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Abstract

We compute the beta functions for the three gauge couplings and the Yukawa
matrices of a general two-Higgs-doublet model in the modified minimal subtraction
scheme to three loops. The calculations are performed using Lorenz gauge in the
unbroken phase. We discuss in detail the occurence of poles in anomalous dimensions
and propose practical prescriptions to avoid them. We provide explicit results for
the often used Z2-symmetric versions of the two-Higgs-doublet model of type I, II, X
and Y. Furthermore, we provide the first independent cross-check of the three-loop
Yukawa coupling beta functions of the Standard Model.
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1 Introduction

An appealing renormalization scheme for the couplings of the Standard Model of particle
physics (SM) and of its extensions is the minimal modified subtraction (MS) scheme. As
a consequence, the numerical values of the couplings depend on the renormalization scale
µ, which in general is of the same order as the energy scale of the considered process. The
values of the couplings at different scales are related by so-called beta functions which in
perturbation theory are given as power series in all couplings of the theory.

In the SM there are three gauge couplings (g1, g2, gs), the quartic Higgs boson coupling λ,
and a Yukawa coupling for each massive fermion, where often only the third generation
couplings, yt, yb, and yτ are considered as non-zero. For all couplings the three-loop beta
functions have been completed recently: the gauge coupling beta functions have been
computed in Refs. [1–3], the ones for the Yukawa couplings in Refs. [4–6] and λ has been
considered in [7,8]. Leading terms to the four-loop QCD beta function and the Higgs self
coupling involving the top Yukawa coupling and αs have been computed in Refs. [9–12]
and within QCD the beta function is even known to five loops [13–15].

There are a number of two-loop results which can be immediately adapted to a large
class of non-supersymmetric beyond-the-SM theories. In particular, two-loop results for
gauge [16], Yukawa [17] and scalar self couplings [18] are known since middle of the
eighties. Furthermore, the three-loop gauge coupling beta function for a simple gauge
group has been calculated [19]. In this work we consider the so-called two-Higgs-doublet
model (2HDM) and compute the gauge and Yukawa coupling beta functions to three-loop
order.

2HDMs, where the SM Higgs sector is extended by a second SU(2) Higgs doublet, are
attractive extensions of the SM. Although simple and probably not realized in nature in
its minimal version, 2HDMs nevertheless constitute prototype-extensions of the SM which
can be used to study several features of beyond-SM theories. In particular, for a certain
choice of parameters it implements the Higgs sector of the Minimal Supersymmetric Stan-
dard Model. Further motivation and several phenomenological applications can be found
in the review [20].

The most general 2HDM has many parameters and furthermore several unwanted fea-
tures like flavour-changing neutral currents (FCNCs) at tree level. Thus, often additional
symmetries are imposed. For example, if CP conservation in the Higgs sector is assumed
one has five physical scalar degrees of freedom which correspond to two scalar, one pseudo
scalar and a charged Higgs boson. In these models, both Higgs doublets acquire vacuum
expectation values v1 and v2 such that v =

√

v21 + v22 ≃ 246 GeV determines the W± and
Z boson masses in the same way as in the SM. The ratio v2/v1 is denoted by tan β.

The scope of the present work is twofold: First, we provide the first independent cross
check of the three-loop Yukawa coupling beta functions in the SM. In this context it is par-
ticularly important to carefully investigate the scheme used for γ5 in D 6= 4 dimensions.
Note that for the gauge couplings it is possible to choose Green’s functions without ex-
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ternal fermions. For Yukawa couplings this is not possible anymore. As a second aim, we
extend both the gauge and Yukawa beta functions to a general 2HDM. There is no change
in the underlying integrals, which have to be evaluated, however, there are conceptional
challenges in connection to the wave function renormalization of the scalar fields.

The remainder of the paper is organized as follows: In the next section we introduce the
2HDM which serves to fix the notation. Section 3 is devoted to technical details. In
particular, we introduce the renormalization constants for the parameters and fields and
define the beta functions and anomalous dimensions which we want to compute. The
main focus of Section 4 relies on the proper definition of the renormalization constants
such that the anomalous dimensions are finite. We investigate this problem in detail and
propose practical solutions. A detailed discussion of the computation of the gauge and
Yukawa coupling beta functions is provided in Sections 5 and 6, respectively. In these
Sections we also explain how one can arrive at special versions of the 2HDM and the SM
results. Furthermore, we compare the Yukawa beta functions to Ref. [4]. The findings of
this paper are summarized in Section 7.

2 Two-Higgs-doublet model

An extensive discussion of a general 2HDM model can be found in Ref. [20]. For conve-
nience we repeat in the following the features which are important for our calculation.

The additional Higgs doublet leads to an enlarged Yukawa sector which can be written as

LY = −
(

2
∑

i=a

Q̄LΦ̃aY
u
a uR + Q̄LΦaY

d
a dR + L̄LΦaY

l
a lR + h.c.

)

. (1)

The sum runs over the two doublets and “h.c.” refers to the hermitian conjugate part.
Y u
a ,Y

d
a and Y l

a are generic 3 × 3 complex matrices containing the Yukawa couplings and
QL, LL, uR, dR and lR represent left- and right-handed quark and lepton fields. Φ̃ = iτ2Φ

∗
j

is the charge conjugated doublet with τ2 being the second Pauli matrix.

The 2HDM has furthermore a more involved scalar potential which in its general form is
given by [21]

V (Φ1,Φ2) = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

(

m2
12Φ

†
1Φ2 + h.c.

)

+
1

2
λ1

(

Φ†
1Φ1

)2

+
1

2
λ2

(

Φ†
2Φ2

)2

+ λ3

(

Φ†
1Φ1

)(

Φ†
2Φ2

)

+ λ4

(

Φ†
1Φ2

)(

Φ†
2Φ1

)

+

[

1

2
λ5

(

Φ†
1Φ2

)2

+ λ6

(

Φ†
1Φ2

)(

Φ†
1Φ1

)

+ λ7

(

Φ†
1Φ2

)(

Φ†
2Φ2

)

+ h.c.

]

.

(2)

The parameters m2
11, m

2
22 and λ1, . . . , λ4 are real whereas in general m2

12, λ5, λ6 and λ7

are complex. This leads to fourteen degrees of freedom, eleven of which are physical as
can be seen by an appropriate basis choice for Φ1 and Φ2 [20].
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As in all multi-Higgs-doublet models, the Lagrange densities given in Eqs. (1) and (2)
contain FCNCs. For example, the up-type Yukawa matrices Y u

1 and Y u
2 will not be

in general simultaneously diagonalizable and thus neutral Higgs scalars φ will mediate
FCNCs of the form ūu′φ already at the tree level, where u 6= u′ are two different up-type
quarks. To avoid FCNCs at tree level [22, 23] it is necessary that all fermions with the
same quantum numbers couple to one and the same Higgs multiplet. This condition can
be satisfied if all quarks couple to just one of the Higgs doublets or the right-handed
up- and down-type quarks couple to different Higgs doublets. Depending on whether the
right-handed leptons couple to the Higgs doublets in the same manner as the right-handed
down-type quarks, or in the opposite way, further two possibilities can be identified. The
resulting four models are summarized in Tab. 1. They can be realized by imposing a Z2

symmetry to the general model. In fact, the type I 2HDM can be obtained by enforcing
an additional Z2 symmetry under which the theory has to be invariant namely Φ1 → −Φ1

and Φ2 → Φ2. The type II 2HDM can be derived via the symmetries Φ1 → −Φ1,
Φ2 → Φ2, dR → −dR and lR → −lR. The additional discrete symmetries required for
the other two models can be derived similarly. Note that the Z2 symmetries require that
m12 = λ6 = λ7 = 0.

In a generic quark basis as given in Eq. (1) the condition for non-existence of FCNCs in
the up-type (down-type) quark sector is that the Yukawa matrices Y u

1 and Y u
2 (Y d

1 and
Y d
2 ) commute [24]. If one of the two Yukawa matrices is zero, as it is actually the case for

the four models shown in Tab. 1, this condition is trivially fulfilled.

The most general Lagrange densities in Eqs. (1) and (2) contain several fields with the
same quantum numbers that can mix. Therefore, one can rewrite the Lagrangian in
terms of the new fields obtained from the original ones by simple basis transformations.
In the following we will refer to these transformations as flavour transformations for
both fermions and scalars. Obviously, the physical observables do not depend on such
redefinitions. They can depend only on quantities that are invariant under arbitrary
unitary flavour transformations. Ideally, one would be able to express the fundamental
Lagrangian parameters in terms of these invariants. However, some of the Lagrangian
parameters in Eq. (1), that do not take into account flavour symmetries are not physical.
That is, there are Lagrangian parameters that can be expressed as linear combinations
of others. This also means that there is a basis where the unphysical parameters are
identically zero, i.e. one can rotate them away via flavour transformations. In other words,
any coupling or mixing angle can be expressed in terms of so-called flavour invariants.
This statement has been explicitly proven for the Yukawa sector of the SM [25] and for the
scalar sector of the 2HDM, for example, in Refs. [26, 27].1 In this paper, we (re)confirm
the findings of [25–27] explicitly for the Yukawa sector of the SM and for Z2-symmetric
2HDMs through three loops.

The flavour transformations for fermion and scalar fields of the in Lagrangian Eq. (1) can

1For more details see Ref. [20] and references therein.

4



Type uR dR lR
I Φ2 Φ2 Φ2

II Φ2 Φ1 Φ1

X Φ2 Φ2 Φ1

Y Φ2 Φ1 Φ2

Table 1: Four Z2-symmetric 2HDMs. The table shows which right-handed fermion field
couples to which doublet.

be summarized as follows

Q′
L,I = UQ,IKQL,K ,

u′
R,i = Uu,ikuR,k ,

d′R,m = Ud,mpdR,p ,

Φ′
a = UΦ,acΦc , (3)

where UQ, Uu and Ud are unitary 3× 3 matrices and UΦ is a unitary 2× 2 matrix. Under
these unitary basis transformations, the gauge and kinetic terms are unchanged and LY

in Eq. (1) is invariant if the Yukawa matrices transform as

Y d′
a,Im = UQ,IKY

d
b,KpU

†
d,pmU

†
Φ,ba

Y u′
a,Ij = UQ,IKY

u
b,KlU

†
u,ljU

T
Φ,ba. (4)

In a similar manner, one can derive the transformation properties of the parameters in
the potential under redefinitions of the scalar fields [20]. One introduces the rank two and
four tensors, Kab and λab,cd, so that

V (Φ1,Φ2) = KabΦ
†
aΦb +

1

2
λab,cd(Φ

†
aΦb)(Φ

†
cΦd) , (5)

with

Kab = K∗
ba , λab,cd = λcd,ab , λab,cd = λ∗

ba,dc . (6)

One can match with the standard notation given in Eq. (2) and obtain the following
relations

K11 = m2
11 , K12 = −m2

12 , K21 = −(m2
12)

∗ ,

λ11,11 = λ1 , λ22,22 = λ2 , λ11,22 = λ22,11 = λ3 ,

λ12,21 = λ4 , λ12,12 = λ5 ,

λ11,12 = λ6 , λ22,12 = λ7 . (7)

The two tensors transform under the basis change given in Eq. (3) as

K ′
ab = UΦ,aαKαβU

†
Φ,βb ,
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λ′
ab,cd = UΦ,aαUΦ,cρλαβ,ρσU

†
Φ,βbU

†
Φ,σd . (8)

Since the calculation of the MS renormalization constants can be performed in the un-
broken phase the dimensionful parameters mij are irrelevant and thus for our calculation
of the beta functions only the second transformation in Eq. (7) will be of interest.

Within the SM the physical Yukawa couplings are defined via the diagonalization of the
hermitian matrices

Mu,1 = Y u
1 Y

u†
1 = UuL,1D

2
u,1U

†
uL,1 , Y u†

1 Y u
1 = WuR,1D

2
u,1W

†
uR,1 , (9)

where UuL,1 and WuR,1 are unitary matrices that act on the left- and right-handed up-type
quark fields as introduced in Eq. (3)

QL → UuL,1QL , uR → WuR,1uR , (10)

and Du,1 is a diagonal matrix with positive eigenvalues. Then

Y u
1 = UuL,1Du,1W

†
uR,1 , with Du,1 = diag(yu,1, yc,1, yt,1) , (11)

where the diagonal elements of Du,1 are the physical couplings and correspond to the

positive square roots of the eigenvalues of Y u
1 Y

u†
1 . We can define the unitary matrices UdL

and WdR in a similar way and decompose Y d
1 as

Y d
1 = UdL,1Dd,1W

†
dR,1 , with Dd,1 = diag(yd,1, ys,1, yb,1) , (12)

i.e., Y d
1 is diagonalized via

QL → UdL,1QL , dR → WdR,1dR . (13)

However, Eqs. (10) and (13) are in conflict with each other and only one of the Yukawa
matrices can be diagonalized. This leads to the definition of the CKM matrix, which, in
the basis where the up-type Yukawa matrix is diagonal, is given by V = U †

uL,1UdL,1. Note

that (2n − 1)
n=3
= 5 unphysical phases can be eliminated from V via further quark field

redefinitions.

The discussion up to now is in analogy to the SM. Within a general 2HDM the unitary
transformations discussed above do not necessarily simultaneously diagonalize the other
two Yukawa matrices Y u

2 and Y d
2 . We can still define the additional set of (non physical)

Yukawa couplings as the positive square roots of the eigenvalues of the matrices

Mu,2 = Y u
2 Y

u†
2 = UuL,2D

2
u,2U

†
uL,2 with Du,2 = diag(yu,2, yc,2, yt,2) ,

Md,2 = Y d
2 Y

d†
2 = UdL,2D

2
d,2U

†
dL,2 with Dd,2 = diag(yd,2, ys,2, yb,2) . (14)

To summarize, using the unitary rotations in Eq. (10) the set of Yukawa matrices trans-
form as

Y u
1 → Du,1 , Y d

1 → V †Dd,1 ,
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Y u
2 → Nu = U †

uL,1Y
u
2 WuR,1 , Y d

2 → Nd = V †U †
dL,1Y

u
2 WdR,1 , (15)

whereNu andNd are complex 3×3 matrices. Note that for the special case of a 2HDMwith
a Z2-symmetry only two of the four matrices in Eq. (15) are non-zero. Their eigenvalues
define the physical parameters and their mixing matrix is defined in analogy to the CKM
matrix in the SM.

We want to stress that within the SM and the four Z2-symmetric 2HDMs (cf. Tab. 1) the
physical Yukawa couplings are defined as eigenvalues of the Yukawa matrices and thus,
by construction, are invariant under quark flavour transformations. However, in a general
2HDM only appropriate linear combinations of the eigenvalues of the Yukawa matrices
become invariant under unitary transformations of the scalar fields and can be interpreted
as physical Yukawa couplings.

The strategy to construct flavour invariants in the Yukawa sector consists in taking prod-
ucts of Yukawa matrices, contracting over the internal flavour indices, and taking the
trace over the external flavour indices. For example, the simplest flavour invariants that
can be constructed within a 2HDM read

I(1)u = Tr(Y u
1 Y

u†
1 + Y u

2 Y
u†
2 ) , I

(1)
d = Tr(Y d

1 Y
d†
1 + Y d

2 Y
d†
2 ) , (16)

where Tr denotes the trace over the open indices of the left-handed fermions QL. In a
generic 2HDM the matrices

Mu = Y u
1 Y

u†
1 + Y u

2 Y
u†
2 and Md = Y d

1 Y
d†
1 + Y d

2 Y
d†
2 (17)

are invariant under scalar flavour transformations and one can thus construct other nine
flavour invariants similar to those for the SM [25, 28]. Using Section 3.1 of [25] and
adapting the notation (i.e. replacing U and D by Mu and Md) leads to

I1 = Tr(Mu), I3 = Tr(M̃u), I6 = det(Mu) ,

I2 = Tr(Md), I4 = Tr(M̃d), I8 = det(Md) ,

I5 = Tr(MuMd), I7 = Tr(Md M̃u), I9 = Tr(Mu M̃d) ,

I10 = Tr(M̃u M̃d), I11 = −3i

8
det([Mu,Md]) , (18)

where M̃ = M−1det(M). All Z2-symmetric 2HDMs have the same eleven invariants as
the SM.

In a generic 2HDM further higher rank invariants can be constructed using tensorial
properties of the Yukawa matrices. For example, the simplest additional type of rank
four invariant tensors are

T (2)
uu =

1,2
∑

a,b

Tr(Y u
a Y

u†
b )Tr(Y u

b Y
u†
a ) , (19)
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and

T
(2)
dd =

1,2
∑

a,b

Tr(Y d
a Y

d†
b )Tr(Y d

b Y
d†
a ) , (20)

and similar ones where Tr is replaced by the determinant. A systematic analysis of all
independent invariants for a general 2HDM is, however, beyond the scope of this article.

Let us also mention at this point that the definitions for the physical Yukawa couplings
and mixing matrices introduced above holds to all orders in perturbation theory.

3 Technicalities

In this work we compute the beta functions of the three gauge couplings and the Yukawa
matrices in the MS scheme.

Our calculation of the beta functions are based on the Lagrange densities in Eqs. (1)
and (2). The specification to the types I, II, X, and Y is straightforward. Note that the
MS renormalization constants can be computed in the unbroken phase since they do not
depend on the particle masses.

It is convenient to denote the gauge couplings by α1, α2 and α3 = αs, where αi = g2i /(4π)
and Y f

a with f = u, d, l and a = 1, 2 (labeling the scalar doublets). Furthermore, we
introduce λ̂ab,cd = λab,cd/(4π) (a, b, c, d = 1, 2), where λab,cd are the quartic coupling in the
scalar potential. We define the beta functions via

µ2 d

dµ2

αi

π
= βi({αj, Y

f
a , λab,cd}, ǫ) ,

µ
d

dµ
Y f
a = βf,a({αj, Y

f
a , λab,cd}, ǫ) ,

µ2 d

dµ2

λ̂ab,cd

π
= βab,cd({αj, Y

f
a , λab,cd}, ǫ) , (21)

where ǫ = (4 − d)/2. Note that the dependence of the couplings on the renormalization
scale is suppressed. The equations defining the beta function for Yukawa matrices have
to be understood as matrix equations in flavour space. The gauge couplings are related
to the fine structure constant, the weak mixing angle and the strong coupling as follows

α1 =
5

3

αQED

cos2 θW
,

α2 =
αQED

sin2 θW
,

α3 = αs ,

(22)
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where the SU(5) normalization has been adopted which leads to the factor 5/3 in the
definition of α1. For models where the first and second generation Yukawa couplings are
neglected, it is convenient to introduce αf,i = y2f,i/(4π) with f = b, t, τ and i = 1, 2.

The beta functions are obtained from the renormalization constants relating bare and
renormalized couplings. For the gauge couplings we have

αbare
i = µ2ǫZαi

({αj}, ǫ)αi . (23)

From this equation one obtains the following explicit formula for the beta functions after
taking into account that the αbare

i do not depend on µ

βi = −
[

ǫ
αi

π
+

αi

Zαi

∑

j=1,j 6=i

∂Zαi

∂αj
βj

]

(

1 +
αi

Zαi

∂Zαi

∂αi

)−1

. (24)

The first term in the first factor of Eq. (24) originates from the term µ2ǫ in Eq. (23) and
vanishes in four space-time dimensions. Equations (23) and (24) hold for the Yukawa
couplings only for models where the Yukawa matrices are diagonal, e.g., in case only the
third generation Yukawa couplings are taken into account.

The generalization of Eq. (24) to incorporate tensor-like couplings, like the Yukawa matri-
ces and quartic couplings, is straightforward to derive. However, care has to be taken when
computing derivatives of renormalization constants. Furthermore, the relations between
Yukawa matrix and quartic coupling beta functions and the corresponding renormaliza-
tion constants take a slightly different form than in Eq. (24), since in general, due to the
tensorial nature, it is not possible to compute the inverse of the renormalization constants.
For more details see Ref. [29].

Another option would be to derive the scale dependence of the eigenvalues of the Yukawa
matrices and quartic couplings starting from the definition in Eq. (21).

Note that the one-loop results of Zαi
only contain αi, whereas at two loops all other

couplings are present except for the quartic couplings. The renormalization constants of
the Yukawa matrices contain all couplings except the quartic couplings already at one-
loop order, while the quartic couplings enter at two loops. Therefore, it is necessary to
compute the renormalization constants and beta functions of the quartic couplings only
at one-loop order.2.

For our calculation we use the automated setup developed for the calculation of the SM
gauge beta functions to three loops [1,2]. For convenience we repeat the flowchart which
illustrates the interaction of the various program packages in Fig. 1.

In a first step we implement the unbroken version of the general 2HDM discussed in
Section 2 in the package FeynRules [31] which generates a model file for FeynArts [32].
The program FeynArtsToQ2E [33] works on the model file and translates it into input
files for QGRAF [34] and q2e [35–37]. QGRAF is used for the generation of the amplitudes

2Our results can be found in the ancillary files to this paper [30].
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QGRAF q2e exp MINCER
MATAD

FeynArtsToQ2E

FeynArts model file

FeynRules

Figure 1: Flowchart illustrating the workflow used for the calculation of the two- and
three-point functions.

which are translated by q2e and exp [35–37] to FORM [38] code. The latter is processed
by MINCER [39] and/or MATAD [40] which compute the Feynman integrals and outputs the
ǫ expansion of the result.

For the first part of the calculation up to the generation of the input files for QGRAF and
q2e no parallelization is necessary. The individual steps take at most a few minutes.
However, the parallelization of the horizontal part of the flowchart (cf. Fig. 1) is essential
since for some of the Green’s function we have to deal with several hundred thousands of
diagrams. Once QGRAF has produced the output file all following steps can be applied in
parallel to blocks of diagrams which typically contain 1000 Feynman amplitudes.

We perform the calculation in Lorenz gauge using general gauge parameters for each
gauge group. It is an important cross check that they drop out in the expressions for the
renormalization constants (and beta functions) of the gauge and Yukawa couplings.

The described setup is used to compute various MS renormalization constants for fields
and vertices. They are required for the construction of the renormalization constants for
the gauge, Yukawa and quartic couplings.

For the SM and 2HDM with Z2-symmetry, one can perform the calculation in a basis
where all the Yukawa matrices are diagonal and the elements of the CKM matrix are
present only in the vertices containing charged currents. In such a basis, the Lagrangian
parameters are physical parameters and the number of free parameters is reduced to the
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2-point functions
# loops 1 2 3
BB 16 450 49 256

W3W3 19 534 57 665
gg 9 170 13 671
cg c̄g 1 12 447

cW3
c̄W3

2 46 2 880
qq̄ 11 659 75 980
ll̄ 10 567 63 853

Φ0∗
1 Φ0

1 8 436 47 613
Φ0∗

1 Φ0
2 4 224 28 648

Φ0∗
2 Φ0

1 4 224 28 648
Φ0∗

2 Φ0
2 8 436 47 613

3-point functions
# loops 1 2 3
BBB 44 2 472 401 460
cg c̄gg 2 66 3 722

cW1
c̄W2

W3 2 117 11 849
Φ0

1Φ
0∗
1 W3 22 2 538 417 759

Φ0
1Φ

0∗
2 W3 12 1 274 —

Φ0
2Φ

0∗
1 W3 12 1 274 —

Φ0
2Φ

0∗
2 W3 22 2 538 —

dd̄Φ0
i 17 2 622 493 742

uūΦ0∗
i 17 2 622 493 742

ll̄Φ0
i 16 2 337 426 741

Table 2: The number of Feynman diagrams contributing to the one-, two- and three-loop
Green’s functions evaluated in this work. We computed the Yukawa vertices for both Φ1

and Φ2. Note that for some Green’s functions less diagrams had to be calculated than
in [2] since we only considered one fermion generation with matrix-like Yukawa couplings.
We did not compute three-loop corrections to the vertices Φ0

iΦ
0∗
j W3 with ij = 12, 21

and 22. The corresponding two-loop results are needed for the three-loop calculation of
Φ0

1Φ
0∗
1 W3.

Figure 2: Sample Feynman diagrams contributing to the Green’s functions which have
been used for our calculation of the gauge and Yukawa coupling renormalization constants.
Solid, dashed, dotted, curly and wavy lines denote fermions, scalar bosons, ghosts, gluons
and electroweak gauge bosons, respectively.

number of independent degrees of freedom.
In Table 2 we list all Green’s functions, which we have considered in the course of the
calculations performed in this paper, and the number of generated Feynman amplitudes
up to three loops. We used the following notation for the fields: B and Wi denote the
gauge bosons, cx refers to the ghost fields and Φ0

i and Φ±
i (i = 1, 2) are the neutral and

charged components of the scalar doublets. In Fig. 2 we show typical Feynman diagrams
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contributing to the individual Green’s functions.

Due to Ward identities there are various choices for each gauge coupling to obtain Zαi
:

Zα1
=

1

ZBB
=

(ZfLf̄LB)
2

ZBBZ
f
LZ

f
L

= . . . ,

Zα2
=

(ZcW1
c̄W2

W3
)2

ZW3W3
(ZcW3

c̄W3
)2

=
(ZW1W2W3

)2

(ZW3W3
)3

=
(ZfLf̄LW3

)2

ZW3W3
Zf

LZ
f
L

=
(ZΦ+

1
Φ−

1
W3

)2

ZW3W3
(ZΦ+

1
Φ−

1
)2

=
(ZΦ0

1
Φ0

1
W3

)2

ZW3W3
(ZΦ0

1
Φ0

1
)2

= . . . ,

Zα3
=

(Zcg c̄gg)
2

Zgg(Zcg c̄g)
2

=
(Zggg)

2

(Zgg)3
=

(ZfLf̄Lg)
2

ZggZ
f
LZ

f
L

= . . . , (25)

where we have used ZcW1
c̄W1

= ZcW2
c̄W2

= ZcW3
c̄W3

and ZW1W1
= ZW2W2

= ZW3W3
. Here

Zf
L, Z

f
R with3 f = u, d, l stand for the wave functions renormalization of the left- and right

handed fermion fields. Their explicit definition will be introduced in the next section.

The lowest number of Feynman diagrams are generated for the Green’s functions involv-
ing ghosts. Thus, our default choice for the computation of the gauge coupling renor-
malization constants are the gauge boson-ghost vertices and the corresponding two-point
functions. Other vertices have been considered to have powerful cross checks. Due to the
Ward identity the renormalization constant for α1 is given by the inverse renormalization
constant of the U(1) gauge boson propagator. We have performed an explicit calculation
of ZBB, ZcW1

c̄W2
W3

, ZW3W3
, ZcW3

c̄W3
, ZuLūLW3

, Zu
LZ

u
L, ZΦ0

1
Φ0

1
W3

, ZΦ0
1
Φ0

1
, Zcg c̄gg, Zgg, Zcg c̄g .

For the Yukawa matrices we are restricted to vertices which involve components of the
scalar doublets as well as left- and right-handed fermion fields. The explicit definition of
the Yukawa matrix renormalization constants will be postponed to the next section.

At the end of this section a comment concerning γ5 is in order. For the computation
of some of the Green’s functions an odd number of γ5 matrices is present in the traces.
We have checked that it is sufficient to follow the prescription provided in Ref. [2] in the
context of the SM. This means that a formal replacement of expressions like

Tr (γµγνγργσγ5) = −4iǫ̃µνρσ +O(ǫ) . (26)

is applied, where ǫ̃µνρσ is antisymmetric in all indices. In practice the product of two such
objects occurs, where all indices are contracted, which we replace by

ǫ̃µνρσ ǫ̃µ′ν′ρ′σ′ = g
[µ
[µ′ g

ν
ν′ g

ρ
ρ′ g

σ]
σ′] . (27)

The square brackets denote complete antisymmetrization. This leads to the correct result
in the limit d → 4. We have checked explicitly that the ambiguity of O(ǫ) in Eq. (26)
is multiplied by at most simple poles in ǫ and therefore does not lead to ambiguous
renormalization constants and beta functions.

3In the case of Zα3
we have f = u, d.
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4 MS renormalization of the general 2HDM

4.1 Renormalization constants

For the computation of the renormalization constants for fields, couplings and vertices we
follow the procedure described in Ref. [41]. However, since we consider general Yukawa
couplings which are non-diagonal both in flavour as well as in doublet space, several
modifications have to be applied, in particular for the calculation of the fermion and
scalar wave function renormalization constants, and the renormalization constants for the
Yukawa matrices. These issues are discussed in this section.

The renormalized inverse fermion propagator can be written as

S−1
F (p) = /p

[

PL

(

√

Zf
L

)†

(1 + ΣL(p
2))

√

Zf
L + PR

(

√

Zf
R

)†

(1 + ΣR(p
2))

√

Zf
R

]

, (28)

where PL/R = (1 ∓ γ5)/2, ΣL/R are the left- and right-handed parts of the fermion self

energy and Zf
L/R are the renormalization constants for the left- and right-handed fermion

fields. Both ΣL/R and Zf
L/R are matrices in flavour space where flavour indices have been

suppressed. The index f ∈ {u, d, l} indicates whether the up-, down- or lepton matrix
shall be considered.

The renormalized two-point function of the scalar fields can be written as

Πren(p2) =
(√

ZΦ
)†

Π(p2)
√
ZΦ , (29)

where the wave function renormalization constant ZΦ and Π(p2) are matrices in doublet
space. The corresponding indices have been suppressed. In Z2-symmetric models ZΦ has
to be diagonal, which we have checked up to three-loop level.

From Eqs. (28) and (29) the following relations can be derived:

Zf
L = 1−Kǫ

[

(

√

Zf
L

)†

(1 + ΣL(p
2))

√

Zf
L

]

,

Zf
R = 1−Kǫ

[

(

√

Zf
R

)†

(1 + ΣR(p
2))

√

Zf
R

]

,

ZΦ = 1−Kǫ

[

(√
ZΦ
)†

Σ(p2)
√
ZΦ

]

. (30)

The operator Kǫ extracts the poles in ǫ. Solving these equations recursively allows to
determine the corresponding renormalization constants. Let us stress at this point that
from the equations above we can compute only the hermitian parts of the renormalization
matrices Zf

L, Z
f
R and ZΦ. In the SM the anti-hermitian parts of the quark wave functions

13



renormalizations are related to the renormalization of the CKM matrix [42–44]. In the
next section we will also introduce anti-hermitian contributions to the renormalization
matrices defined above. However, in our case, they should not be identified with the
renormalization of any physical quantity.

Let us in a next step use this information to obtain formulae which allow to compute the
renormalization constants for the scalar-fermion vertices and the Yukawa couplings. The
Yukawa vertex renormalization constants for a fermion of type f can be extracted from

∑

β

2
∑

b=1

ZffΦ
ab,αβY

f
b,βα′ = Y f

a,αα′ −Kǫ

[

∑

β,γ

2
∑

b=1

(

√

Zf
Lαβ

)†√
ZΦ

abΓ(p, 0)b,βγ

√

Zf
Rγα′

]

, (31)

where for convenience the flavour (α, β, γ) and the doublet (a, b) indices are shown ex-
plicitly. The sums over β and γ run over all down-(up-)type fermions in case α is a
down-(up-)type fermion. Note that in Eq. (31) Γ(p, 0)b,βγ is the vertex function where
one of the external momenta is set to zero and the external fields are Φb and fermions
with flavour β and γ. Furthermore, the Yukawa coupling in the tree-level contribution of
Γ(p, 0)b,βγ is not renormalized.

Once
∑

β

∑2
b=1 Z

ffΦ
ab,αβY

f
b,βα′ is obtained from Eq. (31) the Yukawa matrix renormalization

constants (∆Y f
a ) can be computed from

∑

β

2
∑

b=1

ZffΦ
ab,αβY

f
b,βα′ =

∑

β,γ

2
∑

b=1

(

√

Zf
Lαβ

)†√
ZΦ

ab(Y
f
b +∆Y f

b )βγ

√

Zf
Rγα′

. (32)

This equation has to be solved iteratively for (Y f
a +∆Y f

a ).

4.2 Invariants in the quark sector

The renormalization constants introduced in Eq. (30) are used to derive the corresponding
anomalous dimensions. Note, however, that the anomalous dimensions might contain
poles in ǫ. This is not surprising, since in the case of general Yukawa matrices we do not
take into account the invariance of the theory under unitary rotations like those given
in Eq. (3). In other words, from the 72 parameters4 of the Yukawa sector of the general
2HDM 30 can be eliminated using flavour transformations [45]5. In contrast to the case
of Lagrangian parameters, the beta functions of the flavour invariants (cf. Eq. (18)) are
finite, because the flavour symmetry relations are by construction taken into account in
such quantities.

We also want to remark that the gauge couplings are trivially invariant under unitary
flavour transformations and the corresponding beta functions do not suffer from un-
canceled singularities. On the other hand, in analogy to the Yukawa matrices, we expect

44 complex 3× 3 matrices with 18 parameters each.
5The flavour symmetry group [U(3)]3 ⊗ U(2) is broken by the Yukawa sector to U(1), leading to 30

broken generators.
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that in the case of the quartic couplings of the scalar potential only certain combinations
of them have finite beta functions.

In the SM and in Z2-symmetric 2HDMs there are eleven flavour invariants in the quark
sector as has been discussed in Section 2. From them the six quark masses, three CKM
mixing angles, and the cosine and the sign of the CP-violating phase can be derived.
Their behaviour under renormalization group evolution has been studied up to two loops,
for example, in Ref. [25]. We have extended the analysis and checked by an explicit
calculation that all eleven invariants in Eq. (18) of the SM and Z2-symmetric 2HDMs have
finite anomalous dimensions at three loops. From the three-loop anomalous dimensions of
the eleven invariants mentioned above one can derive the beta functions for the physical
couplings and the CKM mixing angles to the same order.

As already mentioned in Section 2, we have not classified all flavour invariants in the
general 2HDM. However, an explicit calculation for the invariants

Tr
(

Y u
a Y

u†
a

)

,Tr
(

Y d
a Y

d†
a

)

,Tr
(

Y u
a Y

u†
b Y u

b Y
u†
a

)

,Tr
(

Y u
a Y

u†
a Y u

b Y
u†
b

)

,

Tr
(

Y d
a Y

d†
b Y d

b Y
d†
a

)

,Tr
(

Y d
a Y

d†
a Y d

b Y
d†
b

)

,Tr
(

Y u
a Y

u†
a Y d

b Y
d†
b

)

,Tr
(

Y u
a Y

u†
b Y d

a Y
d†
b

)

,

Tr
(

Y u
a Y

u†
b

)

Tr
(

Y u
b Y

u†
a

)

,Tr
(

Y d
a Y

d†
b

)

Tr
(

Y d
b Y

d†
a

)

,Tr
(

Y u
a Y

u†
b

)

Tr
(

Y d
a Y

d†
b

)

, (33)

where we sum over a and b and the trace is taken over the fermionic indices, shows that
all poles cancel.

4.3 Invariants for a simplified model

In this Subsection we consider a simplified version of the general 2HDM. Explicitly, we
study the case where the Yukawa interactions for the first and second generations are
neglected. As a consequence, the Yukawa matrices reduce to complex numbers, parame-
terizing the Yukawa couplings for the t and b quarks and only scalar flavour symmetries
occur. Following Ref. [45], one observes that from the eight parameters6 in the Yukawa

sector (n2 − 1)
n=2
= 3 can be rotated away. We also notice that the up- and down-type

Yukawa couplings transform as vectors under unitary rotations of the scalar fields, see
Eq. (4) where UQ and Uu,d are replaced by the identity matrix for this simplified model.
We thus rotate the scalar fields with the following matrix

UΦ = 1√
yt
1
yt∗
1
+yt

2
yt∗
2

(

yt∗1 yt∗2
−yt2 yt1

)

. (34)

Under this transformation the scalar fields change to

Φ′
1 =

δijy
t∗
i√
It

Φj ,

6We have y
f
i ∈ C with f = u, d and i = 1, 2.
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Φ′
2 =

εijy
t
i√

It
Φj (35)

with It = δijy
t
iy

t∗
j . δab and εab denote the Kronecker delta and Levi-Civita tensor, respec-

tively, and the sum over the repeated indices i, j = 1, 2 is assumed. Furthermore, the
Yukawa couplings transform as

yt′1 =
√

δijy
t
iy

t∗
j =

√

It , yt′2 = 0 ,

yb′1 =
δijy

t
iy

b
j√

It
, yb′2 =

εijy
b
iy

t∗
j√

It
. (36)

Taking into account the tensorial properties of δab and εab and the transformations of the
Yukawa couplings under unitary rotations of the scalar fields, one can easily prove that
both the rotated fields and couplings are actually flavour invariants. In other words, in
the new basis the Lagrangian parameters are expressed through flavour invariants and
are therefore directly related to physical quantities.

An explicit calculation shows that the anomalous dimensions of the new fields Φ′
a with

a = 1, 2 and the beta functions of the new couplings yt′1 , y
b′
1 and yb′2 are finite through three

loops. This is not the case for the original basis, where the Yukawa sector contains too
many parameters. The new basis makes use of the flavour symmetries and gets rid of one
of the up-type Yukawa couplings, the other one is rendered real. It is also important to
notice that the relation yt′2 = 0 is stable under renormalization. To verify this statement,
we checked through three loops that the beta functions of the three Yukawa couplings
obtained after the rotation to the new basis can be expressed only in terms of couplings
present in this basis. At this stage, also the scalar quartic couplings have to be transformed
according to Eqs. (8). This shows that the set of couplings in the new basis is complete.
Even for this simplified model the explicit three-loop results are quite lengthy. Thus, in
Section 6 we only present results for βyt′

1
.

4.4 Poles in anomalous dimensions

In this Subsection we describe a practical method, which allows to use the beta functions
and anomalous dimensions for a general 2HDM, although they develop poles in the first
place. A transformation to physical observables, which, as mentioned above, becomes
quite involved, is not necessary. We follow Ref. [6], where this issue has been discussed
for the case of the SM. It is argued that the poles can be eliminated by choosing the
square roots of the renormalization constants to be non-hermitian. We define

√
Z =

√
ZH

√
ZU , (37)

where Z is any of the renormalization constants introduced in Eq. (30). The subscripts
H and U in Eq. (37) denote the hermitian and unitary parts.
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In order to obtain Y u + ∆Y u one has to invert Eq. (32). This can be done by either
choosing hermitian square roots or by allowing for additional unitary factors which leads
to the following relation

Y ′u
a +∆Y ′u

a =
√

ZLU (Y u
b +∆Y u

b )
(

√

ZR

)†

U

√

ZΦU,ba , (38)

where the Y u +∆Y u is calculated with hermitian square roots. This equation resembles
the transformation in Eq. (4) and therefore a choice of the unitary part of the square root
of the Z factors can be interpreted as a certain choice of basis.
√
ZH is fixed by the poles of the corresponding two point functions in Eq. (30) and can

be used to obtain the hermitian part of the corresponding anomalous dimensions, i.e., the
combination γ + γ†. For the left- and right-handed fermion fields and the scalar fields
considered in Eq. (30) we observe that γ + γ† is finite whereas the individual terms are
not.

Note, however, that
√
ZU is an arbitrary unitary matrix which can be chosen such that

γ is finite. This choice is not unique and it is possible to also influence the finite parts of
the anomalous dimensions (and in general the beta functions) this way. We will postpone
the discussion of this apparent ambiguity and its physical significance to Subsection 4.5
and concentrate in the following on the discussion of the left-handed quark fields.

At one-loop order there is no possibility to construct
√

ZQ
L U

6= I and therefore
√

ZQ
L is

purely hermitian. At two-loop order there is one unitary combination of Yukawa matrices

√

ZQ
L U

= I+

(

a

ǫ2
+

b

ǫ

)

[

Y uY u†, Y dY d†
]

, (39)

where a and b are arbitrary constants. A nonzero value for b enters into the finite parts
of the left-handed quark field anomalous dimension and therefore into the beta functions
for Y u and Y d, contributing to the mentioned ambiguity (see below Subsection 4.5).

One can choose a nonzero value for a to cancel possible ǫ poles in the non-hermitian part
of the two-loop anomalous dimension. However, such poles can not appear as can be seen
by the following arguments: For the anomalous dimensions we schematically write

γ = −
√

ZQ
L

−1

µ
d

dµ

√

ZQ
L ,

γ† = −
(

µ
d

dµ

√

ZQ
L

†
)

√

ZQ
L

†−1

, (40)

where the second equation simplifies to

γ† = −
(

µ
d

dµ

√

ZQ
L

)

√

ZQ
L

−1

(41)
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in the case hermitian square roots are chosen. Thus, the anomalous dimension is hermitian
(and finite) if the commutator

[(

µ
d

dµ

√

ZQ
L

)

,

√

ZQ
L

−1]

= 0 (42)

is satisfied. At two-loop order only the contribution where both terms in Eq. (42) receive
one-loop contributions involving two Yukawa matrices could possibly lead to a nonvan-
ishing commutator of the form

[

Y uY u†, Y dY d†
]

. (43)

However, an explicit calculation in the general 2HDMmodel shows that Y uY u† and Y dY d†

appear with the same coefficients in the renormalization constant and thus the commu-

tator is zero and no non-trivial factor
√

ZQ
L U

is needed.

At three loops we have γ 6= γ† in case hermitian square root factors are chosen. For
example, there are contributions to ZQ

L involving Y uY u† or Y dY d†, however, with different
prefactors for up- and down-type quarks due to the presence of hyper-charge contributions.
This leads to a non-vanishing commutator in Eq. (42). Thus, the necessity to choose a

nontrivial factor
√

ZQ
L U

arises from three loops.

Similar arguments hold for the scalar and right-handed quark fields.

4.5 Ambiguities in the Yukawa matrix beta function

The possibility to introduce
√
ZU 6= I introduces an ambiguity in the definition of the

renormalization constants, anomalous dimensions and beta functions. Nevertheless, let
us stress that this statement only holds for the unphysical parameters, e.g. the Yukawa
matrices. Once we construct flavour invariants the unitary roots cancel and their anoma-
lous dimensions are finite and unambiguous. Consequently, the anomalous dimensions of
the physical quantities derived from them are finite and unambiguous, as expected.

We verified the cancellation of the unitary roots and consequently the poles in the beta
functions for all eleven invariants of the quark sector of Z2-symmetric 2HDMs. Further-
more, we checked the cancellation in the general 2HDM for the invariants introduced in
Section 2 as well as further invariants entering the gauge coupling beta functions, which
we will present in the next section (see Eqs. (48) and (49)).

In addition, we also performed numerical checks by computing the Yukawa matrices in
Z2-symmetric 2HDMs at a low scale and run them up to 1016 GeV for different choices
of

√
ZU , modifying the finite part of the beta functions. While the Yukawa matrices

themselves differ at the high scale, depending on the choice of
√
ZU , their eigenvalues do

not, showing again that the ambiguity does not affect physical quantities.
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5 Results for the gauge coupling beta functions

In this section we present the analytical results for the gauge coupling beta functions of
a general 2HDM. We notice that both the Yukawa matrices and the self couplings occur
in the gauge beta functions only through flavour invariants7, as expected.

We present the results keeping the full information contained in the Yukawa matrices and
arrive at the following expressions for the beta functions

β1 = −ǫ
α1

π
+

α2
1

(4π)2

[

16

3
nG +

2

5
nD

]

+
α2
1

(4π)3

[

nG

(76α1

15
+

12α2

5
+

176α3

15

)

+ nD

(18α1

25
+

18α2

5

)

− 34

5
Tr(M̂u)− 2TrM̂d − 6TrM̂l

]

+
α2
1

(4π)4

[

n2
G

(

− 836α2
1

135
− 44α2

2

15
− 1936α2

3

135

)

+ n2
D

(

− 147α2
1

1000
− 49α2

2

40

)

+ nGnD

(

− 887α2
1

450
− 173α2

2

30

)

+ nD

(783α2
1

2000
+

783α1α2

200
+

3499α2
2

80

)

+ nG

(

− 101α2
1

90
− 7α1α2

25
− 548α1α3

225
+

101α2
2

6
− 4α2α3

5
+

1100α2
3

9

)

− 2827α1

200
Tr(M̂u)−

1267α1

200
Tr(M̂d)−

2529α1

200
Tr(M̂l)−

471α2

8
Tr(M̂u)

− 1311α2

40
Tr(M̂d)−

1629α2

40
Tr(M̂l)−

116α3

5
Tr(M̂u)−

68α3

5
Tr(M̂d)

+
9α1

25
λ̂ij,ji +

18α1

25
λ̂ii,jj +

9α2

5
λ̂ij,ji +

213

20
Tr(M̂2

u) +
81

20
Tr(M̂2

d )

+
3

10
Tr(M̂uM̂d) +

63

10
Tr(M̂ (2)

uu ) +
51

10
Tr(M̂

(2)
dd ) +

6

5
Tr(M̂

(2)
ud )

+
147

20
Tr(M̂2

l ) +
57

10
Tr(M̂

(2)
ll ) +

303

10
T̂ (2)
uu +

51

10
T̂

(2)
dd +

177

5
T̂

(2)
ud +

99

10
T̂

(2)
ll

+
199

5
T̂

(2)
ul +

157

5
T̂

(2)
dl − 3

5
λ̂ij,klλ̂ji,lk −

6

5
λ̂ij,klλ̂li,jk

]

, (44)

7Some of them are identical to the invariants listed in Eq. (18).
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β2 = −ǫ
α2

π
+

α2
2

(4π)2

[

− 88

3
+

16

3
nG +

2

3
nD

]

+
α2
2

(4π)3

[

− 544α2

3
+ nG

(4α1

5
+

196α2

3
+ 16α3

)

+ nD

(6α1

5
+

26α2

3

)

− 6Tr(M̂u + M̂d)− 2TrM̂l

]

+
α2
2

(4π)4

[

− 45712α2
2

27
+ n2

G

(

− 44α2
1

45
− 1660α2

2

27
− 176α2

3

9

)

+ n2
D

(

− 49α2
1

200
− 425α2

2

216

)

+ nGnD

(

− 91α2
1

50
− 1121α2

2

54

)

+ nD

(261α2
1

400
+

561α1α2

40
+

65131α2
2

432

)

+ nG

(

− 7α2
1

150
+

13α1α2

5
− 4α1α3

15
+

52417α2
2

54
+ 52α2α3 +

500α2
3

3

)

− 593α1

40
Tr(M̂u)−

533α1

40
Tr(M̂d)−

51α1

8
Tr(M̂l)

− 729α2

8
Tr(M̂u + M̂d)−

243α2

8
Tr(M̂l)− 28α3Tr(M̂u + M̂d)

+
3α1

5
λ̂ij,ji + α2λ̂ij,ji + 2α2λ̂ii,jj +

15

4
Tr((M̂u + M̂d)

2)

+
21

2
Tr(M̂ (2)

uu + M̂
(2)
dd ) + 6Tr(M̂

(2)
ud ) +

5

4
Tr(M̂2

l ) +
7

2
Tr(M̂

(2)
ll )

+
45

2
(T̂ (2)

uu + T̂
(2)
dd + 2T̂

(2)
ud ) +

5

2
T̂

(2)
ll + 15(T̂

(2)
ul + T̂

(2)
dl )

− λ̂ij,klλ̂ji,lk − 2λ̂ij,klλ̂li,jk

]

, (45)

and

β3 = −ǫ
α3

π
+

α2
3

(4π)2

[

− 44 +
16

3
nG

]

+
α2
3

(4π)3

[

− 408α3 + nG

(22α1

15
+ 6α2 +

304α3

3

)

− 8Tr(M̂u + M̂d)

]

+
α2
3

(4π)4

[

− 5714α2
3 + n2

G

(

− 242α2
1

135
− 22α2

2

3
− 2600α2

3

27

)

+ nGnD

(

− 253α2
1

900
− 23α2

2

12

)
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+ nG

(

− 137α2
1

900
− α1α2

10
+

308α1α3

45
+

505α2
2

12
+ 28α2α3 +

20132α2
3

9

)

− 101α1

10
Tr(M̂u)−

89α1

10
Tr(M̂d)−

93α2

2
Tr(M̂u + M̂d)

− 160α3Tr(M̂u + M̂d) + 6Tr((M̂u + M̂d)
2) + 12Tr(M̂ (2)

uu + M̂
(2)
dd − 2M̂

(2)
ud )

+ 42(T̂ (2)
uu + T̂

(2)
dd + 2T̂

(2)
ud ) + 14(T̂

(2)
ul + T̂

(2)
dl )

]

. (46)

In the above equations nG denotes the number of fermion generations and nD the number
of scalar doublets. We sum over the indices i, j, k, l of the quartic couplings from 1 to nD.
The matrix Ml is defined by

Ml = Y l
1Y

l†
1 + Y l

2Y
l†
2 (47)

in analogy to Eq. (17). Other combinations of Yukawa matrices are given by

M (2)
uu =

nD
∑

i,j=1

Y u
i Y

u†
j Y u

j Y
u†
i ,

M
(2)
dd =

nD
∑

i,j=1

Y d
i Y

d†
j Y d

j Y
d†
i ,

M
(2)
ll =

nD
∑

i,j=1

Y l
i Y

l†
j Y l

j Y
l†
i ,

M
(2)
ud =

nD
∑

i,j=1

Y u
i Y

u†
j Y d

i Y
d†
j , (48)

as well as

T
(2)
ll =

nD
∑

i,j=1

Tr(Y l
i Y

l†
j )Tr(Y l

j Y
l†
i ) ,

T
(2)
ud =

nD
∑

i,j=1

Tr(Y u
i Y

u†
j )Tr(Y d

i Y
d†
j ) ,

T
(2)
ul =

nD
∑

i,j=1

Tr(Y u
i Y

u†
j )Tr(Y l

i Y
l†
j ) ,

T
(2)
dl =

nD
∑

i,j=1

Tr(Y d
i Y

d†
j )Tr(Y l

j Y
l†
i ) . (49)
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which are defined in analogy to Eqs. (19) and (20). We rescaled the Yukawa matrices in

the above results such that M̂f = Mf/(4π), T̂
(2)
ff ′ = T

(2)
ff ′/(4π)2 and M̂

(2)
ff ′ = M

(2)
ff ′/(4π)2.

The results for the beta functions and the corresponding renormalization constants can
be obtained in computer readable form [30].

We have performed a number of cross checks on the correctness of our result. Among
them is the independence on the three gauge parameters. Furthermore, we can easily
take the SM limit by setting nD = 1, Y f

2 = 0 and λij,kl = λ and find agreement with
Refs. [1–3]. We also agree with the findings of Ref. [19] where results for a general theory
based on a simple gauge group are presented.8

A comment on the validity of our results for nD ≥ 3 is in order. At three-loop order,
all diagrams containing at least one internal gauge boson or a closed fermion loop can
only receive contributions from up to two different scalar doublets. However, diagrams
containing two quartic couplings can get contributions from more than two doublets.
Therefore, all contributions to the three-loop beta functions are also valid for nD ≥ 3
apart from those containing two quartic couplings.

6 Results for the Yukawa coupling beta functions

As discussed in Section 4 the Yukawa matrix beta functions themselves are ambiguous and
one should either work in a proper basis or only consider invariants of the Yukawa sector.
In general the expressions are quite lengthy at three loops. Thus, we restrict ourselves to
the beta function in the simplified model discussed in Section 4.3. For simplicity we drop
the primes introduced in Eq. (36) and write yt ≡ yt1 since βyt

2
= 0. We obtain

βyt = −ǫ
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∣ŷb2
∣

∣

2

4

]

+
yt

(4π)2

[

107α2

1

1200
− 9α1α2

40
+

19α1α3

30
− 33α2

2

8
+

9α2α3

2
− 202α2

3

3
+ nG

(29α2

1

90
+

α2

2

2

+
40α2

3

9

)

+ α1

(393ŷt
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∣ŷb2
∣

∣

2

480

)

+ α2

(225ŷt
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8In this context one has to take into account the comments presented at the end of Section IV of
Ref. [2].
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2

512

+
13155

∣

∣ŷb1
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∣ŷb
1

∣

∣

2

4
+

37
∣

∣ŷb
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∣ŷb
1

∣

∣

2 ∣
∣ŷb
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∣ŷb
1

∣

∣

2

2
− 185ŷt
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∣ŷb

2

∣

∣

2

12

− 257
∣

∣ŷb
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2
∣

∣

∣
ŷb
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2
∣

∣

∣ŷ
b
1

∣

∣

∣

2
∣

∣

∣ŷ
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∣ŷb
2

∣

∣

2

2
+

15
∣

∣ŷb
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∣ŷb2

∣

∣

∣

4

+
9λ̂12,12

(

ŷb
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ŷb
2

∗

32
− 165λ̂11,22λ̂21,22ŷ
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b
1

∗

ŷb2
32

− 69λ̂12,21λ̂12,22ŷ
b
1ŷ

b
2

∗

32

− 69λ̂12,21λ̂21,22ŷ
b
1

∗

ŷb2
32

+
21λ̂22,22λ̂12,22ŷ

b
1ŷ

b
2

∗

16
+

21λ̂22,22λ̂21,22ŷ
b
1

∗

ŷb2
16

− 255λ̂12,12λ̂11,21ŷ
b
1
ŷb
2

∗

16
− 255λ̂21,21λ̂11,12ŷ

b
1

∗

ŷb
2

16

− 69λ̂12,12λ̂21,22ŷ
b
1
ŷb
2

∗

16
− 69λ̂21,21λ̂12,22ŷ

b
1

∗

ŷb
2

16
+

3λ̂11,12λ̂21,22

∣

∣ŷb2
∣

∣

2

2

+
3λ̂11,21λ̂12,22

∣

∣ŷb
2

∣

∣

2

2
− 18λ̂3

11,11 −
λ̂3

11,22

2
−

5λ̂3

12,21

8
− 3λ̂11,11λ̂

2

11,22 −
3λ̂11,11λ̂

2

12,21

2

− 3λ̂11,11λ̂11,22λ̂12,21 − 6λ̂11,11λ̂12,12λ̂21,21 −
45λ̂11,11λ̂11,12λ̂11,21

2
−

3λ̂2

11,22λ̂22,22

2

−
3λ̂2

11,22λ̂12,21

4
− 3λ̂11,22λ̂12,21λ̂22,22

2
−

3λ̂11,22λ̂
2
12,21

2
− 9λ̂11,22λ̂11,12λ̂11,21

2

− 27λ̂11,22λ̂11,12λ̂21,22

8
− 27λ̂11,22λ̂11,21λ̂12,22

8
− 9λ̂11,22λ̂12,12λ̂21,21 −

9λ̂11,22λ̂12,22λ̂21,22

4

−
3λ̂2

12,21λ̂22,22

4
− 6λ̂12,21λ̂11,21λ̂11,12 −

9λ̂12,21λ̂11,12λ̂21,22

4
− 9λ̂12,21λ̂11,21λ̂12,22

4

− 27λ̂12,21λ̂12,12λ̂21,21

2
− 3λ̂12,21λ̂12,22λ̂21,22 − 3λ̂22,22λ̂12,12λ̂21,21 −

15λ̂2

11,12λ̂21,21

2

− 9λ̂11,12λ̂21,21λ̂12,22

4
−

15λ̂2
11,21λ̂12,12

2
− 9λ̂11,21λ̂12,12λ̂21,22

4
−

15λ̂12,12λ̂
2
21,22

4
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−
15λ̂21,21λ̂

2
12,22

4
− 9λ̂22,22λ̂12,22λ̂21,22

2

]

, (50)

where also the quartic couplings are given in the new basis (cf. Eq. (8)). We rescaled
all Yukawa couplings by ŷ = y/

√
4π but the leading ones. The analytic expression of

Eq. (50) and the beta functions for yb1 and yb2 are contained in ancillary files which come
together with this paper [30]. They also contain the beta functions for the eleven invariants
specified to the 2HDM models I, II, X and Y and the SM. We furthermore provide explicit
results for the quantities in Eqs. (30) and (31).

Let us mention that for the SM Yukawa matrix beta functions we find full agreement
with [4, 6] and the one- and two-loop beta functions for Z2-symmetric 2HDMs agree
with [46].

7 Summary

We consider a general 2HDM and compute the beta functions for the gauge and Yukawa
couplings up to three loops. We discuss in detail the subtleties in connection to the
determination of the renormalization constants in case both Higgs doublets couple to up-
and down-type fermions. Furthermore, we investigate in detail the origin of the poles in
the Yukawa coupling beta functions, a characteristic which is already present in the SM,
discuss their ambiguity, and provide possible solutions which lead to finite beta functions.
Our general results can be specified to Z2 symmetric models like the 2HDMs of type I,
II, X or Y, or the SM. In this paper we also provide the first independent cross check
of the three-loop corrections to the SM Yukawa coupling beta functions [4, 6]. Ancillary
files with analytic results for both, renormalization constants and beta functions, can be
downloaded from [30].
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