃, A`Sf →
V`L̃N,L, B`Sf → V`L̃N,R.
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The contributions to 2-quark 2-lepton operators can be obtained from diagrams A)
and C) by replacing `K and `L with qK and qL as defined in Eq. (2.28). Therefore, the
expressions for Bq QXY can be obtained replacing vertices of leptons `K and `L by the
relevant quark-squark vertices. Such vertices are not listed in Appendix A but can be
found in Refs. [33, 34]. The explicit form of ``dd box amplitudes can be also found in
Appendix A.3 of Ref. [97].

E Effective lepton couplings in the leading MI order

We list below the MI expanded expressions for the leptonic penguin and box diagram
amplitudes. For penguins we follow the decomposition of Eq. (4.2), with FXY denoting
functions of flavour diagonal SUSY parameters multiplying the respective slepton mass
insertions:

F IJ
X =

1

(4π)2

(
F IJ
X LL ∆IJ

LL + F IJ
X RR ∆JI

RR

+ F IJ
X ALR ∆JI

LR + F IJ
X BLR ∆IJ∗

LR + F
′IJ
X ALR ∆

′JI
LR + F

′IJ
X BLR ∆

′IJ∗
LR

)
. (E.1)

To compactify the notation, we also introduce the abbreviation

M̄ IJ
XY =

√
(M2

XX)
II

(M2
Y Y )

JJ
(E.2)

where X, Y = L or R.

E.1 Lepton-photon vertex

E.1.1 Tensor (magnetic) couplings

After performing MI expansion, one can see that terms coming from FγA in Eq. (2.4) are
always suppressed by the powers of lepton Yukawa couplings or lepton masses, and may
add to or cancel terms generated from FγLB, FγRB. Thus, in the expressions below we
give the sum of both types of contributions.

The chargino contributions contain only terms proportional to LL slepton mass inser-
tions (see Appendix C for the notation of divided differences and curly brackets around
the function arguments)

(Fγ LL)JIC =
e2v1Y

J
L

2
√

2s2
W

M̄ IJ
LL (C11(|M2| , {mν̃I ,mν̃J})

+ C11(|µ| , {mν̃I ,mν̃J})− C23(|M2| , {mν̃I ,mν̃J})
+

(
|µ|2 + |M2|2 + 2µ∗M∗

2 tan β
)
C11({|µ| , |M2|}, {mν̃I ,mν̃J})

)
(E.3)
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The non-vanishing neutralino contributions are:

(Fγ LL)JIN =
e2

2c2
W

M̄ IJ
LL

(
M?

1C12({mẽLI
,mẽLJ

,mẽRJ
}, |M1|)

(
M2

LR

)
JJ

− v1

2
√

2
Y J
L

(
c2
W

s2
W

(C12({mẽLI
,mẽLJ

}, |µ|)− C23({mẽLI
,mẽLJ

}, |M2|))

− C12({mẽLI
,mẽLJ

}, |µ|)− C23({mẽLI
,mẽLJ

}, |M1|)

+
(
|M2|2 + µ?M?

2 tan β
) c2

W

s2
W

C12({mẽLI
,mẽLJ

}, {|µ|, |M2|})

−
(
|M1|2 + µ?M?

1 tan β
)
C12({mẽLJ

,mẽLI
}, {|µ|, |M1|})

))
(E.4)

(Fγ RR)JIN =
e2

2c2
W

M̄ IJ
RR

(
M?

1C12 ({mẽLI
,mẽRI

,mẽRJ
}, |M1|)

(
M2

LR

)
II

− v1√
2
Y I
L (C12 ({mẽRI

,mẽRJ
}, |µ|)− 2C23({mẽRI

,mẽRJ
}, |M1|)

+
(
|M1|2 + µ?M?

1 tan β
)
C12({mẽRI

,mẽRJ
}, {µ, |M1|})

))
(Fγ ALR)JIN = −v1

v2

(
F ′γ ALR

)JI
N

=
e2v1

2
√

2c2
W

√
M̄ IJ

LR M
?
1C12({mẽLI

,mẽRJ
}, |M1|)

E.1.2 Vector couplings

Loop functions C01 and C02 appearing in Eq. (2.6) scale with the inverse of the squared
SUSY scale M2. Thus, only LL and RR terms contribute to the MI expanded expressions
at the v2/M2 order, as LR mass insertions always come with additional v/M powers. The
non-vanishing chargino and neutralino contributions are:

(VγL LL)JIC =
e2

s2
W

M̄ IJ
LL C01(|M2|, {mν̃I ,mν̃J}) (E.5)

(VγL LL)JIN = − e2

2s2
W c

2
W

M̄ IJ
LL (c2

WC02(|M2|, {mẽLI
,mẽLJ

}) + s2
WC02(|M1|, {mẽLI

,mẽLJ
})

(VγR RR)JIN = −2e2

c2
W

M̄ IJ
RR C02(|M1|, {mẽRI

,mẽRJ
}) (E.6)

E.2 Lepton-Z0 vertex

The leading v2/M2
SUSY terms in the effective Z ¯̀I`J vertex defined in Eq. (2.7), expanded to

the 1st order in LFV mass insertions, depend on divided differences of scalar C0 and C2 3-
point functions. They can be expressed as higher point 1-loop functions (see Appendices B
and C). We give here the expressions using explicitly scalar 4-, 5- and 6-point functions
D, E and F .
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The only non-negligible chargino contribution to Z``′ vertex read:

(FZL LL)JIC = − e5

4s5
W cW

M̄ IJ
LL

(
v2

2 D0(|M2|, |µ|,mν̃I ,mν̃J )

+ (v2
1 − v2

2)E2(|M2|, |M2|, |µ|,mν̃I ,mν̃J )

+
1

2
|v2M2 + v1µ

∗|2 F2(|M2|, |M2|, |µ|, |µ|,mν̃I ,mν̃J )

)
(E.7)

Neutralino contributions have a more complicated form. They can be written down as:

(FZL LL)JIN =
e3
√

2

16s3
W c

3
W

M̄ IJ
LL (XJI

ZNL4 +XJI
ZNL5 +XIJ∗

ZNL5)

(FZR LL)JIN =
e3
√

2

8sW c3
W

M̄ IJ
LL (XIJ

ZNR4 +XJI
ZNR5 +XIJ∗

ZNR5) (E.8)

(FZL RR)JIN =
e3
√

2

16s3
W c

3
W

M̄ IJ
RR (XJI

ZNL2 +XJI
ZNL3 +XIJ∗

ZNL3)

(FZR RR)JIN =
e3
√

2

8sW c3
W

M̄ IJ
RR (XJI

ZNR2 +XJI
ZNR3 +XIJ∗

ZNR3) (E.9)

(FZL ALR)JIN = (FZL BLR)IJ∗N = −v1

v2

(F ′ZL ALR)JIN = −v1

v2

(FZL BLR)IJ∗N

=
e3v1

16s3
W c

3
W

√
M̄ IJ

LR X
JI
ZNL1

(FZR ALR)JIN = (FZR BLR)IJ∗N = −v1

v2

(F ′ZR ALR)JIN = −v1

v2

(FZR BLR)IJ∗N

=
e3v1

4sW c3
W

√
M̄ IJ

LR X
JI
ZNR1 (E.10)

where we defined

XJI
ZNL1 =

√
2(s2
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,mẽRJ
,mẽRJ
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,mẽRJ
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,mẽLI
,mẽRJ
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,mẽLI

,mẽRJ
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,mẽRJ
,mẽRI
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,mẽLI
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,mẽLI
)

+ s2
W c

2
W (|µ|2 − Re (M1M

∗
2 ))F2(|M1|, |M2|, |µ|, |µ|,mẽLJ
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,mẽLI
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,mẽLI
,mẽRI
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,mẽLI
,mẽLI

,mẽRI
,mẽRI
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,mẽRI
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,mẽRI

)

− 1

2
(|M1|2 − |µ|2)(F2(|M1|, |µ|, |µ|,mẽRJ
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46



XJI
ZNR3 = Y I

l (M2
LR)II (2v1M

∗
1E0(|M1|, |µ|,mẽLI

,mẽRJ
,mẽRI
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,mẽRI
)))

− 2
√

2F2(|M1|,mẽLI
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E.3 CP-even Higgs-lepton vertex

The dominant MI terms in the effective CP-even Higgs - lepton couplings (see Eq. (2.13))
can be split into four classes,

F IJK
h =

1

(4π)2

(
F IJK
hnd + F IJK

hY + F IJK
hdec + F IJK

hm

)
, (E.21)

defined as (below we give the sum of neutralino and chargino contributions, the latter
appearing only as single term depending on sneutrino masses in eq. (E.24) and follow
notation of Eq. (4.2)):

1. Contributions proportional to non-holomorphic A′l trilinear terms, non-decoupling for
MSUSY � v9:

F IJK
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) (E.22)
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2. Contributions suppressed by the lepton Yukawa couplings, also non-decoupling for
MSUSY � v:
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L (E.24)

9For comparison with commonly used notation of the Higgs mixing angles, note that

(v1Z
2K
R − v2Z1K

R )/v1 =

{
sin(α− β)/ cosβ for K = 1
cos(α− β)/ cosβ for K = 2

.
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3. Contributions decoupling as v2/M2
SUSY . We neglect here terms proportional to ∆LL,

∆RR, ∆′LR as they are dominated by non-decoupling contributions listed in points 1)
and 2). Only the terms proportional to ∆IJ

LR and ∆JI∗
RL are generated starting at order

v2/M2
SUSY . To simplify the expressions, below we also neglect terms additionally sup-

pressed by lepton Yukawa couplings (this approximation becomes inaccurate for large µ
and tan β ≥ 30, when the diagonal LR elements of the slepton mass matrix proportional
to µYl become important).
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,mẽRJ

)

− (2s2
W − 1)D0(|M1|,mẽLI
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where by C ′0 we denote the derivative of C0 over the external Higgs mass, C ′0 = ∂C0

∂M2
h

(see Eq. (B.7)).

E.4 CP-odd Higgs-lepton vertex

For the processes considered in this article, the contribution from the LFV CP-odd Higgs-
lepton vertex can become important only in the case of the three body charged lepton
decays and only in the limit of MSUSY � v, when photon, Z0 and box contributions
decouple. Thus, we give here only the dominant non-decoupling terms for this vertex.

F IJ
A =

1

(4π)2

(
F IJ
And + F IJ

AY

)
. (E.27)

As for CP-odd Higgs vertices, we give the sum of the neutralino and chargino contribu-
tions, the latter appearing only as single term depending on sneutrino masses in Eq. (E.30):
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1. Contributions proportional to non-holomorphic A′l terms:
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,mẽRI
,mẽRJ
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2. Contributions suppressed by lepton Yukawa couplings:
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E.5 4-lepton box diagrams

All genuine box diagram contributions listed in eqs. (D.3–D.6) have negative mass di-
mension and without any cancellations explicitly decouple like v2/M2

SUSY . Thus, it is
sufficient to expand them only in the lowest order in chargino and neutralino mass inser-
tions. Also the LR slepton mass insertions are always associated with additional factors
of v/MSUSY . Thus in the leading v2/M2

SUSY order only LL and RR slepton mass insertion
can contribute to formulae for box diagrams.

Expressions listed below are valid only for ∆L = 1 processes, i.e. excluding combina-
tions of indices I = J,K = L or I = K, J = L - for these one would also take into account
flavour conserving diagrams. As mentioned in Sec. 3.3, we do not consider MI expanded
expressions for exotic ∆L = 2 processes.

The chargino diagrams contribute significantly only to the BV LL, all other contribu-
tions are at least double Yukawa suppressed and very small. The BV LL term is:

(4π)2BJIKL
V LLC =

e4

4s4
W

(
E2(|M2|, |M2|,mν̃I ,mν̃J ,mν̃K )

(
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IK
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)
+ E2(|M2|, |M2|,mν̃J ,mν̃K ,mν̃L)

(
δIK∆JL

LLM̄
JL
LL + δIJ∆KL

LL M̄
KL
LL

))
(E.31)

Contributions arising from neutralino box diagrams, both normal and crossed added
together, are listed below in Eqs. (E.32-E.37). We do not give here formulae for the
neutralino contributions to BSLL, BSRR, BTL and BTR, as they are also double Yukawa
suppressed and small.
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,mẽLL
)

+ 3s4
WE2(|M1|, |M1|,mẽLI
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,mẽLL

)− 2s4
WD0(|M1|,mẽLI

,mẽLJ
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(E.32)
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,mẽLJ
,mẽRL

)

− 3E2(|M1|, |M1|,mẽLI
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,mẽLL

)

− 3E0(|M1|, |M1|,mẽRI
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