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1 Introduction

The discovery of the Standard Model (SM)-like Higgs boson at the LHC five years ago got
rapidly transformed into an active experimental exploration of this new particle. Indeed, a
detailed knowledge of Higgs boson properties and its coupling to other particles is essential
for understanding its role in the electroweak symmetry breaking and for early clues about
physics beyond the Standard Model. Since in the SM the Higgs couplings to gauge bosons
and matter particles can be computed theoretically to a very high precision, the existence of
equally precise measurement program is crucial to search for differences between measurements
and predictions that may then be interpreted as signals of physics beyond the Standard Model
(BSM).

Unfortunately, most recent results from the Run II of the LHC show that the Higgs boson
fits very well the expected profile of the SM Higgs particle and no signs of New Physics have
been seen so far. These conclusions are so far limited by statistical and systematic errors that,
on average, are in the O(15− 20) percent range but can be much larger for certain couplings
and cross sections. It is expected that during the Run II and the high-luminosity phase of
the LHC, the precision of Higgs couplings measurements will significantly increase, reaching
eventually a few percent accuracy.

This accuracy has to be matched on the theory side and we have seen quite very impressive
accomplishments in refining predictions for major Higgs production and decay processes in
recent years. For example, the inclusive Higgs boson production in gluon fusion is now known
to an impressive next-to-next-to-next-to-leading order (N3LO) QCD in the infinite top quark
mass limit [1] and theH+jets cross section has been computed through next-to-next-to-leading
order (NNLO) QCD in the same approximation [2–5].

The approximation of an infinitely heavy top quark is justified as long as typical values of
kinematic parameters relevant for particular cross sections are smaller than O(2mt). Although
this criterion is satisfied for the majority of events selected for both inclusive and H + j
cross sections, there are good reasons to look at regions of phase-space where this condition is
explicitly violated. For example, with the dramatic increase of statistics promised by the high-
luminosity run at the LHC, we will have access to Higgs transverse momentum distribution
at high values of p⊥ ≥ mt. This is a very interesting regime since, as a matter of principle,
it allows us to disentangle two terms in the effective SM Lagrangian – the point-like Higgs
coupling to gluons and the modification of the Higgs-top Yukawa coupling [6–10].1 Amazingly,
first experimental attempts to explore Higgs boson production at high-p⊥ have recently been
undertaken [12].

To fully benefit from this opportunity, it is important to have as precise predictions for
Higgs p⊥-distribution at large transverse momenta as possible. Since for computations at high
p⊥ ≥ mt, the Higgs coupling to gluons cannot be treated as point-like, all existing higher-order
computations, including most recent NNLO QCD predictions for H + j production [2–5] are
of little use. In fact, when mass effects are accounted for, the p⊥-distribution appears to be
known only at leading order which, in this case, is determined by one-loop diagrams. Since
NLO QCD corrections for processes with gluons in initial state are known to be large [13–15],
it is quite conceivable that large corrections to Higgs transverse momentum distribution at

1See [11] for further references.
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high p⊥ are to be found as well. Computing two-loop contributions to relevant amplitudes
and setting up the stage for a full NLO QCD computation of the Higgs boson transverse
momentum distribution at high p⊥ is the main goal of this paper.

We note that the relevant two-loop amplitudes for a NLO computation of Higgs plus jet
production mediated via a massive quark-loop were considered recently in Refs. [16, 17].
However, in those papers the limit of a small quark mass mq ≪ mH ∼ p⊥ was considered.
This limit is relevant for the bottom quark contribution to effective ggH interaction vertex
but it is not the right limit to describe high-p⊥ regime of the Higgs boson production.

To address the high-p⊥ case we impose the following hierarchy between kinematic variables
and particle masses m2

h ≪ m2
t ≪ s, t, u. This result is then applicable to the case where the

Higgs boson is produced via a top quark loop at high p⊥.
2 To compute the scattering amplitude

in that limit, we will follow an approach developed in Refs. [16,17,19] and expand the relevant
Feynman integrals in small parameters, namely in m2

h/m
2
t and m2

t/s, using the differential
equations that these Feynman integrals satisfy. We note that the computation of relevant
integrals for arbitrary Higgs and quark masses is still ongoing; planar master integrals have
recently been computed in [20].

The remainder of the paper is organized as follows. In Section 2 we explain the notation,
introduce the relevant amplitudes, explain their decomposition into invariant form factors
and describe the renormalization. In Section 3 we discuss how form factors are computed.
We explain how to calculate the master integrals with the differential equation method in
Section 3.1. In Section 3.2 we provide an example of how integration constants for differential
equations can be computed. The final results for helicity amplitudes are presented in Section 4.
The amplitudes are originally computed in the kinematic region where t > 0, s, u < 0; in
Section 4.1 we describe the analytic continuation to other relevant scattering regions. We
conclude in Section 5. We include ancillary files with this submission that contain analytic
results for all relevant amplitudes in the different kinematic regions.

2 The scattering amplitudes

Production of the Higgs boson in association with a jet at a hadron collider can occur in
several different ways; the relevant partonic processes can be found by crossing the Higgs
decay processes

H(p4) → g(p1) + g(p2) + g(p3),

H(p4) → q(p1) + q̄(p2) + g(p3), (2.1)

to the production kinematics. We consider all quarks in Eq.(2.1) as massless. The Higgs boson
interaction with gluons and massless quarks is facilitated by loops of top quarks; this is the
only quark that we consider massive in this article. Some examples of Feynman diagrams that
contribute to (crossed versions of) processes shown in Eq.(2.1) are presented in Fig. 1. The
goal of this paper is to compute two-loop contributions to scattering amplitudes for processes

2We consider all quarks beyond the top quark to be massless. The contribution of the bottom-quark loop
has been considered in [18] and was found to be negligible.
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Figure 1: The one-loop Feynman diagrams that contribute to the quark-loop induced processes
gg → Hg and qg → Hq.

in Eq.(2.1) assuming that the Higgs boson mass and the top quark mass are smaller than all
other kinematic invariants.

We start by defining the Mandelstam variables

s = (p1 + p2)
2 , t = (p1 + p3)

2 , u = (p2 + p3)
2 , s+ t+ u = m2

h. (2.2)

We trade four dimensionful Mandelstam variables for a dimensionful variable s and three
dimensionless variables

η = − m2
h

4m2
t

, κ = −m
2
t

s
, z =

u

s
. (2.3)

In the large transverse momentum region and in the limit of a small Higgs mass the following
hierarchy of scales applies

m2
h, m

2
t ≪ |s| ∼ |t| ∼ |u| → |η|, |κ| ≪ 1, |z| ∼ 1. (2.4)

For the top quark and Higgs boson with massesmt ∼ 173 GeV andmh ∼ 125 GeV respectively,
|η| ∼ 0.13 and can be treated as a small parameter.

A Euclidean region where all Mandelstam variables s, t or u are negative does not exist
since |m2

h| = |s+ t+ u| ≪ |s|, |t|, |u| in the kinematic region that is of interest to us. At least
one of the Mandelstam variables has to be positive and without loss of generality we choose t
to be positive and s, u negative. Furthermore we will compute our amplitudes initially in the
region where m2

h < 0 and m2
t > 0, in other words the parameters will satisfy

0 < η ≪ 1 , 0 < κ≪ 1 , 0 < z , s < 0 . (2.5)

If we analytically continue to the region where m2
h > 0, our results will represent the physical

scattering processes

g(−p1) + g(−p3) → H(−p4) + g(p2)

q̄(−p1) + g(−p3) → H(−p4) + q̄(p2) . (2.6)

All other production channels can be found from crossing and analytic continuation of the
computed amplitudes in the region specified in Eq. (2.5), as we will describe in Section 4. Note
that because the Euclidean region does not exist, all the amplitudes have explicit imaginary
parts.
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We follow Refs. [16,17] and define the partonic amplitudes corresponding to the processes
shown in Eq. (2.1) as

AH→ggg (p
a1
1 , p

a2
2 , p

a3
3 ) = fa1a2a3 ǫµ1 ǫ

ν
2 ǫ

ρ
3 Ag

µνρ(s, t, u,mt) , (2.7)

AH→qq̄g(p
j
1, p

k
2, p

a
3) = i T a

jk ǫ
µ
3 (p3) ū(p1)Aq

µ(s, t, u,mt) v(p2) . (2.8)

The color structure of the amplitudes is completely factorized and captured by the SU(3)
structure constants fa1a2a3 and the usual Gell-Mann matrices T a

jk for the gluon and quark
channels respectively. The color indices are denoted by a1,2,3 and j, k for gluons and quarks,
respectively. The gluon polarization vectors are transversal ǫi · pi = 0, i = 1, 2, 3 and the
spinors satisfy the massless Dirac equations /p1u(p1) = /p2v(p2) = 0.

To understand the Lorentz structure of the amplitude, we write it as a sum of parity
conserving Lorentz tensors of relevant ranks. The amplitudes must furthermore satisfy the
Ward identity which implies that an on-shell amplitude must vanish after replacing any of the
gluon polarization vectors with their momenta. After imposing these constraints, theH → ggg
and H → qq̄g amplitudes can be written as a sum of four (two) tensors, respectively. They
read

Ag
µνρ(s, t, u,mt) = F g

1 gµν p2ρ + F g
2 gµρ p1ν + F g

3 gνρ p3µ + F g
4 p3µp1νp2ρ ,

Aq
µ = F q

1 (p/3 p2µ − p2 · p3 γµ) + F q
2 (p/3 p1µ − p1 · p3 γµ) .

(2.9)

The above decomposition corresponds to the cyclic gauge fixing condition for the gluon po-
larization vectors

ǫ1 · p2 = ǫ2 · p3 = ǫ3 · p1 = 0. (2.10)

The form factors F q,g
j are scalar functions of the Mandelstam variables and the quark mass.

In the following we will drop the upper index q and g for simplicity, unless they need to be
explicitly specified.

The unrenormalized form factors Fj can be expanded in the bare QCD coupling constant
constant α0 as

F un
j (s, t, u,mt) =

√

α3
0

π

[

F
(1),un
j +

(α0

2π

)

F
(2),un
j +O(α2

0)
]

. (2.11)

The LO contribution F
(1)
j with the full dependence on the quark mass was calculated in

Refs. [21, 22]. In this paper, we will compute the two-loop contributions to form factors F
(2)
j

assuming that the Higgs boson transverse momentum is large and the Higgs boson mass is
parametrically smaller than the mass of the top quark. Some examples of two-loop diagrams
that contribute to Higgs boson production in association with a jet are shown in Figs. 2 and 3.

The unrenormalized form factors that we compute have poles in ǫ = (d− 4)/2; these poles
are of ultraviolet (UV) and/or infrared (IR) origin. We perform the subtraction of these poles
in two steps. First we UV renormalize the above bare form factors F un

j in Eq. (2.11)

FUV
j (s, t, u,mt) =

√

α3
s

π S3
ǫ

[

F
(1),UV
j +

(αs

2π

)

F
(2),UV
j +O(α3

s)
]

. (2.12)
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Figure 2: Examples of two-loop Feynman diagrams that contribute to the process gg → Hg.
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Figure 3: Examples of two-loop Feynman diagrams that contribute to the process qq̄ → Hg.

We express the bare strong coupling constant and the top quark mass parameter in F un
j in

terms of renormalized parameters and we include for each external gluon the wave-function
renormalization factor. The strong coupling constant gets renormalized in the mixed scheme;
this implies that contributions of Nf massless quarks are renormalized in the MS-scheme
whereas top quark contributions are subtracted at zero momentum. The top quark mass is
renormalized in an on-shell scheme. The corresponding formulas read

α0 µ
2ǫ
0 Sǫ = αs µ

2ǫ
R

[

1− 1

ǫ
(β0 + δw)

(αs

2π

)

+O(α2
s)

]

, (2.13)

mt,0 = mt

[

1 +
(αs

2π

)

δm +O(α2
s)
]

. (2.14)

Here Sǫ = (4π)ǫ e−ǫ γE , γE = 0.5772.., β0 = 11/6 CA − 2/3 TRNf , TR = 1/2 and CA = Nc is
the number of colors. The wave-function and mass renormalization constants are

δw = −2/3 TR(m
2
t/µ

2
R)

−ǫ, δm = CF

(
m2

t

µ2
R

)−ǫ(

− 3

2ǫ
− 2 +O(ǫ)

)

. (2.15)

Renormalization of the gluon wave-function is taken into account by multiplying the form
factors with

√

ZA = 1 +
1

2

(αs

2π

)

δw +O(α2
s),

for each of the external gluons.
Following the described procedure, we express the UV-renormalized form factors in terms

of bare ones. We find

(F i)
(1),UV
j = (F i)

(1),un
j ,
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(F i)
(2),UV
j = S−1

ǫ (F i)
(2),un
j −

(
3 β0
2 ǫ

+ δi,q
δw
ǫ

)

(F i)
(1),un
j + mt

d(F i)
(1),un
j

dmt
δm . (2.16)

where i = q, g denotes the H → ggg and H → qq̄g form factors respectively.
Unfortunately, even after the UV renormalization is performed, the form factors still exhibit

poles in ǫ. These are the infra-red and collinear poles that appear in the virtual amplitude;
they disappear once elastic and inelastic partonic processes are combined to compute physical
cross sections. Since the structure of IR-singularities is universal [23] and since they, as we
said, will eventually get cancelled against real emission corrections, it is useful to separate
them in the two-loop amplitude. We write

(F i)
(1),UV
j = (F i)

(1),fin
j = , (F i)

(2),UV
j = I i1(ǫ)(F

i)
(1),UV
j + (F i)

(2),fin
j , (2.17)

where again i = q, g and Iq,g1 (ǫ) are the so-called Catani operators

Ig1 (ǫ) = − CAe
ǫγ

2Γ(1− ǫ)

(
1

ǫ2
+
β0
CA

1

ǫ

)((

− s

µ2
R

)−ǫ

+

(

− t

µ2
R

)−ǫ

+

(

− u

µ2
R

)−ǫ
)

, (2.18)

Iq1(ǫ) = − eǫγ

2Γ(1− ǫ)

(

CA

(
1

ǫ2
+

3

4 ǫ
+

β0
2CA ǫ

) ((

− t

µ2
R

)−ǫ

+

(

− u

µ2
R

)−ǫ
)

− 1

CA

(
1

ǫ2
+

3

2 ǫ

) (

− s

µ2
R

)−ǫ
)

. (2.19)

Our final results for the form factors, {F fin
j } are finite in the limit ǫ → 0. Note that in order

to perform the final IR subtraction we require the one-loop amplitudes to order ǫ2.

3 Computing the form factors

The bare form factors are expressed in terms of Feynman diagrams that we produce with
QGRAF [24] and independently with FeynArts [25]. We allow for massless external quarks
and both massive and massless internal quark loops. Some examples of Feynman diagrams that
one has to consider are shown in Figs. 2 and 3. We follow procedures outlined in Refs. [16,17]
to express the form factors in terms of scalar integrals by applying projection operators as
follows

F g
i (s, t, u,mt) =

∑

pol

Pgi
µνρ ǫ

µ,∗
1,λ1

ǫµ1

1,λ1
ǫν,∗2,λ2

ǫν12,λ2
ǫρ,∗3,λ3

ǫρ13,λ3
Ag

µ1ν1ρ1(s, t, u,mt) ,

F q
i (s, t, u,mt) =

∑

pol

Pqi
µ ǫ

µ∗
3,λ3

ǫν3,λ3
Aq

ν(s, t, u,mt) .
(3.1)

Explicit expressions for projection operators can be found in Refs. [16, 17].
Both FORM [26] and FormCalc [27] have been independently used to implement the alge-

braic manipulations related to the projection in d dimensions. The resulting form factors are
expressed as linear combinations of scalar integrals

Itop(a1, a2, ..., a8, a9) =

∫
D

dkDdl

[1]a1 [2]a2 [3]a3 [4]a4 [5]a5 [6]a6 [7]a7 [8]a8 [9]a9
, (3.2)
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Prop. Topology PL1 Topology PL2 Topology NPL
[1] k2 k2 −m2

t k2 −m2
t

[2] (k − p1)
2 (k − p1)

2 −m2
t (k + p1)

2 −m2
t

[3] (k − p1 − p2)
2 (k − p1 − p2)

2 −m2
t (k − p2 − p3)

2 −m2
t

[4] (k − p1 − p2 − p3)
2 (k − p1 − p2 − p3)

2 −m2
t l2 −m2

t

[5] l2 −m2
t l2 −m2

t (l + p1)
2 −m2

t

[6] (l − p1)
2 −m2

t (l − p1)
2 −m2

t (l − p3)
2 −m2

t

[7] (l − p1 − p2)
2 −m2

t (l − p1 − p2)
2 −m2

t (k − l)2

[8] (l − p1 − p2 − p3)
2 −m2

t (l − p1 − p2 − p3)
2 −m2

t (k − l − p2)
2

[9] (k − l)2 −m2
t (k − l)2 (k − l − p2 − p3)

2

Table 1: Feynman propagators of the three integral families, see Eq. (3.2).

where the integration measure is chosen to be

D
dk = (−s)(4−d)/2 (4π)d/2

iΓ(1 + ǫ)

∫
ddk

(2π)d
. (3.3)

Scalar integrals that appear in the form factors belong to one of the three integral families
that we refer to as {PL1,PL2,NPL}. Sets of propagators that define each topology are shown
in Table 1.

After an amplitude is projected on a form factor, all scalar integrals are reduced to a
set of master integrals (MI) using the integration by parts identities (IBP) [28, 29]. The
reduction has been previously performed in Refs. [16,17] using public versions of FIRE5 [30,31],
Reduze2 [32–35] and an in-house routine written in FORM [26].3 The MIs are computed
by solving differential equations in kinematic variables; the differential equations are solved
perturbatively, expanding in the small parameters κ and η, as will be explained in Section 3.1.

We note that MIs contain logarithmic singularities ∝ log(m2
t ) ∼ log (κ) as κ → 0. These

are mass singularities that are expected to be present in the high-p⊥ kinematics. In addition,
there are Feynman integrals that develop logarithmic singularities ∝ log (η) ∼ log(m2

h) as
η → 0; This happens whenever all the massless external partons couple directly to massless
internal propagators, such as for example is the case for the top center diagram in Figure 2. The
resulting MI which appear after pinching this diagram also contains logarithmic singularities
∝ log (η). For these MI it is possible to cut massless propagators in their corresponding
diagrams such that the squared momentum flowing into the cut equals m2

h and therefore we
expect a singular behavior as m2

h → 0. Note that the top loop itself always gets screened by
the top mass and therefore the log (η) singularities are attributed to a specific scaling of the
loop momenta running through massless propagators.

Since the Higgs boson always couple to top quarks, we expect that all the log(m2
h) singu-

larities are the artifacts of computational procedure and that they should cancel in the final
result for form factor. We have confirmed this expectation by an explicit computation.

3We are indebted to L. Tancredi for his decisive contribution to the reduction to master integrals for this
problem.
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Another interesting point is that three sectors of non-planar MI (one sector with six prop-
agators and two top sectors with seven propagators) have integrals whose expansion around
κ → 0 starts with non-integer powers of κ, i.e. I ∼ κ−1/2 ∼ m−1

t . This non-analytic behavior
indicates contributions to scalar integrals beyond the standard soft-collinear paradigm. It is
interesting to see, however, that none of these non-analytic terms survives in final results for
physical amplitudes.

To conclude, after the results for MIs are used to calculate the unrenormalized form factors,
the form factors are written as an expansion in κ and η

lim
mh
mt

→0,mt→0
(F i)

(1),un
j (κ, η, z) = κ

0∑

n=−2

ǫn
1∑

a=0

κa
2∑

b=0

f
(1l,n)
a,b,i,j(z) log

b κ ,

lim
mh
mt

→0,mt→0
(F i)

(2),un
j (κ, η, z) = κ

0∑

n=−2

ǫn
1∑

a=0

κa
4∑

b=0

f
(2l,n)
a,b,i,j(z) log

b κ.

(3.4)

The Yukawa coupling and the helicity flip in one of the quark lines contribute each a factor
of mt, which results in the overall factor of κ in the above result. In Eq. (3.4) we retain terms
that are leading powers in the squared Higgs mass η and up to next-to-leading power in the
squared top quark mass. Since there are no logarithms in η in the final result, we could have
put η → 0 from the beginning. However, in our computation we did not do this and kept
m2

h ∼ η 6= 0 throughout the calculation,4 only cutting off the expansion of form factors to
leading power after inserting the MIs. It was argued in e.g. Ref. [38] for the quark channels
that an expansion to leading power in η gives a good approximation to the full amplitude
with non-zero Higgs mass. We have checked this statement explicitly by comparing expanded
and un-expanded one-loop amplitudes for both quark and gluon channels. We conclude that
Eq. (3.4) is expected to provide a reasonable description of the form factors with non-zero
Higgs and top mass. We will next describe how to compute the MIs using the method of
differential equations.

3.1 Solving for the two-loop master integrals

The master integrals with seven propagators correspond to Feynman diagrams shown in
Figs. 2; all other MIs that contain six or even less propagators can be obtained from the
highest-level ones by pinching. We note that all the master integrals for H+jet production
were recently computed in an approximation m2

q=b ≪ s ∼ t ∼ u ∼ m2
h, in Refs. [16,17]. In this

paper we are instead interested in computing master integrals for high energies and transverse
momenta m2

q=t ≪ s, t, u in a situation when the quark mass is larger than the Higgs mass,
m2

h ≪ m2
q=t.

To derive differential equations, we start by taking derivatives of the integrals with re-
spect to the kinematic invariants m2

t , s, t, u. The derivatives with respect to the Mandelstam
variables can be expressed in terms of linear combinations of derivatives with respect to the
four-momenta of the external particles

s ∂s =
1

2
(p1 · ∂p1 + p2 · ∂p2 − p3 · ∂p3) ,

4The planar master integrals corresponding to the case where m2

h = η = 0 have been computed in [36, 37].
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t ∂t =
1

2
(p1 · ∂p1 − p2 · ∂p2 + p3 · ∂p3) , (3.1)

u ∂u =
1

2
(−p1 · ∂p1 + p2 · ∂p2 + p3 · ∂p3) .

Here we use the notation pi · ∂pj = pi,µ ∂/∂p
µ
j . The derivatives with respect to dimensionless

variables defined in Eq. (2.3) are related to above differential operators through the following
equations

∂η = 4sκ∂t, ∂κ = s
(
4η∂t − ∂m2

t

)
, ∂z = s (∂u − ∂t) . (3.2)

We apply the derivatives in Eqs. (3.2,3.1) to the set of master integrals and use integration-
by-parts identities to reduce all the integrals back to master integrals. This procedure leads
to a linear system of coupled partial DE for all the MIs that we will denote in this Section by
{Ii}. After expressing the MIs in terms of the chosen variables, the derivative with respect
to the Mandelstam variable s becomes trivial and provides the mass dimension of the MIs.
Therefore, it suffices to solve the MIs for the case s = 1 and re-introduce it back at the end of
the calculation.

The DEs take the following form

∂kIi(κ, η, z, ǫ) =
∑

j

Ak
ij(κ, η, z, ǫ) Ij(κ, η, z, ǫ), k ∈ {κ, η, z}. (3.3)

The matrices Aκ,η,z are sparse and can be put in a triangular form. We may then solve the
system starting from the simplest integrals, which then serve as inhomogeneous contributions
to the DEs of integrals with more propagators. The integrals which depend on a single scale,
e.g. the two-loop tadpole integrals, are computed independently and serve as an input for the
DEs.

The three matrices Ak are rational functions of η, κ, z and ǫ. The MIs have been chosen such
that the dependence on space-time dimensionality d does not mix with the kinematic variables
inside the denominators that appear in Ak. The matrices have singularities at η = 0,−1/2,−1,
in other words at m2

h = 0, m2
h = 2m2

t and m2
h = 4m2

t respectively. The pole at m2
h = 2m2

t is
expected to be spurious and can be avoided by taking canonical combinations of the MI as
in [20]. At the point η = m2

h = 0 there are singularities at κ = 0,−1/4,−(1+z)/4,−z/4, which
corresponds to poles atm2

t = 0 and s, t, u = 4m2
t respectively. The latter three poles arise from

the top threshold when the invariant mass of a pair of final state particles in the processes in
Eq. (2.1) is equal to 2mt. These considerations imply that the matrices can be conveniently
expanded in m2

h/(4m
2
t ) = −η and 4m2

t/s = −4κ and the DE then solved perturbatively in
small η and κ. The order of expanding in η and κ is irrelevant. Furthermore, since the DEs
have singularities at both η = 0 and κ = 0, the solutions are expected to contain terms beyond
a usual analytic Taylor expansion in η and κ. The structure of the differential equations implies
the following ansatz

Ii(κ, η, z, ǫ) =
∑

j,k,l,m∈Z,n∈N

ci,j,k,l,m,n(z, ǫ) η
j−kǫκl/2−mǫ logn(κ). (3.4)
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A more detailed analysis of the differential equations shows that at two loops there are
at most two powers of κ−ǫ and log(κ) and at most one power of η−ǫ. The following simpler
ansatz therefore suffices

Ii(κ, η, z, ǫ) =
∑

j≥0,l≥−3

1∑

k=0

2∑

m=0

2∑

n=0

ci,j,k,l,m,n(z, ǫ) η
j−kǫκl/2−mǫ logn(κ). (3.5)

The maximal value for the powers j, l of the variables η and κ, respectively, are chosen such
that we can expand the form factors to leading power in η and to next-to-leading power in κ.
We note that this requires computing some of the MI to higher suppressed powers in η and κ.

As we already alluded to in the paragraph above Eq. (3.4), we need to include powers of
η−ǫ in the ansatz for exactly six MI, which all appear in the planar topology PL1. A detailed
study of these six MI shows that they indeed have terms that scale as η−ǫ when η → 0 but
there are no 1/η singularities. For all other MI, the expansion in η → 0 correspond to a simple
Taylor expansion. We conclude that none of the MI have singularities in 1/η, which fixes the
lower bound of the index j in the sum of Eq. (3.5) to zero. On the other hand, the lower
bound on the index l = −3 in the sum of Eq. (3.5) follows directly from the structure of the
DE. Furthermore the DE allow half-integer powers of κ for exactly three non-planar four-point
sectors of MIs. Finally, all the terms that are non-analytic in η, i.e. contain factors of η−ǫ,
or contain half-integer powers of κ, cancel when final form factors are computed. However,
we keep them in our ansatz and compute them when solving for master integrals since their
cancellation provides a good check of the correctness of the calculation.

The coefficient functions ci,j,k,l,m,n depend on z and ǫ. We determine them by substituting
the ansatz for integrals in Eq.(3.5) into the differential equations and equating terms with the
same powers of η, κ and log(κ) on both sides of the relevant equations. This procedure relates
the ci,j,k,l,m,n coefficients to each other via a system of linear algebraic equations. We note that
the DEs allow powers of η−1 in our complete ansatz in Eq. (3.4). Therefore, requiring that
solutions to DEs do not contain poles in η provides additional relations between coefficient
functions.

Some of the coefficient functions ci,j,k,l,m,n remain undetermined after solving the differential
equations in η and κ. However, we can solve the DEs in such a way that these undetermined
coefficient functions appear in the leading power expansion of η, i.e. in terms that corre-
spond to j = 0 in our ansatz Eq. (3.5). The “massless” coefficients ci,0,0,0,0,0 correspond to a
completely massless “version” of the MIs which is obtained by setting m2

h and m2
t to zero at

the integrand level. These integrals are well-known and serve as an input in our calculation.
Indeed, all the needed planar massless master integrals have been computed in Refs. [39,40].5

The non-planar massless master integrals have been taken from Refs. [42–44].
After fixing the massless coefficients to the known computed massless MI, we are left

with undetermined coefficients ci,0,k,l,m,n. To find them, we use the ansatz in Eq. (3.5) in the
z differential equation and again equate terms with matching powers of η, κ and log(κ) on
both sides of the differential equation. The DEs in z are relatively simple and can be solved

5Note that in the massless limit, the integral IPL2
1,1,1,−1,1,0,1,1,1 can be written as 1

ǫ
(IPL2

1,1,1,0,1,0,1,1,1 −
uIPL2

1,1,1,0,1,0,1,1,2) plus lower sub-topologies. The order ǫ pieces of the two planar master integrals are of weight
five, but in the difference only terms with weight four survive. These terms were computed in Ref. [41].
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order by order in an expansion in ǫ. Similar to the case of massless MIs, the solutions are
expressed in terms of Harmonic Polylogarithms (HPLs) which form a subset of the Goncharov
polylogarithms

G(l1, · · · , ln
︸ ︷︷ ︸

weight n

; z) :=

∫ z

0

dz′
G(l2, · · · , ln; z′)

z′ − l1
,

G(; z) = 1, G(0, · · · , 0
︸ ︷︷ ︸
n times

; z) =
1

n!
logn(z). (3.6)

The letters that we encounter in the z DEs are very simple; the alphabet reads

li ∈ {0, −1}. (3.7)

The first letter corresponds to branch points at s = 0 or u = 0 when η = m2
h = 0, the second

to t = 0. After solving the equations in z, we expand the solutions in ǫ keeping all the terms
up to weight four6

ci,j,k,l,m,n(z, ǫ) =

r
(i,j,k,l,m,n)
0 +4
∑

r=r
(i,j,k,l,m,n)
0

ǫr c
(r)
i,j,k,l,m,n(z). (3.8)

The powers of ǫ in the expansion are bounded below by r = −4. Typically, individual co-
efficient functions have higher singularities in ǫ than the expanded solution. This feature is
understandable since massive internal particles screen infra-red and collinear singularities; for
this reason, full results for master integrals should typically be less singular in the ǫ→ 0 limit
than their massless branches.

After solving the DEs in z we are left with unknown integration constants that need to
be determined. For the MIs in the planar topologies PL1 and PL2 we could fix many of the
constants by requiring that the unphysical singularities at z = −1 cancel. We are allowed to
do this since the corresponding planar diagrams do not have any cuts in the t-channel, but
only in s and u. After requiring that these unphysical branch points at t = 0 vanish, all of
the constants in topology PL2 become fixed. We are left with one constant in the family PL1
and six in the family NPL that we need to determine in some other way. In the next Section
we will explain how we computed these constants using the Mellin-Barnes representation of
the relevant integrals.

We note that in order to compute the amplitude to order O(ǫ0), we are required to compute
coefficient functions of some integrals to weight five and a few even to weight six. By using the
DEs in η and κ, we could find many connections between contributions of weights five and six
to the coefficient functions of the MIs. After substituting MIs into the amplitude, most of the
unknown weight five and all of the weight six contributions cancel amongst each other. The
few weight five pieces that are left, appear only in the planar families PL1 and PL2 and for
these we needed to integrate the DEs in z to weight five. However the integration constants of
these weight-five contributions cancel in the final result for the amplitude and therefore they
did not have to be computed.

6Some coefficients are pure rational functions in z after expanding in ǫ. In these cases we expand to exactly
four orders higher in ǫ, starting from the highest pole in ǫ of that coefficient.
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p1
p2 −p123

p3

Figure 4: The two-loop scalar Feynman corresponding to INPL(0, 1, 1, 1, 2, 0, 1, 1, 0).

The expansions of the MIs in κ and ǫ have been, whenever possible, numerically compared
with FIESTA [45] at the point m2

h = η = 0 and an agreement was found within the integration
errors of FIESTA. We include with this paper ancillary files that contain our solutions for all
MIs in the form of the ansatz in Eq. (3.5), expanded in η and κ to orders that are sufficient
to compute the amplitude to leading and next-to-leading power in η and κ, respectively.

3.2 Integration constants and numerical checks using Mellin-Barnes

As we already mentioned several times, by solving differential equations we determine master
integrals up to integration constants that have to be determined in a different way. Many inte-
gration constants can be fixed by requiring that integrals have regular limits at certain singular
points of the differential equations, for example at η → 0. However, there are seven integra-
tion constants that are left undetermined by these considerations and we have to compute
them explicitly. To accomplish that, we use the Mellin-Barnes representation to calculate the
relevant master integrals at certain kinematic points and then match the results to solutions
of differential equations.

The Mellin-Barnes representation has been used before to compute the massless coefficient
functions of some planar [42] and non-planar master integrals [46]. Since we relate the coef-
ficient functions corresponding to higher powers in expansion in η to coefficient functions at
leading power in the η expansion, all undetermined integration constants appear in the coeffi-
cient functions that can be computed by setting η to zero. In other words we have to keep the
non-vanishing top quark mass7 but we may set m2

h = 0 in our Mellin-Barnes computation from
the very beginning. The Mellin-Barnes representation is ideal for organizing the computation
as an expansion in a small parameter and isolating different κ-branches since different powers
of κ appear naturally after residues are computed in Mellin-Barnes integrals.

We will consider the integral INPL(0, 1, 1, 1, 2, 0, 1, 1, 0), shown in Fig. 4. It reads

Itop
011120110 =

∫
D

dkDdl

((k1 + p1)2 −m2
t )((k1 − p23)2 −m2

t )(k
2
2 −m2

t )((k2 + p1)2 −m2
t )

× 1

((k1 − k2)2)1+δ((k1 − k2 − p23)2)1−δ
. (3.2.9)

Note that we introduced additional parameters δ to define Itop
011120110; we will explain below

why this is required.

7As we mentioned, the massless coefficients are already computed and therefore the unknown integration
constants always multiply κl−mǫ with either l or m non-zero in the ansatz.
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We are interested in computing an integration constant of the coefficient function that
corresponds to a factor κ−1−2ǫ. We choose the kinematic point s = u = −1, t = 2, m2

h = 0.
The integral is well defined and regulated by dimensional regularization. However, the region
integrals that represent the term ∝ κ−1−2ǫ are not regulated by the dimensional parameter ǫ.
This can be already seen from the solution of the DE that predicts terms ∝ κ−1−2ǫ log1,2(κ).
Such non-analytic behavior is typically cured by an introduction of analytic regulators in the
context of asymptotic expansion of Feynman integrals [47,48]. The parameter δ introduced in
Eq. (3.2.9) is the analytic regulator that makes expansion of all branches the integral Itop

011120110

well-defined.
To proceed further, we introduce Feynman parameters and integrate over two loop mo-

menta. The integral can be expressed as powers of the Symanzik U and F polynomials

−
∫ ∞

0

(
6∏

i=1

dxi

)

δ(1−∑I xi)Γ(2ǫ+ 3)x4x
−δ
5 xδ6

Γ(1− δ)Γ(δ + 1)Γ(ǫ+ 1)2

[

(x3 + x4)(x5 + x6) + x1(x3 + x4 + x5 + x6)

+x2(x3 + x4 + x5 + x6)

]3ǫ+1 [

x2x3x5 + x1x3x6 − 2x2x4x6 + κ(x1 + x2 + x3 + x4)

×((x3 + x4)(x5 + x6) + x1(x3 + x4 + x5 + x6) + x2(x3 + x4 + x5 + x6))− i0

]−2ǫ−3

.

The sum inside the delta function can be chosen to be any combination of the Feynman
parameters [49,50]. We have chosen the delta function as δ(1−x1−x2). The integration over
the Feynman parameters are nontrivial but may be performed by using the method of Mellin-
Barnes. Namely, we may split up terms inside the brackets by introducing Mellin-Barnes
integration parameters

1

(x+ y)λ
=

1

2πi

+i∞∫

−i∞

dz
yz

xz+λ

Γ(−z)Γ(λ + z)

Γ(λ)
. (3.2.10)

The contour runs parallel to the imaginary axis in the complex z-plane and is chosen such
that the singularities of Γ(−z) and Γ(λ+z) are to the right (left), respectively of the integration
contour. After we integrate over Feynman parameters, we are left with the following Mellin-
Barnes integral to perform

Itop
011120110 = −

+i∞∫

−i∞

(
4∏

i=1

dzi

)

(−2− i0)−2ǫ−z1−z2−z3−3κz1Γ(−z1)Γ(−z2)Γ(z2 + 1)Γ(−z3)

× Γ(−z4)Γ(−ǫ− z1 − 1)Γ(z4 − ǫ)Γ(z3 − δ + 1)Γ(−2ǫ− z1 − z2 − 2)Γ(z2 + z3 + z4 + 1)

Γ(1− δ)Γ(δ + 1)Γ(ǫ+ 1)2Γ(−2ǫ− 2z1 − 1)Γ(−3ǫ− z1 − 1)Γ(−2ǫ− z1 − 1)

× Γ(2ǫ+ z1 + z2 + z3 + 3)Γ(−2ǫ− z1 − z3 + δ − 2)Γ(−ǫ− z1 − z2 − z3 − z4 − 1).

(3.2.11)

The Mellin-Barnes integrations can be performed with the help of packages collectively
known as MBTools [51]. For example, the contours of the z1..4 integrals can be systematically
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deformed [52] in a way that allows one to take the limit δ → 0. Indeed, because δ is an
analytic regulator, we need to take δ → 0 at fixed ǫ and then deform the contour further to
extract poles in ǫ and, eventually, arrive at the ǫ expansion. We note that, as follows from
Eq. (3.2.11), poles in z1 correspond to different powers of κ; for our purposes we require the
pole at z1 = −1−2ǫ. After extracting the κ−1−2ǫ branch and expanding the result in ǫ, we use
the Barnes lemma to perform the Mellin-Barnes integrations. In most cases, these integrations
are straightforward. However, we also obtain a contribution which requires to deal with the
integrand that contain polygamma functions. A typical integral reads

I =

∫ 0−+i∞

0−−i∞

dz4 Γ(2− z4)Γ(z4 − 1)Γ(−z4)Γ(z4)
[

2(ψ(0)(2− z4))
2 + (ψ(0)(z4))

2

+2ψ(1)(2− z4) + ψ(1)(z4)
]

. (3.2.12)

The integration over z4 is performed using the method of residues. The integration contour
runs along the imaginary axis with Re(z4) small and negative. We may close the integration
contour to the left as the integrand will vanish fast enough along the half circle in the left
complex plane with infinite radius. By Cauchy’s theorem we pick up the ladder of residues in
z4 in the left complex plane, Re(z4) < 0. Application of this procedure leads to the following
representation

I = −1

3

∞∑

n=1

1

n4(n+ 1)2

((
π2n2 + 6

)
(n + 1)2 + 3n

(

2
(

3n2 − 3
(
n2 + n

)2
ψ(1)(n + 1)− 1

)

ψ(0)(n + 1)

+3n(n+ 1)2ψ(0)(n+ 1)2 − n(n+ 1)((n− 3)ψ(1)(n+ 1) + 2n(n+ 1)ψ(2)(n+ 1))
))
.

These sums can be performed with e.g. the XSummer [53].
The final result for the O(κ−1−2ǫ) branch of the Itop

011120110 at the kinematic point s = u =
−1, t = 2, m2

h = 0 reads

Itop
011120110 ∼ κ−1−2ǫ

{
log2(κ)

4ǫ
+ log(κ)

(
1

ǫ2
− 3ǫζ(3)

2
+

log(2)− iπ

2ǫ
− π2

12

)

+
1

ǫ3
+

log(2)− iπ

ǫ2
+

−1
6
π(π − 6i) + log2(2)

4
+
(
−1 − iπ

2

)
log(2)

ǫ

+
1

12

(
iπ3 − 18ζ(3)

)
− π2 log(2)

12
+ ǫ

(
3iπζ(3)

2
− 3

2
ζ(3) log(2)− 7π4

240

)}

.

(3.2.13)

We then match the solution of the differential equation to this result and determine the
integration constant.

In addition to determination of constants, we also used the Mellin-Barnes representation for
numerical checks of our solutions for master integrals. Namely for non-planar MIs that, in the
κ→ 0 limit develop power-like singularities with half-integer exponents, we were unable to use
FIESTA for numerical checks. For such integrals we compared individual coefficient functions
in κ with the Mellin-Barnes representation and found perfect agreement for all of them. In
particular, the massless contributions as well as other coefficient functions that are completely
fixed by the DE, all agree with the Mellin-Barnes result. Note that this is a nontrivial check
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on both the solution for the differential equation and the Mellin-Barnes representation that
we used to extract integration constants for certain branches. One example of the coefficient
functions that are completely fixed by the DEs are those corresponding to the κ−1−2ǫ log(κ)
and κ−1−2ǫ log2(κ) terms that appear in our solution of the above integral Itop

011120110, which we
have checked to agree exactly with the corresponding logarithms in κ in Eq. (3.2.13) for the
chosen kinematic point.

4 Helicity amplitudes

Once the master integrals are computed, we use them to derive the form factors and calculate
the analytic expressions for helicity amplitudes. We define positive and negative helicity
spinors for massless external quarks and gluons in the standard way (see e.g. [54])

ǫµi,+(pi) =
〈q|γµ|i]√
2〈q i〉

, ǫµi,−(pi) = − [q|γµ|i〉√
2[q i]

, (4.1)

u+(p) = v−(p) = |p〉 , u−(p) = v+(p) = |p] ,
ū+(p) = v̄−(p) = [p| , ū−(p) = v̄+(p) = 〈p| . (4.2)

Here q is an arbitrary light-like reference vector. For our computation, the reference vectors
are fixed by gauge conditions outlined in Eq.(2.10).

The helicity amplitudes are defined as

Ag
λ1λ2λ3

(s, t, u,mt) = ǫµ1,λ1
(p1)ǫ

ν
2,λ2

(p2)ǫ
ρ
3,λ3

(p3)Ag
µνρ(s, t, u,mt), (4.3)

Aq
λ1λ2λ3

(s, t, u,mt) = ǫµ3,λ3
(p3)ūλ1(p1)Aq

µ(s, t, u,mt) vλ2(p2) . (4.4)

Eight helicity configurations are needed to describe the H → ggg amplitude. However, only
two of them are independent since the other six may be related to them by the use of charge and
parity conjugation. For the H → qq̄g amplitude there are four possible helicity configurations
in total, since QCD interactions cannot change the helicity of the massless quarks and therefore
the helicity of the outgoing quark must be opposite to that of the outgoing anti-quark in
Eq. (4.4). We have chosen to treat the following amplitudes as independent

Ag
+++(s, t, u,mt) =

s√
2〈12〉〈23〉〈31〉

Ωg
+++(s, t, u,mt) , (4.5)

Ag
+−+(s, t, u,mt) =

[13]3√
2 [12] [32] s

Ωg
+−+(s, t, u,mt) , (4.6)

Aq
−++(s, t, u,mt) =

1√
2

[23]2

[12] s
Ωq

−++(s, t, u,mt). (4.7)

The amplitudes are dimensionless and the helicity coefficients Ωi(s, t, u,mt) have a mass
dimension one. We may obtain the other helicity assignments for the amplitude by complex
conjugation and by permuting the external legs as follows

Ag
++−(p1, p2, p3) = Ag

+−+(p1, p3, p2) , (4.8)
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Ag
+−−(p1, p2, p3) = [Ag

+−+(p2, p1, p3)]
∗
, (4.9)

Aq
+−+(p1, p2, p3) = Aq

−++(p2, p1, p3) , (4.10)

Ai
λ1λ2λ3

(p1, p2, p3) =
[
Ai

(−λ1)(−λ2)(−λ3)(p1, p2, p3)
]∗
. (4.11)

The complex conjugation should only be applied to spinor-helicity structures and not to the
helicity coefficients Ωi(s, t, u,mt). The helicity coefficients can be expressed in terms of the
form factors introduced in Eq.(2.9) as follows

Ωg
+++ = u

(

F g
1 +

t

u
F g
2 +

t

s
F g
3 +

t

2
F g
4

)

, Ωg
+−+ =

−s2
t

(

F g
2 +

u

2
F g
4

)

, Ωq
−++ = s2 F q

1 .

(4.12)
We expand the helicity coefficients in the strong coupling constant and extract an overall

coefficient m2
t/v in order to have dimensionless one- and two-loop helicity coefficients

Ωi =
m2

t

v

√

α3
s

π

[

Ωi,(1l) +
αs

2π
Ωi,(2l) +O(α2

s)
]

. (4.13)

Once the form factors have been renormalized and IR-subtracted, the resulting helicity coef-
ficients will also be finite as seen from Eq. (4.12). We are interested in a kinematic region
where all Mandelstam variables are much larger than the top mass mt. Therefore we prefer
to define the amplitude in terms of a strong coupling constant that runs with Nf + 1 active
flavors. The relation between the coupling constants defined in the two schemes reads

α
(Nf )
s (µ) = α

(Nf+1)
s (µ)

[

1− α
(Nf+1)
s

6 π
log

(
µ2

m2
t

)

+O(α2
s)

]

. (4.14)

This change in the strong coupling constant leaves the one-loop coefficients unchanged, but the
two-loop finite remainder of the helicity amplitude changes as follows according to Eq. (4.14)

Ω
(1l),fin

= Ω(1l),fin , Ω
(2l),fin

= Ω(2l),fin − 1

2
log

(
µ2

m2
t

)

Ω
(1l),fin

. (4.15)

The helicity coefficients Ω correspond to using a strong coupling constant α
(Nf+1)
s (µ2) that

evolves with Nf + 1 active flavors.
Unfortunately, analytic results for helicity amplitudes are too long to be presented here.

Instead, we provide ancillary files that contain finite remainders of the relevant helicity ampli-
tudes Ω defined in Catani’s subtraction scheme Eq. (2.17) with the submission of this paper.

4.1 Analytic continuation

Our goal is to compute the two-loop amplitudes that are needed to describe production of the
Higgs boson with high transverse momentum at the LHC. The relevant production channels
are gg → Hg, qq̄ → Hg, qg → Hq and q̄g → Hq̄. Amplitudes for these processes are obtained
from amplitudes for H → ggg and H → qq̄g processes that we have computed and crossing
some final state particles to initial states. Our H → ggg and H → qq̄g amplitudes have been
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computed in the region t > 0, s, u < 0, while the physical scattering processes are defined in
the kinematic regions where the invariant mass of the two initial partons is positive instead.
For this reason we are interested in computing the amplitudes in the regions s > 0, t, u < 0
and u > 0, s, t < 0 as well, which we will refer to as (2a)+ and (4a)+ respectively. The
amplitude in these regions can be found by analytically continuing our result from the region
t > 0, s, u < 0 which we refer to as (3a)+. The three scattering regions are defined in terms of
the Mandelstam invariants as

(2a)+ : s > 0 , t, u < 0 , (4.1.1)

(3a)+ : t > 0 , s, u < 0 , (4.1.2)

(4a)+ : u > 0 , s, t < 0 . (4.1.3)

The above regions correspond to the following physical production channels

region(2a)+ : g(−p1) + g(−p2) → H(−p4) + g(p3), q(−p2) + q̄(−p1) → H(−p4) + g(p3),

region(3a)+ : g(−p1) + g(−p3) → H(−p4) + g(p2), q̄(−p1) + g(−p3) → H(−p4) + q̄(p2),

region(4a)+ : g(−p2) + g(−p3) → H(−p4) + g(p1), q(−p2) + g(−p3) → H(−p4) + q(p1).

In the three regions the positive Mandelstam variable receives an infinitesimal positive
imaginary part

(2a)+ : s→ s+ i 0 , (4.1.4)

(3a)+ : t→ t+ i 0 , (4.1.5)

(4a)+ : u → u+ i 0 . (4.1.6)

The method to perform the analytic continuation from the region (3a)+, where our compu-
tation has been performed, to the other two regions was explained in Ref. [43] and we refer to
this paper for details. The spinor products are left unchanged during the analytic continuation
but Harmonic Polylogarithms may receive imaginary parts when continued to regions (2a)+
and (4a)+. We introduce the variable uj for the three scattering regions

(2a)+ : u2a = −u
s
= −z , (4.1.7)

(3a)+ : u3a = −s
t
=

1

1 + z
, (4.1.8)

(4a)+ : u4a = − s

u
= −1

z
. (4.1.9)

Our helicity amplitudes are expressed in terms of the new variables 0 ≤ uj ≤ 1 in the
three corresponding regions. In this way the imaginary part of the amplitudes is explicit and
all the HPL that appear in the results are real-valued with the alphabet {0, 1} in each of
the scattering regions. The Harmonic Polylogarithms can be numerical evaluated with the
Mathematica package HPL [55] or the Fortran code CHAPLIN [56]. The helicity amplitudes
Ωq

+++,Ω
g
+−+Ω

q
−++ in all three scattering regions are provided in the ancillary file together with

the submission of this paper.
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5 Conclusions

We computed the two-loop helicity amplitudes that are needed to describe production of
the Higgs boson with large transverse momentum at the LHC. The Higgs boson interaction
with gluons and massless quarks is mediated by loops of massive top quarks. However, the
top quark mass is considered to be small compared to Higgs bosons transverse momentum.
Clearly, in this kinematic regime the Higgs boson mass is also small compared to its transverse
momentum and we effectively neglect it in our computation.

Although the dependence of the scattering amplitudes on the Higgs boson mass is simple
and can be obtained by a simple Taylor expansion, the expansion of the amplitudes in the
top quark mass contains non-analytic terms O(ln(m2

t/p
2
⊥)) and is, therefore, non-trivial. We

construct the expansion of the amplitudes using differential equations for master integrals that
allow us to obtain both analytic and non-analytic terms in an expansion in a controlled way.
Our final results for the amplitudes are expanded to leading power in the Higgs boson mass
which, essentially, corresponds to setting the Higgs boson mass to zero, and to next-to-leading
power in the top quark mass squared. We expect that the two-loop amplitudes computed in
this paper will allow for a robust estimate of the number of Higgs bosons that are expected
to be produced at the LHC with very large transverse momentum, and the comparison of this
prediction with the experimental result [12].
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