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Abstract
We present a computation of the next-to-next-to-leading order (NNLO) QCD corrections to the

production of a Higgs boson in association with a W boson at the LHC and the subsequent decay

of the Higgs boson into a bb̄ pair, treating the b-quarks as massless. We consider various kinematic

distributions and find significant corrections to observables that resolve the Higgs decay products.

We also find that a cut on the transverse momentum of the W boson, important for experimental

analyses, may have a significant impact on kinematic distributions and radiative corrections. We

show that some of these effects can be adequately described by simulating QCD radiation in Higgs

boson decays to b-quarks using parton showers. We also describe contributions to Higgs decay

to a bb̄ pair that first appear at NNLO and that were not considered in previous fully-differential

computations. The calculation of NNLO QCD corrections to production and decay sub-processes is

carried out within the nested soft-collinear subtraction scheme presented by some of us earlier this

year. We demonstrate that this subtraction scheme performs very well, allowing a computation of

the coefficient of the second order QCD corrections at the level of a few per mill.
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I. INTRODUCTION

Production of the Higgs boson in association with the W boson pp→ WH plays an impor-

tant role in Higgs physics explorations at the LHC [1–4]. For example, it provides direct

access to the HWW coupling, which is completely fixed by the gauge symmetry of the

Standard Model (SM) but may receive new contributions in its extensions. The WH asso-

ciated production is known to provide important constraints on such anomalous couplings,

see e.g. Ref. [5]. Furthermore, as was pointed out in Ref. [6], by selecting Higgs bosons with

relatively high transverse momenta, it is possible to identify and study the decay of a Higgs

boson into a bb̄ pair with high efficiency. The associated WH production then becomes sen-

sitive to the value of the bottom quark Yukawa coupling which currently is only constrained

to within a factor of two relative to its SM value [4, 7].

The importance of associated WH production inspired a large number of computations of

higher-order QCD and electroweak (EW) corrections to this process. The next-to-leading

order (NLO) QCD and EW corrections to pp→ WH were computed in Refs. [8] and [9, 10],

respectively. NLO QCD and EW fixed order computations were subsequently matched to

parton showers in Refs. [11, 12]. The inclusive next-to-next-to-leading order (NNLO) QCD

corrections to pp → WH can be deduced [13] from the NNLO QCD corrections to the

Drell-Yan process pp→ W ∗ computed in Refs. [14, 15]. Additional NNLO QCD effects that

distinguish associated production from the Drell-Yan process originate from diagrams where

the Higgs boson is emitted by loops of top quarks; these effects were computed in Ref. [16]

in the large top mass approximation. The numerical program VH@NNLO, which allows high-

precision computations of the inclusive cross section of associated Higgs boson production,

was developed in Ref. [17].

Fully-differential NNLO QCD results for associated WH production were obtained in

Refs. [18, 19] using slicing techniques. The NNLO calculation of Ref. [18] was matched

to a parton shower in Ref. [20]. NLO QCD corrections to H → bb̄ decay were combined

with NNLO QCD corrections to the pp→ WH production process in Ref. [21], in the limit

of a vanishing b-quark mass, and in Ref. [19], retaining the full mb dependence. Recently,

the computation of Ref. [21] was extended [22] to include the NNLO QCD corrections to

H → bb̄ decay computed earlier in Ref. [23] (see also Ref. [24]), in the limit mb → 0. Very
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large effects, apparently caused by an improved treatment of radiative corrections in the

decay H → bb̄, were found for some kinematic distributions.

The purpose of this paper is to repeat the computation of Ref. [22]. There are several

reasons for doing so. First, it is important to check the appearance of large effects when

QCD corrections to decays are included. Also, we note that some peculiar contributions to

Higgs decay to a bb̄ pair that appear at NNLO QCD for the first time were not considered

in the computations of Refs. [23, 24] and we discuss them here.

Second, the type of distributions for which large QCD corrections were found in Ref. [22]

are typically pathological at leading order. For example, kinematic requirements can result

in certain regions of phase space only being populated at NLO. In these kinematic regions,

the NNLO computations provide next-to-leading order corrections so that moderately large

effects are not too surprising. In addition, severe cuts on the final state particles imply the

appearance of kinematic boundaries that may cause genuine large effects that signal poor

convergence of perturbation theory. In general, many of these effects are driven by parton

emissions and may be properly described by parton showers. It is then interesting to check

to what extent the large radiative corrections found in Ref. [22] can be described by a parton

shower applied to H → bb̄ decay.

Finally, we perform the computation using the local subtraction scheme described recently

in Ref. [25]. This scheme is an extension of the original sector-improved residue subtraction

scheme developed in Refs. [26, 27]. As we already mentioned, all previous computations of

WH production at NNLO QCD were performed using variants of the slicing method and it

is interesting to perform the computation using fully local subtractions.

The remainder of the paper is organized as follows. In Section II we briefly review the

computational scheme of Ref. [25] with an eye on its application to the production process

pp → WH. In Section III we illustrate the performance of the subtraction scheme by

showing numerical results for NNLO QCD corrections to the pp → WH process, treating

the H → bb̄ decay at leading order. In Section IV we discuss the generalization of the scheme

of Ref. [25] to the decay process H → bb̄, and point out differences between the production

and decay cases. We also present numerical results for the NNLO QCD corrections to the

H → bb̄ decay process, to illustrate the performance of the subtraction scheme in this case as

well. Finally, we discuss the phenomenology of the process pp → W (lν)H(bb̄), consistently
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including NNLO QCD corrections to both production and decay. We present numerical

results for cross sections and selected distributions in Section V and compare them with

the approximate treatment of QCD corrections to H → bb̄ decay using a parton shower in

Section VI. We conclude in Section VII.

II. BASICS OF NNLO QCD COMPUTATIONS WITHIN THE NESTED SOFT-

COLLINEAR SUBTRACTION FRAMEWORK

The goal of this Section is to review the subtraction scheme for NNLO QCD calculations [25].

We consider the collision of two partons and ask for the fiducial volume cross section defined

by an infra-red and collinear-safe observable O. The fiducial cross section is schematically

written as

σf (O) =
∑
X

∫
dLips({pX})|M|2({pX})O({pX}), (1)

where dLips is the Lorentz-invariant phase space and M is the amplitude for the process

X. In Eq. (1), final states X of increasing multiplicity have to be included to arrive at

a high-order result for σf . In our case, the leading-order computation includes partonic

processes of the type qq̄′ → WH followed by the decays H → bb̄ and W → lν̄. Both the

production and the H → bb̄ decay processes are affected by QCD corrections. In this Section

we focus on the QCD corrections to WH associated production and consider Higgs decay

in the leading-order approximation.

We note that the NNLO QCD corrections to inclusive WH production are known since

long ago [13, 16, 17]. The challenge for an exclusive computation is to extract the soft

and collinear divergences from, say, a matrix element squared with two additional final

state partons relative to the leading-order matrix element, while avoiding integration over

momenta of partons that can get resolved.

At next-to-leading order, an understanding of how to do this in full generality using both

slicing and subtraction methods was achieved more than twenty years ago [28–31]. Unfor-

tunately, the generalization of these methods to NNLO proved to be difficult and required

significant effort. This effort started to pay off in the past two to three years, and a large

number of fully-differential NNLO QCD results for important LHC processes has been ob-

tained using different computational methods [26, 27, 32–38].

4



One of these methods, the so-called sector improved residue-subtraction scheme, was devel-

oped in Refs. [26, 27] (see also [33, 39] for related work). Recently, it was shown [25] how

to modify the original formulation of the method by exploiting the fact that in QCD soft

and collinear singularities are not entangled. This allows one to closely follow the so-called

FKS subtraction scheme [30, 31], developed for NLO QCD computations, and perform the

required soft and collinear subtractions in a nested way [25]. As a consequence, the compu-

tational framework becomes very transparent and, as we show below, numerically efficient.

We will illustrate the main idea of Ref. [25] by considering the double-real emission contri-

bution, taking the process q(p1)q̄′(p2)→ WH + g(p4)g(p5) as an example. Final states with

lower multiplicity can be treated along the same lines although the details can be slightly

different. Schematically, we write the corresponding cross section as

σggf (O) =

∫
[dg4][dg5]θ(E4 − E5)FLM(1, 2, 4, 5) = 〈FLM(1, 2, 4, 5)〉, (2)

where

FLM(1, 2, 4, 5) =

∫
dLips(p1 + p2 − p4 − p5 → W +H))|M|2({p})O({p}), (3)

and

[dgi] =
dd−1pgi

(2π)d−12Egi
θ(Emax − Egi) (4)

is the phase-space element for a gluon, supplemented with a θ-function that ensures that

the gluon energy is bounded from above. Note that we introduced the energy ordering of

gluons in Eq. (2) to remove the 1/2! identical particles factor.

Our goal is to extract singularities from Eq. (2). These singularities can occur in several

ways. For example, the so-called double-soft singularity arises if the energies of the two

gluons vanish simultaneously. A single-soft singularity appears if E5 vanishes at fixed E4.

Note that due to the energy ordering in Eq. (2) the opposite limit (E4 → 0 at fixed E5)

cannot occur. In addition to these soft singularities, there are also collinear singularities

that occur when the gluons are emitted along the direction of the incoming quark, incoming

anti-quark or if they are emitted collinear to each other.

We need to extract all these singularities in an unambiguous way. We begin with soft

singularities. We write

σggf (O) = 〈FLM(1, 2, 4, 5)〉 = 〈SSFLM(1, 2, 4, 5)〉+ 〈(I − SS)FLM(1, 2, 4, 5)〉, (5)
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where SS is an operator that extracts the double-soft1 singularity from FLM . When the

operator SS acts on FLM , it removes the four-momenta of the gluons from both the energy-

momentum conserving δ-function inside dLips and the observableO, and extracts the leading

singular behavior from the matrix element squared. The result is well known

SSFLM(1, 2, 4, 5) = g2
s Eik(1, 2, 4, 5) FLM(1, 2), (6)

where Eik(1, 2, 4, 5) is the square of the eikonal factor derived in Ref. [36]. It is also given

in Ref. [25] using the same notation as we use in this paper.

We deal with the two terms on the right-hand side of Eq. (5) in different ways. In the first

term the hard matrix element decouples thanks to Eq. (6) and only the eikonal factor needs

to be integrated over the two-gluon phase-space. This integral was performed numerically in

Ref. [25]. The second term in Eq. (5) has its double-soft divergences regularized. However,

both the E5 → 0 divergence at fixed E4 as well as the collinear divergences are still present

there. To take care of them, we repeat the procedure and subtract the E5 → 0 singularities

at fixed E4. We call the corresponding operator S5 and write

〈(I−SS)FLM(1, 2, 4, 5)〉 = 〈(I−SS)(I−S5)FLM(1, 2, 4, 5)〉+ 〈S5(I−SS)FLM(1, 2, 4, 5)〉. (7)

The operator S5 acting on FLM(1, 2, 4, 5) removes the gluon g5 from the phase space and the

observable and extracts the leading singularity

S5FLM(1, 2, 4, 5) =
g2
s

E2
5

[
(2CF − CA)

ρ12

ρ15ρ25

+ CA

(
ρ14

ρ15ρ45

+
ρ24

ρ25ρ45

)]
FLM(1, 2, 4). (8)

We use the notation ρij = 1 − cos θij in Eq. (8), where θij is the relative angle between

partons i and j. Among the two terms on the right hand side in Eq. (7), the first has

only collinear divergences and the second has a simplified (i.e. independent of g5) matrix

element. Therefore, the integration over the energy and emission angles of the gluon g5 can

be performed in this term. The remaining matrix element for the process qq̄′ → WH + g4

can then be treated similarly to a normal NLO computation.

The procedure continues with collinear subtractions that are again applied to the terms on

the right hand side in Eq. (7) on top of the soft subtractions shown there. However, an

additional step, similar to the energy ordering in Eq. (2), is required. Indeed, we need to

1 Here we define the double-soft limit as E4 → 0, E5 → 0 at fixed E5/E4.
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further split the phase space into sectors such that in each of them only a particular type of

collinear singularity can occur.

There are two major ingredients to this phase space splitting. First, we partition the

phase space into two double-collinear partitions and two triple-collinear partitions. In the

two double-collinear partitions, the gluons can only have singularities if ~p4||~p1, ~p5||~p2, or

if ~p4||~p2, ~p5||~p1, respectively. In the two triple-collinear partitions, singularities appear if

~p1||~p4||~p5 or if ~p2||~p4||~p5, respectively. We note that in the two latter cases the singularities

can also appear if ~p4||~p5.

The contributions of the double-collinear partitions can be computed right away since all

singular limits are uniquely established. The situation is more complex for the triple-collinear

partitioning where this is not the case. Indeed, in triple-collinear configurations we need to

consider the two cases of the gluons being either close or well-separated in rapidity. To

this end, we further partition the phase space into four sectors. Taking as an example the

~p1||~p4||~p5 partitioning, we introduce four sectors according to the following formula

1 = θ
(
ρ51 <

ρ41

2

)
+ θ

(ρ41

2
< ρ51 < ρ41

)
+ θ

(
ρ41 <

ρ51

2

)
+ θ

(ρ51

2
< ρ41 < ρ51

)
. (9)

Note that this splitting is largely arbitrary. The important point is that in each of the

four sectors only a well-defined type of singular collinear limit can occur; by choosing an

appropriate parametrization, these singularities can be resolved and isolated. The nested

subtraction of these collinear limits can then be performed, similar to what we discussed in

connection with the soft limits. A convenient phase-space parametrization for each of the

four sectors can be found in Ref. [26].

A detailed discussion of this approach can be found in Ref. [25] which an interested reader

should consult. Below, we list a few aspects of the current computation that go beyond that

reference.

• We extend the computation of Ref. [25] by including the qg → WH + q′g partonic

channel. The difference with the quark-anti-quark annihilation channel is that the

quark-gluon channel appears for the first time at NLO and, therefore, to obtain the

result relevant for the NNLO computation, we only need to include one-loop corrections

to this channel and consider one additional gluon in the final state. There are no
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conceptual differences with the computations described in Ref. [25] and, similarly to

that reference, compact formulas are obtained for the NNLO contribution of the quark-

gluon channel. In our implementation, we used a slightly different parametrization of

the phase space compared to Ref. [25] making use of the fact that there are no single-

soft singularities related to quark emission.

• We compute all the channels with an additional quark-anti-quark pair in the final

state qq̄′ → WH + q1q̄2. If the quark-anti-quark pair comes from gluon splitting,

the corresponding process has a double-soft singularity that is different from the one

described above; the integral of the respective eikonal factor has to be computed anew.

• We compute the contribution of the gg → WH+ qq̄′ channel. This channel has simple

collinear divergences and their extraction is straightforward.

• We include the NNLO contributions to the associated production pp → WH where

the Higgs boson is emitted from a loop of virtual top quarks. These include two-loop

corrections to the qq̄ → WH partonic process, as well as one-loop corrections to the

qq̄ → WH + g process. These finite contributions were first computed in Ref. [16],

where they were referred to as VI and RI , respectively. We take the amplitude for VI

in an expansion in 1/mtop and the amplitude for RI with the exact mass dependence

from Refs. [16, 19].

III. ASSOCIATED WH PRODUCTION

In this Section we present results of the computation of the NNLO QCD corrections to the

process pp → W (lν)H(bb̄) at the center-of-mass energy
√
s = 13 TeV. We compute LO,

NLO and NNLO cross sections and distributions always using NNPDF3.0 NNLO parton

distribution functions [40]. We use the numerical value of the strong coupling constant

provided by the PDF set, with αs(mZ) = 0.118.

The Higgs and the W boson masses are taken to be 125 GeV and 80.398 GeV, respectively.

The mass of the top quark is set to 173.2 GeV. The decays of the Higgs boson and of

the W boson are included in the narrow width approximation. In this Section, we consider

the H → bb̄ decay at LO only. The width of the W boson is ΓW = 2.1054 GeV. The
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Figure 1: Results for the rapidity and the transverse momentum distributions of the Higgs boson.

Upper panes – results in consecutive orders of perturbation theory. Lower panes – ratios of NLO

to LO and NNLO to NLO. The renormalization and factorization scales are set to µ = MWH . In

this plot, LO, NLO and NNLO results are all computed with NNLO PDFs, see text for detail.

Fermi constant is GF = 1.16639× 10−5 GeV−2, and we take sin2 θW = 0.2226459 as the sine

squared of the weak mixing angle. We also approximate the CKM matrix by an identity

matrix. For the decay of the Higgs boson, we take the b-quark Yukawa coupling to be

yb =
√

2 mb(mH)/v = 0.0176, which corresponds to mb(mH) = 3.07 GeV. We consider only

the leading term in mb, which at this order corresponds to treating b-quarks as massless

particles but with a non-vanishing Yukawa coupling. Finally, the Higgs boson width is

taken to be ΓH = 4.165 MeV.

We employ dynamic renormalization and factorization scales that we take to be proportional

to the invariant mass of the WH system MWH . We compute the NNLO QCD corrections

for three values of the scales µ = MWH/2, µ = MWH and µ = 2MWH , while keeping the

scale of the b-quark Yukawa coupling fixed to mH .

We report our results forW+ andW− production in Table I. NLO QCD corrections increase

the leading order cross section by about 15%; the NNLO QCD corrections increases the NLO

cross sections by an additional 2%. We note that the scale dependence of the NNLO cross

sections is below a percent. Therefore, it is both completely negligible and unlikely to be a

reliable estimate of the actual theory uncertainty. This issue has been discussed at length

in Ref. [41], and we do not comment on it here. Ratios of W+ and W− cross sections stay

close to 1.57− 1.58, independent of both the order of perturbation theory and the choice of
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pp→W+H → l+νbb̄ pp→W−H → l−ν̄bb̄

µ = MWH/2 µ = MWH µ = 2MWH µ = MWH/2 µ = MWH µ = 2MWH

σLO (fb) 44.340(5) 45.748(6) 46.834(6) 28.207(5) 29.158(5) 29.890(5)

σNLO (fb) 53.475(6) 53.286(6) 53.284(7) 33.867(5) 33.773(5) 33.805(5)

σNNLO (fb) 54.498(13) 54.401(18) 54.378(10) 34.452(5) 34.402(5) 34.397(5)

Table I: Results for pp→W+H → l+νbb̄ (left) and pp→W−H → l−ν̄bb̄ (right). Higgs boson emis-

sions off the top quark loops are included. Higgs decays are accounted for at the LO approximation.

See text for details.

the factorization and the renormalization scales. We have cross-checked all these numbers

against VH@NNLO [17] and found perfect agreement.

As the next step, we study the NNLO corrections in more detail, focusing on the case of

W−H production.2 The NNLO QCD contributions to the W−H production cross section

without the finite contributions RI and VI describing Higgs boson emission off a top quark

loop read

δσno top loops
NNLO = {0.0937(7), 0.2193(7), 0.2464(7)} fb, (10)

for the renormalization and factorizations scales µ = {MWH/2,MWH , 2MWH} respectively.
Note that the numerical integration error on the NNLO coefficients is just a few per mill.

Also in this case, full agreement with Ref. [17] was found. The fact that our computational

method is capable of delivering results at this level of numerical precision for the NNLO

QCD coefficients has already been noticed in the calculation reported in Ref. [25]. However,

since the calculation of Ref. [25] was performed for a simplified case, it is gratifying to

see that this feature persists in a more complex situation where all the different partonic

channels are included in the calculation, and significant numerical cancellations between

their contributions occur.

NNLO QCD corrections to kinematic distributions can also be computed with a high degree

of numerical stability. In Fig. 1 we display the Higgs boson rapidity and transverse momen-

tum distributions in consecutive orders of QCD perturbation theory, for the case of W−H

production. In the lower panels of Fig. 1 we also display ratios of NLO to LO and NNLO to

2 Results for W+H production show a similar qualitative behavior.
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Figure 2: Results for rapidity and transverse momentum distributions of the charged lepton from

the decay of a W− boson. Upper panes – results in consecutive orders of perturbation theory.

Lower panes – ratios of NLO to LO and NNLO to NLO. The renormalization and factorization

scales are set to µ = MWH . In this plot, LO, NLO and NNLO results are all computed with NNLO

PDFs, see text for detail.

NLO distributions. In Fig. 2 we show results for the rapidity and the transverse momentum

distributions of the charged lepton from the decay of the W boson. The numerical stability

of these computations is clearly very good.

IV. HIGGS DECAY TO A PAIR OF BOTTOM QUARKS

In this Section, we discuss a fully exclusive computation of NNLO QCD corrections to Higgs

boson decay to a bb̄ pair. Such computations were performed in Refs. [23, 24]. Unfortunately,

both of these references did not consider an interesting subtlety related to this decay that

we will explain first.

We consider the Standard Model Lagrangian, integrate out the top quark and neglect the

interaction of the Higgs boson with quarks of the first two generations. Interactions of the

Higgs boson with hadronic constituents are then described by an effective Lagrangian

L = −C1
αs

12πv
Ga
µνG

a,µνH − C2
mb

v
Hbb̄. (11)

The two terms in Eq. (11) refer to interactions of Higgs bosons with gluons and b-quarks,

respectively. The first term originates from theHtt̄ interaction and, therefore, is proportional
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to the Higgs-top Yukawa coupling; the second term is proportional to the Higgs-bottom

Yukawa coupling.

The two constants C1,2 in Eq. (11) are the Wilson coefficients of the corresponding operators.

Their perturbative expansions in the strong coupling constant – to the order relevant to us

– read (see e.g. [42])

C1 = −1 +O(αs), C2 = 1 +
(αs

2π

)2
[

10

9
− 4

3
log

µ2

m2
t

]
+O(α3

s). (12)

The computation of NNLO QCD corrections to Higgs boson decay to two b-quarks reported

in Refs. [23, 24] was performed under a tacit assumption C1 = 0 and C2 = 1. As we explain

below, C1 6= 0 leads to additional contributions to Higgs decay to bb̄ starting at NNLO.

In the limit of a small b-quark mass, these contributions scale like ∼ ybmb/v ∼ m2
b/v

2, so

they are parametrically indistinguishable from terms proportional to y2
b coming from C2

alone. As a consequence, they should be included in an NNLO computation. However,

before discussing this point, we repeat the computation of the decay H → bb̄ reported in

Refs. [23, 24] by setting C1 = 0, C2 = 1.

A. Higgs decay to a bb̄ pair: contribution proportional to bottom Yukawa coupling

squared

In this subsection, we compute NNLO QCD corrections to the decay H → bb̄ in the approxi-

mation C1 = 0. We treat b-quarks as massless but with a non-vanishing Yukawa coupling to

the Higgs boson. The generalization of the computational method described in Ref. [25] to

this case is straightforward. Since the collinear renormalization of parton distribution func-

tions is obviously not needed in this case, the computation is simpler and the final formulas

for the NNLO QCD corrections are more compact. There are, however, a few subtleties,

which we point out in this Section.

First, as we already mentioned, we work in the approximation of massless b-quarks. This

means that the only place where the b-quark mass appears is in the Yukawa coupling. We

renormalize the Yukawa coupling in the MS-scheme at the scale µ = mH . It is well-known

from the computation of the inclusive rate that this choice of the renormalization scale

reduces the magnitude of QCD radiative corrections that are very large otherwise [43].
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Second, integrals of the double-soft eikonal factors are identical to the production case and

can be re-used in theH → bb̄ computation. Other numerical components of the computation,

i.e. integrals of the triple-collinear splitting functions, are different from the production case

but they actually become simpler.3

Third, it turns out that the calculation of the double-collinear contributions is non-trivial

for the decay kinematics. This is in stark contrast to the computation of the NNLO QCD

corrections to the production case where the double-collinear contribution is among the

simplest. The reason for this difference is as follows. The double-collinear contributions

refer to sectors where collinear singularities appear if, say, the gluon g4 is emitted collinear

to the b-quark and the gluon g5 is emitted collinear to the b̄-anti-quark. To extract collinear

divergences in this case, it is convenient to choose cosines of the relative angles between ~pb

and ~p4 and between ~pb̄ and ~p5 as independent kinematic variables. For the decay case, we

work in the rest frame of the Higgs boson. Hence, in contrast to the production case, the

directions of ~pb and ~pb̄ are not fixed. It then appears to be non-trivial to use the two angles

as independent variables and to have the phase space properly simplify in soft and collinear

limits, while also satisfying the constraint pH = p4 + p5 + pb + pb̄. Nevertheless, this can

be done and we will present the corresponding formulas in a separate publication. Here, we

only note that this complexity is a particular feature of the process at hand. Since the Born

process H → bb̄ involves too few particles, the momentum conservation constraint makes

it difficult to find a parametrization in terms of the two angles discussed above. For more

complicated decay processes, for example for Z decays to three jets, this issue is not present.

The last point concerns the contribution of the bb̄bb̄ final state to the decay rate of the

Higgs boson. This final state is different from everything that we considered so far because

we cannot say a priori which of the two bb̄ pairs comes from the Higgs vertex and which

from the g∗ → bb̄ splitting. Without this information, we cannot separate the phase space

into a hard part and a radiation part, which is central for the method of Ref. [25]. To get

around this problem, we use the symmetry of the process H → bb̄bb̄ with respect to the

permutations of the two b-quarks and the two b̄-anti-quarks and split the matrix element

into a part that is equivalent to the singlet component H → bb̄+ qq̄, q 6= b, and an identical

quark interference contribution. In each of the interference contributions, there is either a

3 They are functions of a momentum fraction in the production case and just numbers in the decay case.
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quark line or an anti-quark line that always originates from the Higgs decay vertex. We

assign this line to belong to the hard phase space. The remaining lines can originate either

from the Higgs decay vertex or from the g∗ → bb̄ splitting. Which line belongs to the hard

phase space and which one to the radiative phase space is a matter of choice at this point.

The interference terms only contain a purely triple-collinear singularity. It corresponds to

the interference term in the non-singlet triple-collinear splitting function [44] and can be

easily extracted and integrated numerically.

We continue by presenting some numerical results of the calculation. Again, our goal in this

Section is not to discuss phenomenology of the Higgs boson decay to a bb̄ pair but to show

that our method is capable of producing high-precision results.

The numerical computation yields the following result for the decay rate of the Higgs boson

to a bb̄ pair

Γ(H → bb̄) = ΓLO

[
1 +

(αs
2π

)
11.3333(16) +

(αs
2π

)2

116.68(8) + ...

]
, (13)

where ΓLO = 3y2
bmH/(16π) = 3m2

b(mH)mH/(8πv
2). The value of the Yukawa coupling

constant has already been discussed in the previous Section. The renormalization scale for

the strong coupling constant is set to the mass of the Higgs boson.

It is instructive to compare Eq. (13) with the results of an analytic computation [45]. The

analytically-known two-loop coefficient evaluates to 116.59... which is in better than per mill

agreement with the result of the numerical computation shown in Eq. (13).

It is also interesting to compute jet rates in H → bb̄ decay since such, more exclusive,

calculations provide a stronger test of the numerical stability of the method. Similar to

Ref. [24], we use the JADE clustering algorithm with ycut = 10−2 to define jets.4 We obtain

Γ2j = ΓLO

[
1− 27.176(3)

(αs
2π

)
− 1240.78(21)

(αs
2π

)2

+O(α3
s)

]
,

Γ3j = ΓLO

[
38.509(3)

(αs
2π

)
+ 980.61(10)

(αs
2π

)2

+O(α3
s)

]
,

Γ4j = 376.784(8)
(αs

2π

)2

ΓLO +O(α3
s).

(14)

4 Following Ref. [24], we define the JADE distance as yij = (pi + pj)
2.
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Figure 3: Illustrative interference diagrams that contribute to the H → bb̄ decay rate for C1 6= 0.

See text for details.

The sum of the exclusive jet rates in Eq. (14) gives the total decay rate; computing this

sum, we obtain

Γ(H → bb̄) = Γ2j+Γ3j+Γ4j = ΓLO

[
1 +

(αs
2π

)
11.3334(41) +

(αs
2π

)2

116.62(23) + ...

]
. (15)

Comparing the inclusive computation shown in Eq. (13) with the sum of exclusive jet rates

in Eq. (15), we find perfect agreement although the integration error is somewhat larger in

the latter case.

B. Additional contributions to Higgs decay proportional to top Yukawa coupling

We mentioned above that a non-vanishing Wilson coefficient C1 gives rise to additional

contributions to H → bb̄ decays starting at NNLO in QCD, which were not considered

in previous fully-differential calculations [23, 24]. We describe these contributions in more

detail in this subsection. These contributions are of the interference type: an amplitude

where the Higgs boson decays to two (real or virtual) gluons that later turn into bottom

quarks interferes with an amplitude where the Higgs boson decays directly to bottom quarks

and gluons.

Some of these contributions are shown in Fig. 3. They are proportional to the product of two

Wilson coefficients C1C2 and, therefore, to the first power of the b-quark Yukawa coupling,

at variance with contributions to H → bb̄ decay considered in the previous subsection.

However, angular momentum conservation implies that diagrams in Fig. 3 can interfere

only if a helicity flip occurs on one of the b-quark lines; effectively, this helicity flip and

the Wilson coefficient C1 provide another factor mb/v, making the overall scaling of these
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interference contributions with the b-quark mass identical to what we have seen in the

previous subsection.

These contributions are soft and collinear finite for mb 6= 0. Indeed, taking the real emission

contribution as an example, it is easy to see that the collinear singularity associated with the

splitting g∗ → bb̄ is regulated because the gluon invariant mass should exceed 2mb. Similar

considerations ensure that the virtual diagram shown in Fig. 3 has no soft and collinear

divergences for finite mb as well.

However, since the calculation in the previous subsection was performed with massless b-

quarks, we would like to compute the diagrams shown in Fig. 3 in the same approximation.

Unfortunately, doing so leads to problems. Indeed, if we factor out one power of mb caused

by the helicity flip, the reduced matrix element has peculiar soft and collinear limits in the

mb = 0 approximation, that are typically not present in QCD amplitudes at leading power.

For example, it develops a logarithmic singularity when a single b-quark becomes soft.

The validity of the massless approximation assumes that the logarithmic dependence on the

b-quark mass cancels out in infra-red safe quantities. It is easy to see, however, that this

cancellation does not take place for the interference contributions, and it is not possible to

give a proper inclusive definition of this process in the massless approximation. Indeed, the

logarithmic mass dependence cancels between the diagrams in Fig. 3 and similar diagrams

with a b-mediated Higgs decay into gluons. One could try to circumvent this problem

by regulating the collinear singularity related to g∗ → bb̄ with a flavored jet algorithm,

e.g. the one in Ref. [46]. This would trade the logarithmic dependence on the b-quark

mass for a logarithmic sensitivity to a jet radius R. However, even this does not solve the

problem completely as the single-soft quark singularity is not regulated by the jet algorithm

of Ref. [46].

It is clear that a proper description of the interference contributions requires a computation

with fully massive b-quarks. In its absence, we estimate the order of magnitude of these

effects by simply imposing restrictions on the phase space of the b-quarks and gluons that

reproduce the leading logarithmic terms. We find that these contributions may change the

NNLO corrections to the inclusive Higgs decay rate shown in Eq. (13) by up to O(30%).

Using the same setup in the fiducial region that will be discussed in the next Section, we find

that this interference contribution is somewhat reduced. Since their impact on the decay
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rate appears to be limited, we will omit these terms from the phenomenological analysis

in the next Section but we stress that it is important to understand them better. As we

explained, this will require a fully-differential computation of the Higgs decay to massive

bottom pairs at NNLO. We leave this for future investigations.

V. THE PHYSICAL PROCESS

We are now in position to discuss the physical process pp → W (lν)H(bb̄), including QCD

corrections to both production and decay. Given the results of the preceding Sections, it is

straightforward to do so. The only subtlety is how to treat the Higgs boson decay width

that appears in the cross section in the narrow width approximation. We write

dσWH(bb) = dσWH ×
dΓbb
ΓH

= Br(H → bb̄)× dσWH ×
dΓbb
Γbb

. (16)

We note that in the approximation of massless b-quarks, the Higgs boson decay rate to a bb̄

pair and therefore the Higgs branching ratio to a bb̄-pair subtly depends on the definition

of a b-quark. However, the effect on the total decay rate is relatively small, as discussed in

the previous Section, and we set C1 = 0 for the phenomenological studies in this paper. We

use Br(H → bb̄) = 0.5824 [41] as a fixed quantity, not subject to an αs expansion.

To define an expansion of Eq. (16) in αs, we follow Ref. [22], write the production cross

section and the decay width to bb̄ as an expansion in αs

dσWH =
∞∑
i=0

dσ
(i)
WH , dΓbb̄ =

∞∑
i=0

dΓ
(i)

bb̄
, (17)

and introduce

dγ(i) =

i∑
j=0

dΓ
(j)

bb̄

i∑
j=0

Γ
(j)

bb̄

. (18)

Note that
∫

dγ(i) = 1, provided that the integration goes over the unrestricted phase space.

Using this notation, we define the physical cross sections computed through different orders

in QCD perturbation theory

dσLO
WH(bb̄) = Br(H → bb̄) dσ(0) dγ(0),

dσNLO
WH(bb̄) = Br(H → bb̄)

[
dσ(0) dγ(1) + dσ(1) dγ(0)

]
,

dσNNLO
WH(bb̄) = Br(H → bb̄)

[
dσ(0) dγ(2) + dσ(1) dγ(1) + dσ(2) dγ(0)

]
.

(19)
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In addition, for comparison with the previous computations of Refs. [19, 21], it is convenient

to introduce an approximate NNLO cross section that includes NNLO corrections to the

production process but only NLO corrections to the decay. It reads

dσNNLO,approx

WH(bb̄)
= Br(H → bb̄)

[
dσ(0) dγ(1) + dσ(1) dγ(0) + dσ(2) dγ(0)

]
. (20)

We are now in a position to discuss the results of the computation. To define theW (lν)H(bb̄)

final state, we reconstruct b-jets using the infra-red safe flavor-kt jet algorithm [46]5 with

∆R = 0.5 and require that an event should contain at least one b-jet and one b̄-jet with

|ηjb| < 2.5, p⊥,jb > 25 GeV. (21)

An identified light (non-b) jet is required to have a transverse momentum p⊥ > 25 GeV as

well but no pseudo-rapidity cut is applied in this case. In addition, we impose the following

cuts on the pseudorapidity and transverse momentum of the charged lepton

|ηl| < 2.5, p⊥,l > 15 GeV. (22)

Finally, following the experimental analyses, we may impose an additional requirement that

the vector boson has a transverse momentum p⊥,W > 150 GeV. We use parton distribution

functions NNPDF3.0 as in Section III. However, at variance with the calculation reported

there, here we employ LO, NLO and NNLO PDFs to compute LO, NLO and NNLO cross

sections, respectively.

We begin by presenting the fiducial volume cross sections for the process pp→ W (lν)H(bb̄)

at the 13 TeV LHC, at various orders in perturbative QCD. The W+ case has already been

studied in Ref. [22]. For this reason here we focus on the W− case. Without the cut on

p⊥,W , we find

σLO
fid,W− = 15.50+0.44

−0.56 fb, σNLO
fid,W− = 16.13−0.09

+0.20 fb,

σNNLO
fid,W− = 15.20−0.08

+0.11 fb, σNNLO,approx
fid,W− = 16.56−0.11

+0.16 fb.
(23)

5 We are grateful to G. Salam for providing us with his private implementation of the algorithm [46] within
the FastJet framework [47].
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Imposing the cut on the transverse momentum of the W boson p⊥,W > 150 GeV, we obtain

σLO
fid,W− = 2.027−0.013

+0.006 fb, σNLO
fid,W− = 2.381−0.041

+0.055 fb,

σNNLO
fid,W− = 2.357−0.026

+0.018 fb, σNNLO,approx
fid,W− = 2.516−0.030

+0.025 fb. (24)

For the cross sections in Eqs. (23,24) the central value corresponds to the factorization

and renormalization scales in the production process set to the invariant mass of the WH

system. The uncertainties are obtained by changing simultaneously the renormalization and

factorization scales in the production process by a factor of two, µR = µF = {1/2, 1, 2} ×
mWH . As we said already, this is most likely an underestimate of the total theory uncertainty,

but this issue has already been discussed at length in the literature (see e.g. [41]) and it is

not the point of our study. Consequently, we do not comment on it any further and, in what

follows, we only show distributions for the central scale choice. For the decay process, we

always use the scale µ = mH .

The results for the fiducial cross sections Eqs. (23,24) show that NLO QCD effects are larger

if a transverse momentum cut is imposed on the W boson. This is expected since the W

boson can evade this cut by recoiling against additional radiation which appears at NLO.

The approximate NNLO results, which include NNLO corrections to the production process

only, show a similar effect: this cross section is about 3% higher than the NLO cross section

without the p⊥,W cut, but about 6% higher when this cut is imposed. Including Higgs decay

at NNLO decreases the approximate cross section by about 9% without the p⊥,W cut, and

7% in the presence of this cut. Therefore there are cancellations between corrections to the

production and decay sub-processes, that make the size of the full NNLO QCD corrections

quite sensitive to the value of the p⊥,W cut.

We now turn to differential distributions. We begin by identifying the bb̄ system comprised

of a b-jet and a b̄-jet whose invariant mass best approximates the mass of the Higgs boson,

and consider the invariant mass mbb̄ distribution of this bb̄ system. Since we work in the

narrow width approximation, at leading order this distribution is described by a delta-

function δ(m2
bb̄
−m2

H). At next-to-leading order, this situation changes: a gluon emitted in

the Higgs boson decay can decrease the invariant mass of the bb̄ system while a gluon emitted

in the production process can increase it. Hence, the mbb̄ distribution has tails both above
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Figure 4: The invariant mass of a b-jet and a b̄-jet that best approximates the Higgs boson mass.

Left pane – without the pW⊥ cut, right pane – with the pW⊥ > 150 GeV cut. Lower panes –

ratio of full NNLO to approximate NNLO. The renormalization and factorization scales are set to

µR = µF = MWH for the production process and to µR = mH for the decay process. See text for

further details.

and below mbb̄ = mH that start to appear if the next-to-leading order correction to either

production or decay is included in the computation. In Fig. 4 we compare predictions for this

observable obtained using full and approximate NNLO computations, defined in Eqs. (19,20),

respectively. We study this observable both without (left) and with (right) the cut on the

W boson transverse momentum p⊥,W > 150 GeV. It is seen from Fig. 4 that the application

of this cut affects the shape of mbb̄ distribution in a minor way. For example, in both cases,

full NNLO results deplete the distribution at mbb̄ > mH and enhance the distribution at

mbb̄ < mH relative to approximate NNLO predictions. Since the full NNLO provides a

better description of the radiation in the decay, compared to the approximate NNLO, and

since radiation in the decay predominantly reduces mbb̄, this re-shaping is not unexpected.

However, the magnitude of this O(α2
s) effect – O(60%) correction at mbb̄ ∼ 80 GeV and

O(−15%) at mbb̄ > mH – is somewhat surprising. We note that similarly large corrections

have also been observed in Ref. [22].

To understand what causes these large effects, we split the difference between approximate

NNLO and full NNLO into two terms – NNLO radiation in the decay (NNLOdec) and NLO

radiation in the production followed by the NLO radiation in the decay (NLOprod×NLOdec).
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Figure 5: The invariant mass of a b-jet and a b̄-jet that best approximates the Higgs boson mass.

The pW⊥ > 150 GeV cut is applied. Left pane: only NNLO corrections to decay are included. Right

pane: NLO corrections to the production and NLO corrections to the decay are included. Lower

panes – ratio to approximate NNLO. See text for further details.

We define

δdec. =Br(H → bb̄) dσ(0)
(
dγ(2) − dγ(1)

)
,

δNLO×NLO =Br(H → bb̄) dσ(1)
(
dγ(1) − dγ(0)

)
,

(25)

such that dσNNLO,approx

WH(bb̄)
+ δdec. + δNLO×NLO = dσNNLO

WH(bb̄)
. We display the two distributions

in Fig. 5. As we said already, the radiation in the decay does not populate the mbb̄ region to

the right ofmH , so that theO(−15%) correction at such values of the bb̄ invariant mass comes

exclusively from the NLOprod×NLOdec contribution. On the other hand, for mbb̄ < mH the

NNLO corrections to the decay play a dominant role, increasing the distribution by about

40%, as compared to the O(20%) increase from NLOprod × NLOdec.

Next, we consider the transverse momentum of the bb̄ system whose invariant mass provides

the best approximation to the Higgs boson mass. The NNLO and approximate NNLO

distributions for this observable are compared in Fig. 6; the cut p⊥,W > 150 GeV is applied

to events displayed in the right pane. It follows from Fig. 6 that the cut on the W boson

transverse momentum re-shapes the distribution, pushing its maximum to larger values.

Again, this is easily understood by observing that the p⊥,W cut implies the requirement

p⊥,bb̄ > 150 GeV at LO. In addition, if the cut on the W transverse momentum is applied,

both the full and the approximate NNLO calculations develop a Sudakov shoulder below

p⊥,bb̄ = pcut
⊥,W = 150 GeV. We note that this feature is somewhat less prominent in the full
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Figure 6: Same as Fig. 4, but for the transverse momentum of the bb̄ system that is used to

reconstruct the Higgs boson. See text for further details.

NNLO distribution.

To understand the relative impact of different contributions, we again split the full NNLO

into two different parts, δdec. and δNLO×NLO, and display them separately in Fig. 7. For

values of p⊥,bb̄ larger than pcut
⊥,W , the approximate NNLO is larger than the full NNLO by

about O(5% − 10%), independent of whether or not the cut on the W boson transverse

momentum is applied, due to the corrections from both NLOprod × NLOdec and the NNLO

decay. When the p⊥,W cut is imposed, the slight increase at low values of p⊥,bb̄ is the result

of a cancellation between the somewhat larger contributions from the NNLO decay and

the NLOprod × NLOdec. We also note that the NLOprod × NLOdec contribution smears the

Sudakov shoulder.

It is also interesting to study the angular separation ∆Rbb̄ =
√

∆η2
bb̄

+ ∆φ2
bb̄

of the b- and

b̄-jets that are used to reconstruct the Higgs boson; the corresponding distributions without

(left pane) and with (right pane) the p⊥,W cut are shown in Fig. 8. The impact of the

W boson transverse momentum cut on the angular separation of the jets is dramatic, as

the comparison of left and right panes shows. The shift to lower values of ∆Rbb̄ is again

expected, as imposing the p⊥,W cut selects boosted Higgs kinematics whose decay products

are closer together. Both with and without the p⊥,W cut, the NLO corrections modify the

shape of ∆Rbb̄ distributions significantly, while the NNLO corrections have a much smaller

impact.

Another distribution that is subject to large modifications if the cut on the vector boson
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Figure 7: The different contributions to the distribution of the sum of transverse momenta of the

b- and b̄-jets that are used to reconstruct the Higgs boson. Left pane – without the pW⊥ cut, right

pane – with the pW⊥ > 150 GeV cut. Upper row: only NNLO corrections to decay are included.

Lower row: NLO corrections to the production and NLO corrections to the decay are included. See

text for further details.

transverse momentum is applied is the transverse momentum distribution of the hardest

b-jet; it is shown in Fig. 9. In this case, large radiative corrections appear below the value

of the transverse momentum where the distribution reaches its maximum. If the p⊥W cut is

not applied, large corrections at NLO are followed by moderate corrections at NNLO. On

the contrary, if the p⊥W cut is in place, both the NLO and NNLO corrections are very large

and perturbation theory does not appear to converge (see the right pane in Fig. 9). Clearly,

the situation is completely different at high values of pb⊥ where NNLO effects are relatively

small and the NNLO/NLO K-factor is flat and close to one.

As the last example, we show in Fig. 10 the transverse momentum distribution of the charged
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– without the pW⊥ cut, right pane – with the pW⊥ > 150 GeV cut. Lower panes – ratios of NLO to

LO and full NNLO to NLO distributions. See text for further details.
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Figure 9: The transverse momentum of the hardest b- or b̄-jet. Left pane – without the pW⊥ cut,

right pane – with the pW⊥ > 150 GeV cut. Lower panes – ratios of NLO to LO and full NNLO to

NLO distributions. See text for further details.

lepton that originates from the W decay. In this case, the cut on the W boson transverse

momentum has a significant impact on the shape of the distribution, but the NLO and NNLO

corrections to the two cases are very similar. In particular, the NNLO corrections in both

cases are relatively small and do not change the shape of the respective NLO distributions.
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Figure 10: The transverse momentum distribution of the charged lepton. Left pane – without the

pW⊥ cut, right pane – with the pW⊥ > 150 GeV cut. Lower panes – ratios of NLO to LO and NNLO

to NLO distributions. See text for further details.

VI. COMPARISON OF FIXED ORDER AND PARTON SHOWER PREDICTIONS

The goal of this Section is to compare fixed order QCD predictions for pp → W (lν)H(bb̄),

described in the previous Section, with the results obtained when parton showers are used

to account for QCD radiation in H → bb̄ decays, as typically done in many experimental

analyses. We use the publicly available HWJ generator [12] implemented in the POWHEG BOX

framework [48–50] to compute the process pp→ W (lν)H+j at NLO QCD accuracy. In order

to be as close as possible to the NNLO calculation, and since the HWJ generator allows it, we

run it with the improved MiNLO method [51, 52]. This allows observables that are inclusive in

the production of the color-neutral system, i.e. quantities in which the jet is unresolved, to

be computed with NLO QCD accuracy. Thus, the difference between the NNLO fixed order

calculation and the NLO parton shower simulation for the process pp→ W (lν)H is formally

due only to the missing two loop amplitudes in the HWJ generator. The decay of the Higgs

boson to a bb̄ pair and an arbitrary number of gluons is instead simulated with a parton

shower using PYTHIA-8 [53] with the default tune. Since we want to compare the parton

shower results with a fixed order calculation, we do not include any non-perturbative effects

in the simulation, i.e. the hadronization and the multi-parton interactions are switched

off. In the parton shower simulation we reconstruct jets using the anti-kt algorithm [54],

and select b-jets according to Monte Carlo truth, in order to be as close as possible to

experimental analyses. Following Ref. [22] and the analysis in the previous Section, we use
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Figure 11: Comparison of fixed order and parton shower predictions for the normalized invariant

mass distribution of the two b-jets used to reconstruct the Higgs boson. Left pane – without the

pW⊥ cut, right pane – with the pW⊥ > 150 GeV cut. Lower panes – ratio of parton shower to fixed

order predictions. See text for further details.

R = 0.5 for the jet radius.

As we have seen in the previous Section, radiative corrections to kinematic distributions in

the pp→ WH(bb̄) process exhibit non-trivial patterns, partially because of selection criteria

that are applied to final state particles. In particular, large effects are observed for values

of the mbb̄ invariant mass that are far from the value of the Higgs boson mass, or for values

of the transverse momenta of the bb̄ system or the leading b-jet that are below the cut on

the transverse momentum of the W boson. All these kinematic regions have one thing in

common – they are not populated at all if leading-order predictions are used. Hence, they

require additional QCD radiation either in the production process or in the decay of the

Higgs boson.

Moreover, some of these regions, e.g. p⊥,bb̄ ∼ pcut
⊥,W or hardest p⊥,b → 0, are close to kinematic

boundaries where parton showers are known to accurately describe radiation effects. Other

regions and observables, for example the case mbb̄ < mH require a relatively hard gluon

emission and it is unclear a priori if parton showers do a good job in describing them.

As in the previous Section, we study the b and b̄ jets whose invariant mass mbb̄ is closest to

the Higgs mass. We show a comparison of the NNLO and parton shower predictions for the

mbb̄ distribution in Fig. 11, for the transverse momentum distribution of the bb̄ system in

Fig. 12, and for the hardest b (or b̄) jet p⊥ distribution in Fig. 13. In all of these cases, the
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Figure 12: Same as Fig. 11 but for the transverse momentum of the bb̄ system that is used to

reconstruct the Higgs boson. See text for further details.
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Figure 13: Same as Fig. 11 but for the hardest b (or b̄) jet. See text for further details.

distributions are normalized to their inclusive result so that their shapes can be compared.

However, we note that, while the fixed order and parton shower results use the same jet

radius, the former makes use of the flavor-kt jet algorithm while the latter uses the standard

anti-kt algorithm, and therefore the comparison between the two is not straightforward. We

will return to this point at the end of this Section.

For the mbb̄ distribution, we observe that the parton shower does quite a good job in de-

scribing the NNLO corrections, although it predicts more events at both low and high values

of mbb̄. Interestingly, the parton shower smears the peak at mbb̄ = mH more significantly in

the case where the p⊥,W cut is not applied. When this cut is imposed, the parton shower

predicts fewer events at the peak but the smearing effect is not as dramatic.
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Figure 14: The invariant mass of a b-jet and a b̄-jet that best approximates the Higgs boson mass,

obtained from parton shower simulations with different jet algorithms and radii. Left pane – without

the pW⊥ cut, right pane – with the pW⊥ > 150 GeV cut. Lower panes – ratio of results for the kt and

anti-kt jet algorithms with R = {0.4, 0.5} to the result for the flavor-kt jet algorithm with R = 0.5.

See text for further details.

Turning to the p⊥,bb̄ distribution, we observe that the parton shower is able to describe the

NNLO distributions quite well. When the pW⊥ cut is not imposed, the parton shower predic-

tion is in excellent agreement with the fixed order one, except in the very high transverse

momentum region. However, there is a difference at low p⊥,bb̄ if the pW⊥ cut is applied, with

the parton shower predicting more events in this region than the fixed order calculation. As

expected, the parton shower also removes the Sudakov shoulder in this distribution that was

observed in both the approximate and the full NNLO distributions.

Next, in Fig. 13 we show the p⊥ distribution of the b- (or b̄-) jet with largest transverse

momentum. Without the cut on pW⊥ , the NNLO and shower results are similar, although the

latter predicts slightly more events at large p⊥. On the other hand, if the cut pW⊥ > 150 GeV

is imposed, the fixed order and shower calculations deviate significantly at small p⊥. Large

shower effects in this region are expected, since as we have shown in Section V, the fixed

order predictions are not reliable here.

Given the different jet algorithms used in the fixed order and parton shower calculations, it

is interesting to investigate to what extent the details of the jet definition affect these results.

In Figs. 14 and 15, we show the invariant mass mbb̄ and transverse momentum distribution

p⊥,bb̄, obtained from the parton shower simulation for different choices of the jet algorithm
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Figure 15: Same as Fig. 14 but for the transverse momentum of the bb̄ system that is used to

reconstruct the Higgs boson. See text for further details.

and radius. We compare the flavor-kt jet algorithm [46] with both the kt [55] and anti-kt [54]

algorithms. For the invariant mass distribution, Fig. 14 shows that both with and without

the pW⊥ > 150 GeV cut the result is quite insensitive to the recombination algorithm, and it

only depends on the choice of the jet radius: smaller values of R lead to more events below

the Higgs peak. For the p⊥,bb̄ on the other hand, Fig. 15 shows that without the pW⊥ cut

all jet algorithms and radii lead to the same result, apart from the high p⊥,bb̄ tail where the

flavor-kt jet algorithm [46] predicts fewer events compared to the kt and anti-kt cases. With

the additional pW⊥ > 150 GeV cut, a qualitative dependence on the jet radius similar to the

one seen in the mbb̄ distribution is observed: smaller values of R lead to a softer spectrum.

VII. CONCLUSIONS

In this paper we presented a computation of the NNLO QCD corrections to the associated

production of the Higgs boson pp→ WH at the LHC.We considered theH → bb̄ decay of the

Higgs boson and included radiative corrections to this decay through NNLO in perturbative

QCD.

We pointed out an interesting contribution to Higgs decay to bb̄ pairs that was ignored

in previous fully-differential NNLO QCD computations to this process. This contribution

is infrared-sensitive even after standard jets algorithms are applied and understanding it

necessitates the computation of fully-differential NNLO corrections to the H → bb̄ decay
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with massive bottom quarks. Although we argued that its numerical importance should be

small, a more refined analysis is required to properly quantify these effects.

We found a number of kinematic distributions in the pp→ W (lν)H(bb̄) process that receive

large perturbative corrections if certain cuts on the final state, and especially a cut on the

transverse momentum of the W boson, are applied. These findings are in accord with an

earlier discussion given in Ref. [22].

We compared fixed order predictions for the pp → W (lν)H(bb̄) process with calculations

where a parton shower is used to describe QCD radiation in H → bb̄ decay. Parton showers

confirm the existence of large effects observed in fixed order computations. Since at the

moment fixed order NNLO QCD computations for H → bb̄ are performed for massless b-

quarks, one has to use specially-tailored jet algorithms to describe flavored jets in fixed order

computations [46]. Although we showed in Section VI that the results are largely insensitive

to the jet recombination algorithm, it would be interesting to repeat the fixed order studies

reported here for the setup used in experimental analyses. This requires the computation

of the fully-differential decay H → bb̄ through NNLO QCD keeping the full dependence on

the b-quark mass. It would also be interesting to compare fixed order predictions to more

advanced parton shower implementations, as described e.g. in Refs. [20, 56–58]. We leave

these investigations for future work.
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