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1. Introduction

Scattering amplitudes are essential ingredients to theoretical studies of scattering processes

at particle colliders. It is important to calculate scattering amplitudes with sufficient accuracy,

which is achieved by taking higher-order radiative corrections into account. The resulting higher-

order amplitudes depend on increasingly many internal and/or external variables and thus naturally

require methods of multivariate calculus. In particular, multivariate residues make their appearance

in the context of two-loop amplitude calculations.

Multi-loop amplitudes are systematically calculated in terms of Feynman diagrams. The large

set of corresponding Feynman integrals are usually reduced to a much smaller set of master in-

tegrals by solving a system of integration-by-parts (IBP) identities among the Feynman integrals,

a process known as IBP reduction [1, 2]. The coefficients of master integrals produced by the

IBP reduction are rational functions of the external invariants of the scattering amplitude and the

space-time dimension d. As the number of external invariants increases, expressions for integral

coefficients tend to grow dramatically in size, in particular at intermediate stages of the reduction.

As a result, IBP reduction can become a serious bottleneck in the computation of scattering ampli-

tudes. A direct way of obtaining integral coefficients, bypassing the IBP reduction, would therefore

be of practical interest.

Generalised unitarity has been used with much success in calculations of one-loop ampli-

tudes with many external invariants [3, 4]. The feat of bypassing IBP reductions is achieved in

its generalisation to two loops [5, 6]. In generalised unitarity, the coefficients of a loop amplitude

decomposed in a basis of integrals are obtained as residues of products of tree amplitudes. As a

result, this method leads one to consider multivariate residues.

Multivariate residues appear in other contexts as well. For instance, they can be used to cal-

culate leading singularities of Feynman integrals, in search of canonical bases of integrals [7].

Multivariate residues also play a central role in the Grassmannian formulation of the S-matrix [8].

Furthermore, multivariate residues provide an efficient means to localise amplitudes computed in

the Cachazo-He-Yuan formalism to the solutions of scattering equations [9, 10].

Multivariate residues can be non-trivial to evaluate in practice. Nevertheless, implementations

of their evaluation have not been publicly available. In this talk we discuss the recently developed

Mathematica package MULTIVARIATERESIDUES [11] for evaluating multivariate residues. We

conclude by providing three example applications.

2. Definition of multivariate residues

The setup of our work is as follows. We consider a given n-form

Ω =
h(z)dz1 ∧ ·· ·∧dzn

f1(z) · · · fn(z)
, (2.1)

where h(z) and fi(z) are polynomials of the complex variables z = (z1, . . . ,zn). A pole of Ω is

defined as a point p ∈ C
n where f (z) = ( f1(z), . . . , fn(z)) has an isolated zero. The multivariate

residue of Ω is then defined as [12],

Res
{ f1,..., fn}, p

(Ω) =
1

(2πi)n

∮

Γ
Ω , (2.2)
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where the contour Γ encircles each denominator factor,

Γ = {z ∈C
n : | fi(z)|= εi ∀ i = 1, . . . ,n} , (2.3)

with the εi infinitesimal. The contour is oriented by the condition d(arg f1)∧ ·· ·∧d(arg fn)≥ 0.

The n-form in eq. (2.1) has precisely as many denominator factors as complex variables. It

suffices to discuss multivariate residues of such forms, because other situations can be reduced to

this case. Should there be less denominator factors than integration variables, then the present def-

inition of multivariate residues is not immediately applicable. However, one can still take iterated

residues with respect to subsets of the n complex variables, and for each residue apply the definition

of the multivariate residue. Should there be more denominator factors than integration variables,

then one can always partition the set of denominator factors into precisely n factors. In general,

each partitioning leads to a different value for the residue, since the residue in eqs. (2.2)–(2.3)

is defined in terms of the denominator factors fi(z). The fact that the multivariate residue is not

uniquely specified by the location of the pole is an inherent feature of multivariate residues. The

geometric picture is that in the multivariate case it becomes possible to encircle a given pole with

contours which are inequivalent in the sense that one contour cannot be continuously deformed into

the other contour without crossing a singular surface of the integrand, as explained in the appendix

of ref. [11].

3. Evaluation of multivariate residues

We will now discuss how to evaluate the multivariate residue in eq. (2.2) in practice. Let’s

start with the simplest case, for which it is sufficient to change variables z → w = f (z). Indeed, if

the associated Jacobian,

Jac(p)≡ det
i, j

(

∂ fi

∂ z j

)
∣

∣

∣

∣

z=p

, (3.1)

is non-vanishing, then the residue is said to be non-degenerate and evaluates to

Res
{ f1,..., fn},p

(Ω) =
h(p)

Jac(p)
. (3.2)

On the other hand, if the Jacobian in eq. (3.1) vanishes, then the residue is said to be degenerate,

and a different computational strategy is needed.

Conceptually the simplest way to evaluate degenerate multivariate residues is by performing

a transformation of denominator factors (rather than a transformation of variables). A theorem in

algebraic geometry, see chapter 5 in ref. [12], states that for certain linear combinations of the de-

nominator factors, namely gi(z) = ∑n
j=1 Ai j(z) f j(z) with locally holomorphic Ai j(z), the following

transformation formula holds,

Res
{ f1,..., fn}, p

(

h(z)dz1 ∧ ·· ·∧dzn

f1(z) · · · fn(z)

)

= Res
{g1,...,gn}, p

(

h(z)dz1 ∧ ·· ·∧dzn

g1(z) · · ·gn(z)
detA(z)

)

. (3.3)

The key idea is to change to univariate denominator factors gi(z) = gi(zi), which can be constructed

systematically (although computationally expensive) via Gröbner basis computations, after which

the multivariate residue factorises into a product of univariate residues.
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A more sophisticated method of evaluating degenerate multivariate residues exploits the fact

that the residue defines a non-degenerate inner product on the quotient ring consisting of all polyno-

mials in the variables z1, . . . ,zn with coefficients in C modulo the zero-dimensional ideal generated

by the denominator factors f (z). After decomposing the numerator h(x) in the canonical basis of

the quotient ring, and the constant 1 in the dual basis with respect to the residue map, the global

residue is computed as the inner product of the coefficient vectors associated with the two decom-

positions. Local residues are extracted by multiplying the numerator h(x) with partition-of-unity

polynomials. For a more detailed description of this method we refer to ref. [11].

An implementation of the above-mentioned methods for calculating multivariate residues has

been made publicly available in the Mathematica package MULTIVARIATERESIDUES. In line with

the discussion in section 2, the new function MultivariateResidue requests separate specifi-

cations of the numerator function h(z) and the denominator factors f (z) = ( f1(z), . . . , fn(z)). If

necessary, a partitioning of m > n denominator factors into exactly n subsets should be performed

by the user in advance. It should also be emphasised that the functions h(z) and f (z) are restricted

to be polynomials in the complex variables. Gamma functions of z, for instance, are beyond our

scope. An extensive manual for MULTIVARIATERESIDUES can be found in ref. [11]. A simple

example of a multivariate residue computation is the following:

<< "MultivariateResidues‘"

h = z1; f1 = z2; f2 = (a1*z1 + a2 z2)*(b1*z1 + b2*z2);

MultivariateResidue[h, {f1, f2}, {z1->0, z2->0}]

Out: -1/(a1*b1)

4. Applications

In the following three subsections we give three examples of the application of multivariate

residues in the context of scattering amplitude calculations.

4.1 Master integral coefficients

Our first example is about the extraction of master integral coefficients. Let us start by dis-

cussing the context of unitarity in amplitude calculations. It is well-known that a one-loop ampli-

tude can be decomposed in terms of a small set of one-loop master integrals [3]. Schematically,

A
one-loop = ∑

k

ck Ik + rational terms . (4.1)

Moreover, the integral coefficients ck are cut-constructible in four dimensions. A famous example is

the coefficient of the one-loop box integral [13], which can be extracted from eq. (4.1) by replacing

the loop-momentum integration along the real slice with the contour T 4
ε = {ℓ ∈ C

4 : |p2
i (ℓ)|= εi}.

In fact, all integral coefficients in eq. (4.1) can be written in terms of non-degenerate multivariate

residues, which are evaluated straightforwardly by a change of variables, cf. eq. (3.2).

For two-loop amplitudes, the unitarity approach can be pursued by considering maximal cuts

of two-loop integrals. It has been shown that the coefficients of double-box integrals, to the leading
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order in (d − 4), are indeed cut-constructible [5]. While the latter computation involved non-

degenerate multivariate residues, proceeding towards sub-topologies of the double box leads nat-

urally to degenerate multivariate residues, whose evaluation require the methods from algebraic

geometry discussed in section 3.

ℓ1

ℓ2
k1

k2 k3

k4

Figure 1: The maximally cut slashed-box integral.

Consider, for instance, the slashed-box integral. Its maximal cut, illustrated in fig. 1, depends

on 2 × 4− 5 = 3 complex variables (z1,z2,z3). Localising the remaining three variables yields

degenerate multivariate residues. A typical example is given by

Res
{ f1, f2, f3}, (0,1,0)

(

dz1 ∧dz2 ∧dz3

f1 f2 f3

)

=
1+ χ

χ
, (4.2)

where f1 = z1(1−z1−z2), f2 = z2 z3, f3 = (1−z1−z2−z1χ+z1z3χ), and χ = t/s is the usual ratio

of Mandelstam invariants. This example is one of many residues, obtained by different partitions of

denominator factors into three functions f1, f2, f3. As a result, the computation of the slashed box

provides many test-cases for the MULTIVARIATERESIDUES package. The resulting set of 6395

residues in three complex variables was evaluated (on a single core on a standard laptop) in about

ten minutes, averaging to approximately one-tenth of a second per residue.

4.2 Canonical basis of integrals

Our second example concerns master integrals. The computation of master integrals benefits

from the freedom to choose any particular basis of integrals, because the form of the differential

equations for the basis integrals depends greatly on that choice of basis. In particular, differential

equations in canonical form (ε-factorised and Fuchsian) are trivial to solve. Finding an associated

canonical basis of integrals is therefore an important problem. This is witnessed by the recent ap-

pearance of several public programs, Fuchsia [14], epsilon [15] and Canonica [16], which address

aspects of this problem. A different strategy for finding a canonical basis follows an older idea

of constructing Feynman integrals with unit leading singularity [17]. A basis of such integrals is

conjectured to be a canonical basis [7]. For instance, the leading singularity of the one-loop box

integral is 1/(st), and one finds that indeed st Ibox is a suitable canonical master integral. Since

leading singularities are essentially multivariate residues of Feynman integrands, they can be cal-

culated with MULTIVARIATERESIDUES.

As an illustration of the computation of leading singularities, consider the planar triple-box

integral in fig. 2 with all particles massless, which was first calculated in ref. [18]. We adopt
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ℓ1 ℓ2

ℓ3

k1

k2 k3

k4

Figure 2: The massless planar triple-box integral.

the momentum flow conventions shown in fig. 2 and denote an arbitrary triple-box integral with

numerator N by Itriple-box(N). In this notation, the three triple-box integrals used as canonical master

integrals in ref. [18] are,

Itriple-box(1) , Itriple-box

(

(ℓ1 − k2 − k3)
2
)

, Itriple-box

(

(ℓ3 − k3)
2
)

. (4.3)

These integrals were selected for their unit leading singularity properties, which can be confirmed

in the following way. First, it is convenient to parametrise the loop momenta as [19],

ℓ
µ
1 = L

µ
123(α1, . . . ,α4) = α1k

µ
1 +α2k

µ
2 +

α3

2

〈23〉

〈13〉
〈1|σ µ |2]+

α4

2

〈13〉

〈23〉
〈2|σ µ |1] , (4.4)

and similarly ℓ
µ
2 = L234(β1, . . . ,β4), ℓ

µ
3 = L341(γ1, . . . ,γ4). Next, one solves the constraint that all

propagators are on shell in terms of the αi,βi,γi. There are fourteen distinct solutions [20]. For each

solution, residues associated with the on-shell propagators are evaluated, leaving rational functions

of two variables. Those rational functions can in turn be localised to their poles, and it turns out

that these residues are degenerate [19]. With MULTIVARIATERESIDUES it is straightforward to

calculate such degenerate multivariate residues. As a result, one finds that the integrals in eq. (4.3)

have constant leading singularities and are therefore suitable elements of a canonical basis of inte-

grals. Thus, the package MULTIVARIATERESIDUES can provide a small step in finding canonical

bases of integrals.

4.3 Tree-level amplitudes from scattering equations

Our third example is the application of multivariate residues in the context of the Cachazo-

He-Yuan (CHY) scattering equations, which describe scattering in arbitrary spacetime dimension

[9]. The scattering equations relate the kinematics of n massless particles to n points z1, . . . ,zn on a

Riemann sphere,

n

∑
j=1, j 6=i

si j

zi − z j

= 0 , i ∈ {1, . . . ,n} . (4.5)

The scattering equations are invariant under Möbius transformations, which leaves (n− 3)! in-

equivalent solutions. The CHY formula for a tree-level amplitude for n-particle scattering is given

by a contour integral that localises a suitable integrand to all inequivalent solutions of the scattering

5
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equations. Although the CHY formula is elegant and compact, the instruction to sum over a fac-

torially growing number of residues makes it difficult to compute in practice, already at relatively

low multiplicities. Moreover, for n > 5 the solutions become irrational, while the final sum of all

residues is a simpler rational function [21]. In ref. [10] it was noted that these two difficulties are

circumvented by direct evaluation of the global residue mentioned toward the end of section 3.

As a simple illustration, consider a five-scalar amplitude in φ3-theory [10]. Due to Möbius

invariance we can fix (z1,z2,z5) = (∞,1,0). The remaining two variables z3,z4 must be localised

to the solutions of the scattering equations, which is done efficiently by taking the global residue.

In MULTIVARIATERESIDUES, precisely such a computation is performed by

MultivariateResidue[h, {f1,f2}, {z1,z2}, {GlobalResidue},

Method -> "QuotientRingDuality"]

This approach reproduces the well-known tree-level five-scalar amplitude. We emphasise that the

instruction {GlobalResidue} prompts the global residue to be calculated directly, without sum-

ming over individual residues in the intermediate stage. Following the method of ref. [10], multi-

variate residues thus allow for the efficient calculation of tree-level scattering amplitudes.
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