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Abstract: 331 models constitute an extension of the Standard Model (SM) obtained by
enlarging the SM gauge group SU(3)C×SU(2)L×U(1)Y to the group SU(3)C×SU(3)L×
U(1)X . We investigate how a non-minimal 331 model may embed lepton flavour universality
violating contributions to b → s`` processes without introducing lepton flavour violation,
as suggested by the recent LHCb measurements of the ratios RK and RK∗ . We discuss the
model-independent scenarios of New Physics in b→ s`` currently favoured by the data that
could be accommodated by this model and consider a few phenomenological constraints on
this model.
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1 Introduction

At the energies currently reached at the LHC, no direct signals of New Physics (NP) have
arisen yet, in the sense that only particles already in the Standard Model (SM) have been
observed directly. This has pushed the scale of many NP models much above the electroweak
scale, challenging the earlier expectations that these two scales would be similar for these
models – supersymmetric models being the most prominent ones.

On the other hand, recent disagreements with the SM expectations have appeared in
flavour physics and more specifically in b-quark decays (for recent reviews see Refs. [1–4] and
references therein). In particular, four anomalies have appeared in ratios assessing Lepton
Flavour Universality (LFU) in the decays B → K(∗)`+`− (corresponding to the quark-level
decay b→ s``) and B → D(∗)`ν̄` (corresponding to the quark-level decay b→ c`ν), where
` stands for e, µ, τ . The ratios of current interest are defined as

RK(∗)[q2min,q
2
max] =

B(B → Kµ+µ−)q2∈[q2min,q
2
max]

B(B → Ke+e−)q2∈[q2min,q
2
max]

RD(∗) =
B(B → D(∗)τ ν̄τ )

B(B → D(∗)`ν̄`)
, [` = e, µ]

(1.1)
where RK(∗) are measured over specific ranges for the squared di-lepton invariant mass q2

(in GeV2), whereas RD(∗) deals with the total branching ratios. It is interesting to make a
comparison between the experimental and theoretical values for these quantities:

Rexp
K[1,6] = 0.745+0.090

−0.074 ± 0.036 [5]

Rexp
K∗[0.045,1.1] = 0.66+0.11

−0.07 ± 0.03 [6]

Rexp
K∗[1.1,6.0] = 0.69+0.11

−0.07 ± 0.05 [6]

Rexp
D = 0.407± 0.039± 0.024 [7]

Rexp
D∗ = 0.304± 0.013± 0.007 [7]

Rth
K = 1.00± 0.01 [3, 8]

Rth
K∗[0.045,1.1] = 0.922± 0.022 [3]

Rth
K∗[1.1,6.0] = 1.000± 0.006 [3]

Rth
D = 0.300± 0.008 [9]

Rth
D∗ = 0.252± 0.003 [10].

2.8 σ

2.7 σ

3.0 σ

2.3 σ

3.4 σ

(1.2)

In the experimental data the first errors are statistical and the second ones systematic.
Prominent contributions to these ratio determinations have been given by Babar, Belle and
LHCb [5, 6, 11–15]. Although it is still not excluded that the previous disagreements might
be accounted to statistical fluctuations of the data, or to a possible underestimate of the
theoretical errors, an interesting aspect of these anomalies lies in the fact that they all seem
to point in the direction of a possible Lepton Flavour Universality Violation (LFUV) in
the interactions mediating the processes. Moreover, another LFU ratio has been measured
recently, corresponding again to the quark decay b→ c`ν` [16]:

RJ/ψ =
B(Bc → J/ψτν̄τ )

B(Bc → J/ψµν̄µ)
, (1.3)

around 2σ above the SM predictions.
For what concerns the RK and RK∗ anomaly, the situation becomes even more intrigu-

ing for three reasons. First of all, the process is mediated by a Flavour Changing Neutral
Current (FCNC). Since such a current cannot arise at tree level in the SM, the suppres-
sion due to the loop structure implies that the possible contribution of NP effects might
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arise in a significant way in this process. Furthermore, it can be shown that in the ratios
RK(∗) the hadronic uncertainties cancel to a very large extent [8, 17–23] 1, thus reducing
substantially the uncertainty on the theoretical expectations. Finally, these deviations con-
cerning the branching ratios are only a part of the anomalies observed in b→ sµµ decays.
Contrary to b → c`ν transitions, there are many other observables that have been mea-
sured, especially concerning the angular distribution of the decay products in the decays
B → K∗(→ Kπ)µµ and Bs → φ(→ KK)µµ, and some observables (the so-called P2 and
P ′5 [24–26]) have featured deviations from SM expectations in addition to the LFUV ratios
quoted above [27–31]. Many model-independent analyses of these anomalies in b → s``

have already been performed in terms of effective field theories corresponding to the SM
at the b-quark mass scale, supplemented with the additional lowest dimensional non-SM
operators [18–23, 32–36]. They are able to accommodate all the deviations observed in
b→ s`` in terms of a significant shift of the short-distance Wilson coefficient Cµ9 , possibly
together with shifts in other Wilson coefficients such as Cµ9′ or C

µ
10. Remarkably, the same

shift is needed to explain the anomalies in the angular observables in B → K∗µµ and the
LFUV ratios of branching ratios RK(∗) .

While model-independent analyses are powerful tools to understand the pattern of the
anomalies in terms of NP contributions already felt at low energies, they are not able to
provide a dynamical explanation for these deviations. This requires us to choose specific
scenarios of physics Beyond the Standard Model (BSM) and try to see if they allow for such
anomalies. Several models have been proposed to account for RK(∗) and RD(∗) simultane-
ously. Most of the successful candidates can be cast in two sets. One set includes models
that try to reproduce the presence of LFUV by assuming that the relevant processes are
mediated by leptoquark particles [37–40]. In the other set the process is mediated by heavy
exotic gauge bosons, whose couplings depend on the generation. In this article, we analyse
a model falling in the latter category, and corresponding to a specific version of the so-called
331 models [41].

331 models constitute one of the simplest extensions of the SM. The gauge group is
extended from the SM gauge group SU(3)C × SU(2)L × U(1)Y to the group SU(3)C ×
SU(3)L × U(1)X . These models experience thus two stages of breaking: at a heavier scale
ΛNP , the extended group is broken down to the SM gauge group, for which electroweak
symmetry breaking occurs at the lower scale ΛEW . Phenomenologically, these models
feature heavy gauge bosons (W ′, Z ′) as well as an extended Higgs sector triggering the two
spontaneous breakdowns, leading to heavy scalar/pseudoscalar bosons (H, A), with electric
charges depending on the implementation of the model.

In the most studied version [42–48], one simply extends each SU(2)L doublet to one of
the two fundamental representations of SU(3)L, namely either 3 or 3̄, without introducing
any additional family. Furthermore, this assumption is taken together with the requirement
of cancellation of chiral anomalies, that prescribes that the number of triplets is equal to
the number of antitriplets. The three lepton families are then forced to belong to the same

1The same cancellation does not occur for RD(∗) due to the presence of the heavy lepton τ in the final
state.
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fundamental representation of the group, hence implying the family-independence of the
couplings with gauge bosons. This in turn prevents any LFUV at the level of the gauge
couplings to the leptons.

Another version of the 331 model, partially analysed in Refs. [49, 50], extends the
lepton sector by introducing two additional generations. With this assumption, one ends
up with a lepton generation that transforms differently compared to the others, and hence
presents different couplings with the gauge bosons; this situation suffices to guarantee the
presence of LFUV. Two, rather than one, additional lepton generations, are required to
preserve anomaly cancellation. We will focus on this version of the 331 model, and we
will study if it can reproduce the anomalies observed in b → s`` processes under simple
assumptions: LFUV is present and dominated by neutral gauge boson contributions, there
is no significant Lepton Flavour Violation (LFV) of the form b → s`1`2, the model should
not yield too large contributions to BsB̄s mixing. It turns out that the model is then able
to reproduce scenarios with large contributions to (Cµ9 , C

µ
10) in good agreement with global

fit analyses of b→ s``.
The paper is organised as follows: in section 2 we review the main features of our

model, and justify our choices compared to the minimal 331 models more often studied
in the literature. In section 3 we analyse the gauge boson-mediated contributions arising
for the process b → s``, pointing out the arising of LFUV in the couplings. In section 4
we compare these contributions with the global analyses performed in Refs. [18, 19]. In
section 5, we examine other simple phenomenological constraints on the model for the gauge
boson contributions considered here, in particular BsB̄s mixing. In section 6 we conclude
and discuss further extensions of the model, for instance concerning LFUV in RD(∗) . Finally,
the appendices are devoted to various computations concerning the spectrum and couplings
of our model.

2 Features of the 331 model

Starting from the gauge group SU(3)C×SU(3)L×U(1)X (with gauge couplings gS , g, gX),
the model will undergo two Spontaneous Symmetry Breakings (SSB). The first one occurs
at an energy scale ΛNP and allows to recover the SM gauge group. The subsequent one,
at energy scale ΛEW, reproduces the Electroweak Symmetry Breaking (EWSB) of the SM.
We assume that ΛNP � ΛEW, and introduce a parameter ε = ΛEW/ΛNP keeping track of
the order of magnitude of the NP contributions of the model.

When enlarging the SM gauge group, embedding it into the broader SU(3)C×SU(3)L×
U(1)X group, there are a few general requirements to be obeyed:

• the model should contain representations consistent with the SM quantum numbers
and should have no anomalies, which sets powerful constraints on the choice of rep-
resentations for the fermions [45],

• it should exhibit a Higgs sector able to trigger the two stages of spontaneous symmetry
breaking (breaking down to the SM group and electroweak symmetry breaking) and
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to generate masses with a hierarchy in agreement with the observations (no light
particles apart from the SM ones) [46].

For our particular purposes, we will also require that the lepton generations are not em-
bedded equally into SU(3)L representation, in order to be able to generate LFUV at the
level of the interactions.

2.1 Choice of β

We start by discussing the generators of the SU(3)L group and its connection with the SM
gauge group. Leaving aside the case of SU(3)C, that presents no differences with respect to
the SM, the generators of the SU(3)L gauge group are indicated with T̂ 1 · · · T̂ 8. Since the
generator of the U(1)X group must commute with the generators of SU(3)L, it has to be
be proportional to the identity in the space referred to the representation of SU(3)L. The
normalisation of the generators is Tr[T̂ i T̂ j ] = δij/2, and 1 = diag(1, 1, 1) is the identity
matrix. We define the U(1)X generator as T̂ 9 = 1/

√
6, since this definition implies the

same normalisation relation as the other eight generators.
We can then identify the hypercharge operator Ŷ in terms of the generators of the

new gauge group, by requiring that Ŷ commutes with all the generators of SU(2)L, which
forces it to have only terms proportional to T̂ 8 and to the U(1)X generator. Naming X the
quantum number associated with U(1)X , we define

Ŷ

2
= βT̂ 8 +X1 (2.1)

where T̂ 8 = 1/2 λ̂8 = 1/(2
√

3) diag(1, 1,−2). With λ̂i we indicate the Gell-Mann matrices.
With this definition of the hypercharge, the electric charge operator reads

Q̂ = aT̂ 3 +
Ŷ

2
= aT̂ 3 + βT̂ 8 +X1 (2.2)

where T̂ 3 = 1/2 λ̂3 = 1/2 diag(1,−1, 0). The electric charge is defined in general as a linear
combination of the diagonal generators of the group, where the value of the proportionality
constant a and β distinguishes different 331 models.

In order to obtain isospin doublets which embed SU(2)L×U(1)Y into SU(3)L×U(1)X ,
we set a = 1. The way in which the SM electroweak gauge group is embedded in SU(3)L×
U(1)X is encoded in the parameter β, which controls the relation between the hypercharge
and the T̂ 8 generator of SU(3)L. In order to restrict β we could demand that no new
particle introduced in the model has exotic charges (i.e. different from the SM ones). Let
us see how this condition operates when fermions belong to a triplet or an anti-triplet of
SU(3)L. After the first stage of symmetry breaking at the scale ΛNP, the SU(3)L ×U(1)X
representations of the fermions are broken down to SU(2)L × U(1)Y representations as
follows

(3, x) →
(
2,

β√
3

+ 2x

)
+

(
1,− 2β√

3
+ 2x

)
(3̄, x) →

(
2,− β√

3
+ 2x

)
+

(
1,

2β√
3

+ 2x

)
(2.3)
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As just shown in Eq. (2.3), both the triplet and the anti-triplet representation of SU(3)L are
broken down to a doublet plus a singlet of SU(2)L. Let us consider the case of the quarks.
We will choose to identify the first two components of the triplet (or anti-triplet) with the
SM doublet: their charges acquire the SM values only by setting the U(1)Y hypercharges
to the SM values, that is ±β/

√
3 + 2x = 1/3. The last entry of the triplet (or antitriplet)

will be an additional, massive, fermion (called “exotic” in the following), with an electric
charge ∓

√
3/2β + 1/6, that becomes either 2/3 or -1/3 only if we choose β = ∓1/

√
3 2.

One can easily check that the same discussion also holds in the case of the leptons, with a
similar outcome [42].

In this work, we will pick the particular value

β = −1/
√

3 (2.4)

It can be related to the choice β = 1/
√

3 by changing all the representations for their
conjugates, and taking the opposite sign for the UX(1) charges. We will thus have the
following definition of the electric charge operator

Q̂ = T̂ 3 − 1√
3
T̂ 8 +X1 (2.5)

2.2 Fields and representations

In the following, we label the SM fermions with lower cases and the exotic ones with up-
per cases, choosing letters recalling their electric charge assignments. Using the notation
(SU(3)C, SU(3)L, UX(1)) while referring to the representations of the particles, we intro-
duce the following fermionic content, which ensures the cancellation of the anomalies but
allows for different representations for the three lepton generations, and thus potential
LFUV effects (see also App. A for a summary of the representations chosen).

For the left-handed components, we introduce [47–50]

• three generations of quarks

QLm =

 dLm
−uLm
BL
m

 ∼ (3, 3̄, 0), m = 1, 2 QL3 =

uL3dL3
TL3

 ∼ (3, 3,
1

3
); (2.6)

• five generations of leptons

`L1 =

 e−L1

−νL1
E−L1

 ∼ (1, 3̄,−2

3
), `Ln =

 νLn
e−Ln
N0L
n

 ∼ (1, 3,−1

3
), n = 2, 3

`L4 =

N0L
4

E−L4

P 0L
4

 ∼ (1, 3,−1

3
), `L5 =


(
E−R4

)c
N0L

5(
e−R3

)c
 ∼ (1, 3,

2

3
).

(2.7)

2Let us recall that other common values chosen in the literature, β = ±
√
3, while maintaining the SM

charge for the SU(2)L doublet, introduce exotic electric charges for the SU(2)L singlets (5/3 and -4/3).
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The superscripts refer to the charge and the chirality of the fields. No positively charged
leptons have been introduced in the triplets. Indeed, they would only appear in `L5 , but
we identify them with the charge conjugate of the right-handed component of E−4 and e−3 .
This identification avoids the presence of charged exotic particles with masses of the order
of the electroweak scale, which have not been observed 3.

For the right-handed components, we do not consider right handed partners for neutral
particles, since they would be pure singlets with respect to the whole gauge group and of
no relevance in our analysis (they should be added to discuss the neutrino mass matrix,
which is beyond the scope of this article). We define

• the quark fields

dR1,2,3 ∼ (3, 1,−1/3) BR
m ∼ (3, 1,−1/3), m = 1, 2

uR1,2,3 ∼ (3, 1, 2/3) TR3 ∼ (3, 1, 2/3)
(2.8)

• the charged lepton fields

e−R1,2 ∼ (1, 1,−1), E−R1 ∼ (1, 1,−1) (2.9)

As already indicated, the right-handed parts of e−3 and E−4 are not singlets, but belong to
the lepton triplet `L5 .

This particle content enables the cancellation of chiral anomalies. For instance, as
discussed in Sec. 1, it is easy to see that the number of left-handed fermion triplets is equal
to the number of left-handed fermion anti-triplets (taking into account that the quark fields
are counted three times more than the lepton ones due to colour). Minimal 331 models also
exhibit the anomaly cancellation by having different SU(3)L representations for the three
quark generations, but having the same representation for the three lepton generations
prevents these minimal models from exhibiting LFUV. More details on the requirements
imposed by the cancellation of anomalies can be found in App. C.

It proves easier to discuss the spectrum of the theory after introducing the flavour vec-
tors gathering fields with the same electric charge (for simplicity, we leave out the neutrino
fields)

D =


d1

d2

d3

B1

B2

 , U =


u1

u2

u3

T3

 , f− =


e−1
e−2
e−3
E−1
E−4

 . (2.10)

We also group the SU(3)L gauge bosons as

Wµ = W a
µT

a =
1

2

W
3
µ + 1√

3
W 8
µ

√
2W+

µ W 4
µ − iW 5

µ√
2W−µ −W 3

µ + 1√
3
W 8
µ W

6
µ − iW 7

µ

W 4
µ + iW 5

µ W 6
µ + iW 7

µ − 2√
3
W 8
µ

 (2.11)

3We discuss the structure of the fermion masses derived from the Yukawa interactions between scalar
and fermions in App. B, and in particular the masses of the charged leptons in App. B.4.
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and introduce

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ) V ±µ =
1√
2

(W 6
µ ∓ iW 7

µ) Y 0(0?)
µ =

1√
2

(W 4
µ ∓ iW 5

µ) (2.12)

The values of the charges of the Vµ and Yµ bosons depend on the value of β (indeed, in the
case β = 1/

√
3, we would have V 0(0?)

µ and Y ±µ ). Let us observe that for β = 1/
√

3, W 4,5 are
both eigenstates of the charge operator with 0 eigenvalue, which allows the choice to use
them, rather than Y 0(0?) as independent degrees of freedom. We gather the interactions
between the gauge bosons and the charged fermions in App. D.

Summarising, we have chosen the particle content of the model in a way that allows
LFUV, but otherwise departs from the SM as little as possible. Fixing β = −1/

√
3 ensures

non-exotic charges for both SM and new fields in the spectra. Accommodating left-handed
quarks and left-handed leptons in triplets or anti-triplets of SU(3)L representations, while
assuming anomaly cancellation and LFUV simultaneously, forces an unequal number of
quark families and lepton families. We have allowed the new degrees of freedom to be
completely general, exception done for an identification in the fifth lepton generation and
the exclusion of right-handed partners for neutral particles, as justified above. This last
assumption implies that no Dirac mass terms can be built for neutral particles (i.e., neu-
trinos).

2.3 Symmetry breakings and spectrum

We are now in a position to discuss the two stages of symmetry breaking which will be
assumed to be triggered by (SU(3)C singlet) scalar fields acquiring non-vanishing vacuum
expectation values, in a way analogous to the SM. On the other hand, we remain as general
as possible for the representations under SU(3)L, thus allowing for several scalar fields with
different representations. The overall pattern of SSB is the following

SU(3)C × SU(3)L × U(1)X
χ, S1

ΛNP
SU(3)C × SU(2)L × U(1)Y

η, ρ, Sb,c

ΛEW
U(1)EM

The SU(3)L symmetry breaking is accomplished through a triplet χ and a sextet S1. The
EWSB is accomplished by means of two triplets η, ρ and two sextets Sb,c. Details on the
structure of the vacuum expectation values of these fields and on their quantum numbers
can be found in App. B.

There are five gauge fields that acquire a mass of the order of ΛNP, whereas the three
remaining gauge fields will become massive at the electroweak scale. At the first SSB, the
neutral and charged gauge bosons, W 4,5 and V ±, acquire a mass, whereas the two neutral
gauge bosons X,W 8 yield a massive neutral gauge boson Z ′ and a massless one B, with a
mixing angle θ331: (

Z ′

B

)
=

(
cos θ331 − sin θ331

sin θ331 cos θ331

)(
X

W 8

)
, (2.13)

The angle θ331 can be found by singling out the Z ′ field in the sector of the Lagrangian
including the masses of the gauge bosons, which stems from the covariant derivative in the
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Higgs Lagrangian. It yields

sin θ331 =
g√

g2 +
g2X
18

, cos θ331 = −
gX
3
√

2√
g2 +

g2X
18

. (2.14)

At the first stage of SSB, the mixing among neutral gauge bosons only involves X and
W 8, but not W 4,5 since these two classes of fields do not show the same EW quantum
numbers, which correspond then to the unbroken part of the group. This can be seen for
instance acting on them with the generator T3. After the EWSB, only the neutral gauge
boson identified with the photon remains massless, consisting of an admixture of B and
W 3 described by the weak angle θW . The two mixing angles obey the relation [42]

tan θW = −
√

3 cos θ331 , g = −gX tan θ331

3
√

2
. (2.15)

This is actually a very general feature of the 331 model, which can be written as cos θ331 =

β tan θW , with a deep relation with the pattern of EWSB (see for instance Eq. (2.28)
in Ref. [51] where the mixing angle is shifted by 90◦ with respect to our notation). In
particular, it is possible to write [42]

g2
X

g2
=

6 sin2 θW

1− (1 + β2) sin2 θW
. (2.16)

As sin2 θW is close to 0.25, the perturbativity condition imposes significant constraints on
the range of validity of the 331 models in the case of β = ±

√
3: the SU(3)L symmetry

breaking must occur at most at a few TeV [52]. This problem of perturbativity does
not affect our case β = −1/

√
3, allowing our model to have room for a higher scale of

SU(3)L symmetry breaking and significantly heavier gauge bosons, and providing a good
justification to expansions in ε = ΛEW/ΛNP.

While the photon consists of an admixture of the W 3 and B fields only, the neutral
gauge boson Z that acquires mass from EWSB includes additional components from the Z ′

and W 4 fields. Nevertheless, the diagonalisation of the neutral gauge boson mass matrix
after both stages of symmetry breaking shows that the components along the exotic fields are
suppressed by ε2 or higher. We will see in the following that the Z contribution to b→ s``

involves a b → s transition already suppressed by ε2, and we will neglect the additionally
ε2-suppressed contributions to the transition coming from the Z ′ and W 4 components of
the Z mass eigenstate (which we will treat as consisting only of W 3 and B at this order).

The most general Yukawa Lagrangian that can be built with the scalar fields provides
a (heavy) mass to all the exotic particles after the SU(3)L SSB, in agreement with phe-
nomenological expectations. The mass matrices arising for the charged fermions after the
two SSBs are discussed in Apps. B.3 and B.4. Performing a singular value decomposition
of the up-type and down-type mass matrices yields the definition of the unitary rotation
matrices relating (unprimed) interaction eigenstates and (primed) mass eigenstates

DL = V (d)D′L , UL = V (u)U ′L , DR = W (d)D′R , UR = W (u)U ′R . (2.17)
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Due to the presence of the exotic fermions, these flavour matrices are 4 × 4 (for up-type
quarks) or 5×5 (for down-type quarks) unitary matrices. If we perform this diagonalisation
order by order in ε, we observe the following pattern for the mixing matrices V (u,d) and
W (u,d)

• at order ε0, the SM fields are massless and they only mix among themselves; the
massive exotic particles mix also only among themselves;

• at order ε1, there is only mixing between SM and exotic particles;

• the ε2 correction yields a mixing among all the particles of the same flavour vector.

This particular structure can be understood by diagonalising the mass matrix using pertur-
bation theory in powers of ε. Since the mass matrix for the SM particles is zero at O(ε0),
all SM particles are massless and degenerate at this order and they mix among themselves,
whereas (heavy) exotic particles also mix among themselves. The normalisation of the
eigenvectors require on the other hand that the O(ε1) correction to an eigenvector is or-
thogonal to its O(ε0) expression, leading to a O(ε1) correction to the rotation matrix that
mixes SM and exotic fields (but not SM fields alone, or exotic fields alone).

A remark is in order regarding the structure of the CKM matrix. This is given by the
W+ coupling with quarks, which can be written as (see Eq. (D.2))

g√
2
W+
µ Ū

LγµVDL =
g√
2
W+
µ Ū

Lγµ


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

DL = V CKM
mn

g√
2
W+
µ Ū

′L
m γ

µD′Ln (2.18)

with the 4× 5 equivalent of the CKM matrix

V CKM = V (u)†VV (d). (2.19)

Despite V (u,d) being unitary, the presence of V yields a non-unitary V CKM in the 331
model. If we want to adequately reproduce the SM, we should however recover a unitary
CKM matrix if we remain at low energies (i.e. leading order in ε) and consider only the
flavour subspace of the SM particles. As indicated above, at this order, the diagonalisation
of the fermion mass terms occurs in a block-diagonal way: the mixing matrices V (u) and
V (d) consist in two unitary blocks, one mixing the SM particles among themselves, and the
other one mixing the exotic ones among themselves. Furthermore, V reduces to 13×3 in the
SM flavour subspace. Therefore, at leading order in ε, the 3 × 3 SM block of V CKM will
stem from the product of the two unitary 3 × 3 SM subspaces of V (u) and V (d), ensuring
that it is unitary at this order (this obviously does not mean that V CKM remains unitary
at all orders in ε, and this 331 model does indeed generate small deviations of unitarity for
V CKM ).

A similar discussion could be held in the lepton sector, with the singular value decom-
position of the charged lepton mass matrix leading to the definition of 5×5 unitary rotation
matrices between interaction and mass eigenstates

EL = V (e)E′L , ER = W (e)E′R . (2.20)
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The PMNS matrix can be built by combining unitary rotation matrices V (e) and V (ν). A
discussion of the PMNS matrix would require a discussion of the neutrino spectrum, which
is outside the scope of the present article.

3 NP contribution to b→ s``

3.1 Setting the problem

Having introduced a non-minimal 331 model with a SSB pattern leading to a phenomeno-
logically viable spectrum, we will now investigate the consequences of the different repre-
sentations for the lepton fields for LFUV in b→ s``. We want to determine if this model is
able to reproduce the pattern of deviations indicated in the current global analyses of this
rare decay [32–36].

These analyses are performed in the framework of the effective Hamiltonian at the
b-mass scale, separating short- and long-distance physics between Wilson coefficients and
local operators [53, 54]:

Heff = −4GF√
2
VtbV

∗
ts

∑
i

CiOi (3.1)

The main operators of interest for this discussion are the following:

O`9 =
e2

16π2
(s̄γµPLb)(¯̀γµ`)

O`10 =
e2

16π2
(s̄γµPLb)(¯̀γµγ5`)

O`9′ =
e2

16π2
(s̄γµPRb)(¯̀γµ`)

O`10′ =
e2

16π2
(s̄γµPRb)(¯̀γµγ5`).

(3.2)

where PL,R = (1∓γ5)/2 and the fields are understood as mass eigenstates. In the SM, only
O`9 and O`10 are significant, with values of the Wilson coefficients C`9 ' 4.1 and C`10 ' −4.3

at the scale µ = mb, whereas the two other operators are ms/mb suppressed due to the
chirality of the quarks involved.

The analyses of the b→ s`` observables (both LFUV observables and angular observ-
ables for b → sµµ and b → s``) point towards the fact that the pattern of deviations
observed is consistent with a large NP short-distance contribution to Cµ9 (around 1/4 of the
SM contribution). More generally, scenarios with NP contributions in Cµ9 only, in (Cµ9 , C

µ
10)

or in (Cµ9 , C
µ
9′) are particularly favoured. On the other hand, the LFUV observables agree

well with the absence of significant NP contributions to any electronic Wilson coefficients
Cei . Other operators suppressed in the SM, but allowed in NP models, could also be con-
sidered, in particular scalar and pseudoscalar operators. However, it turns out that these
additional operators are not needed to improve the accuracy of the fit to the data (in other
words, their fitted values are constrained to remain small) [18, 19, 32].

3.2 Gauge boson contributions

In view of these elements, we will assume that the complex pattern of EWSB of our 331
model in the scalar potential ensures that the scalar/pseudoscalar contributions to b→ s``

are small and we will focus on the vector/axial contributions which will be assumed to
be the larger ones. These contributions can only come from the neutral gauge bosons
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Z ′, Z,A,W 4,5. We will consider contributions at the lowest order in ε only, and we will
focus only on the non SM contribution to the Wilson coefficients (in other words, from now
on Ci = CNPi ).

Let us start with the interaction of Z ′ and Z with the right-handed quarks. These
interactions are proportional to the identity in flavour space (see Eqs. (D.5) and (D.6)), so
no flavour change can arise, at any order in ε. We conclude that Z ′ and Z, do not contribute
to C ′9,10 in the process b→ s`+`−. Only contributions to C9,10 are possible.

In the case of the heavy gauge boson Z ′, a O(ε2) suppression compared to the SM con-
tribution comes from the heavy mass in the propagator of the gauge boson. The restriction
of the interaction matrix to the SM particles is not proportional to the identity matrix in
the interaction eigenbasis, as it can be seen in Eq. (D.8). Therefore, the flavour-changing
transition b → s mediated by Z ′ arises already after reexpressing the interaction in the
mass eigenbasis using the leading order ε0 rotation matrix. The overall suppression of the
Z ′ contribution is thus O(ε2). Starting from Eq. (D.8), reexpressing the flavour eigenstates
in the multiplets Eqs. (2.10) in terms of mass eigenstates, and eliminating the coupling g by
means of Eq. (2.15), we can rewrite the leading-order Z ′ contribution in terms of effective
operators as

Heff ⊃
g2
X

54 cos2 θ331

1

M2
Z′
V

(d)∗
3k V

(d)
3l

4π

α
(3.3){[

−1

2
V

(e)∗
1i V

(e)
1j +

1− 6 cos2 θ331

2
W

(e)∗
3i W

(e)
3j +

1 + 3 cos2 θ331

4
δij

]
Oklij9 +

+

[
1

2
V

(e)∗
1i V

(e)
1j +

1− 6 cos2 θ331

2
W

(e)∗
3i W

(e)
3j +

−1 + 9 cos2 θ331

4
δij

]
Oklij10

}
.

where the indices k, l refer to the SM generations of the quark mass eigenstates (assuming
k 6= l), while i, j refer to the SM lepton mass eigenstates (either from the same or different
generations). The effective operators Oklij9,10 are defined exactly as in Eq. (3.2), corresponding
to the (q̄k ql)(¯̀

i `j) flavour structure. The fine-structure constant is α = e2/(4π). The V
and W matrices provide the mixing matrices arising from the diagonalisation of the EWSB
mass terms in the subspace of left-handed and right-handed SM fields. We stress that these
rotations are related but cannot be identified with the CKM or PMNS matrices and they
can be considered only at order ε0 for our purposes (we have exploited their unitarity at that
order for the δij contributions). We notice that the presence of the mixing matrices yields
LFUV couplings, and moreover a leptonic i 6= j contribution might arise, corresponding
to lepton-flavour violating transitions b → s`+`′−, with different leptons in the final state,
` 6= `′, which is a frequent feature of models generating LFUV couplings [55].

In the case of the SM gauge boson Z, there is no b→ s transition allowed at order ε0,
since the 3×3 unitary rotation matrices restricted to the SM subspace cancel, following the
same arguments as the discussion of the unitarity of the CKM matrix at the end of Sec. 2.3.
The transition does not arise at order ε1 either, since there is no correction to the mixing
between SM particles at this order. The mixing between SM particles, leading to potential
FCNC currents, starts only at order O(ε2). Since there is no suppression due to the mass
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of the intermediate gauge boson here, we conclude that the NP contribution from the SM
gauge boson Z starts at O(ε2), the same order as the Z ′ contribution, although for different
reasons. Indeed, starting from the interaction eigenbasis in Eq. (D.9) and switching to the
mass eigenstates, we can express the part of interaction relevant to the process as

LZ ⊃ g cos θWZµ

{1 + cos2 θ331

2

∑
λ

V̂
(d)∗
λk V̂

(d)
λl D̄

′L
k γ

µD′Ll

+
−1 + 3 cos2 θ331

2
f̄ ′−Lγµf ′−L + 3 cos2 θ331f̄

′−Rγµf ′−R
}
, (3.4)

V̂ (d) represents the O(ε1) correction to the rotation matrix V (d) between interaction and
mass eigenstates for the left-handed down sector. As stated earlier, V̂ (d)

mn = 0 if m and
n are both SM or both exotic, which means that the sum over λ is restricted to exotic
components here (as k, l are SM components). Since the NP quark coupling to the Z gauge
boson is already of order O(ε2), we need only the O(ε0) coupling to the charged leptons.
Due to the unitary block structure of the mixing matrix at this order and the structure of
the Z coupling to SM leptons (proportional to identify), we see that the rotation matrices
cancel out, leading to the diagonal structure indicated in the leptonic sector of Eq. (3.4).
In terms of effective operators and adopting the same notation of Eq. (3.3), Eq. (3.4) can
be rewritten as

Heff ⊃
cos2 θW (1 + cos2 θ331)

8

g2

M2
Z

4π

α
(3.5)

×
∑
λ

V̂
(d)∗
λk V̂

(d)
λl δij

{
(−1 + 9 cos2 θ331)Oklij9 + (1 + 3 cos2 θ331)Oklij10

}
,

We observe that the coupling is the same for all the light leptons, i.e. non-universality does
not arise at order ε2 in the interaction with Z. By comparing Eq. (3.3) and Eq. (3.6), we
explicitly see that although the non standard coupling originated from the Z boson are
suppressed of order ε2 with respect to the ones of the Z ′ boson, the contributions are the
same order, due to the additional ε2 suppression due to the Z ′ propagator.

There are no further contributions to be considered from the other neutral gauge bosons.
Indeed, for the photon A, we see from Eq. (D.7) that the interaction with down-type quarks
is proportional to the identity matrix in flavour space, so that there are no FCNC from
the photon interaction. Concerning W 4,5, we see from Eqs. (D.3) and (D.4) that these
gauge bosons always couple a SM particle with an exotic one in the interaction basis. In
order to obtain a W 4,5-mediated b→ s, we need to consider the interaction with one of the
exotic interaction eigenstates, which will contain a SM mass eigenstate due to the rotation
matrix V (d). As indicated earlier, this occurs only at order O(ε). Furthermore, the process
is mediated by a heavy gauge boson, adding a further O(ε2) suppression. Therefore the
W 4,5 contributions to the process are of order O(ε3) and can be neglected compared to the
O(ε2) NP contributions from Z and Z ′ gauge bosons.
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3.3 Wilson coefficients and lepton-flavour violation

The joint effect of the two O(ε2) contributions from Z ′ and Z processes in our 331 model
can be rewritten introducing the quantities

fZ
′

= − 1

2
√

2GFVtbV
∗
ts

4π

α

1

3− tan2 θW

g2

M2
Z′
V

(d)∗
3k V

(d)
3l

fZ = − 1

2
√

2GFVtbV
∗
ts

4π

α

cos2 θW (3 + tan2 θW )

24

g2

M2
Z

∑
λ

V̂
(d)∗
λk V̂

(d)
λl

λ
(L)
ij = V

(e)∗
1i V

(e)
1j λ

(R)
ij = W

(e)∗
3i W

(e)
3j

(3.6)

where θ331 and gX have been expressed in terms of θW and g by using Eq. (2.15). In order
to focus on b → s transitions, let us set the quark indices to k = 2 and l = 3 and rename
coefficients and operators by removing the corresponding labels. We get

Heff ⊃ Cij9 O
ij
9 + Cij10O

ij
10 (3.7)

where the operators Oij9,10 denote operators with given lepton flavours i, j, with the same
normalisation as in Eq. (3.2). We obtain the following NP contributions to the Wilson
coefficients

Cij9 = fZ
′
[
−1

2
λ

(L)
ij +

1− 2 tan2 θW
2

λ
(R)
ij +

1 + tan2 θW
4

δij

]
+ fZ(−1 + 3 tan2 θW )δij

Cij10 = fZ
′
[1

2
λ

(L)
ij +

1− 2 tan2 θW
2

λ
(R)
ij +

−1 + 3 tan2 θW
4

δij

]
+ fZ(1 + tan2 θW )δij

(3.8)

We see that LFUV contributions arise from the Z ′ contribution, whereas the Z contribu-
tion does not depend on the lepton flavour. In addition to the violation of lepton-flavour
universality, our model allows for lepton-flavour violation, such as b → s`′+`− for `′ 6= `.
However, since there have been no experimental indications of such processes up to now,
we will assume that these processes are suppressed, and for simplicity, we will set these
coefficients to 0 when the two lepton indices are different, for any i 6= j. Imposing this, we
get the system f

Z′
[
−λ(L)

ij + (1− 2 tan2 θW )λ
(R)
ij

]
= 0

fZ
′
[
λ

(L)
ij + (1− 2 tan2 θW )λ

(R)
ij

]
= 0

if i 6= j; (3.9)

The trivial solution fZ′ = 0 has to be discarded, since it would remove the only source of
LFUV, i.e. the coupling of the charged leptons to Z ′. The alternative solution is

λ
(L)
ij = λ

(R)
ij = 0, if i 6= j. (3.10)

Due to the definitions of λ(L,R)
ij in Eq. (3.6), this solution implies that V (e)

1I can be nonzero

for a single index I among 1,2,3, and the same holds for a single J among 1,2,3 for W (e)
3J

4.

4Assuming e.g. I = 1, that is V (e)
11 6= 0, Eq. (3.10) implies V (e)∗

11 V
(e)
12 = V

(e)∗
11 V

(e)
13 = 0, that is V (e)

12 = 0

and V (e)
13 = 0.
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In other words, we require that the left-handed interaction eigenstate of the first generation
and the right-handed interaction eigenstate of the third generation are also mass eigenstates.
Due to the unitarity of these 5× 5 matrices, we have then

λ
(L)
I ≡ λ

(L)
II = |V (e)

1I |
2 = 1− |V (e)

14 |
2 − |V (e)

15 |
2 (3.11)

λ
(R)
J ≡ λ

(R)
JJ = |W (e)

3J |
2 = 1− |W (e)

34 |
2 − |W (e)

35 |
2 (3.12)

which means that they must both stay within the [0,1] range, keeping in mind that V and
W entries on the right hand side of Eqs. (3.11)-(3.12) are of order ε. In the following, and
for simplicity of notation, repeated indices (like II or ee) will be denoted with a single
index (I or e).

We now consider two different scenarios:

• Case A: the index I for which the rotation matrix element V (e)
1I is nonzero is the same

as the index J for which the element W (e)
3J is non-vanishing;

• Case B: the two indices corresponding to non-vanishing matrix elements are different.

3.3.1 Case A

If we denote with J the generation for which both entries for the rotation matrices are
nonzero, we get

CJ9 = fZ
′
[
−1

2
λ

(L)
J +

1− 2 tan2 θW
2

λ
(R)
J +

1 + tan2 θW
4

]
+ fZ(−1 + 3 tan2 θW )

CJ10 = fZ
′
[1

2
λ

(L)
J +

1− 2 tan2 θW
2

λ
(R)
J +

−1 + 3 tan2 θW
4

]
+ fZ(1 + tan2 θW )

(3.13)

We get identical Wilson coefficients for the other two generations i 6= J , for which the
entries in the rotation matrices vanish,

Ci9 = fZ
′ 1 + tan2 θW

4
+ fZ(−1 + 3 tan2 θW )

Ci10 = fZ
′−1 + 3 tan2 θW

4
+ fZ(1 + tan2 θW ).

(3.14)

Inverting these relations we get

fZ
′

=
(1 + tan2 θW )Ci9 + (1− 3 tan2 θW )Ci10

2 tan2 θW (1− tan2 θW )

fZ =
(1− 3 tan2 θW )Ci9 + (1 + tan2 θW )Ci10

8 tan2 θW (1− tan2 θW )

λ
(L)
J fZ

′
= Ci9 − Ci10 − CJ9 + CJ10 λ

(R)
J fZ

′
=
Ci9 + Ci10 − CJ9 − CJ10

−1 + 2 tan2 θW
.

(3.15)

We have now to identify whether the electron corresponds to the index J or not. As
discussed in Sect. 3.1, we set to zero the corresponding NP contributions to the effective
Hamiltonian, Ce9,10, on the basis of phenomenological constraints.
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Figure 1: Regions allowed for the Wilson coefficient Cµ9 and Cµ10 (abscissa and ordinate,
respectively) in scenarios A (left) and B (right). The thick black intervals correspond to
the 1σ interval for one-dimensional scenarios from Ref. [32].

• If we identify the electron with another index i 6= J (identifying the electron with
a generation with vanishing entries), we must have Ci9,10 = 0. From Eq. (3.15), we
obtain that fZ′ = 0, so that no LFUV could be generated. We have thus to discard
this possibility.

• If we identify the electron with the index J (identifying the electron with the genera-
tion with a non-vanishing entry), we set the corresponding NP Wilson coefficients to
zero. In this case, Eq. (3.15) yields constraints on the possible values for the muon
Wilson coefficients Ci9,10 = Cµ9,10 (also equal to Cτ9,10):

Cµ10 = Cµ9 ×
2 tan2 θW (tan2 θW − 1) + λ

(L)
e (tan2 θW + 1)

2 tan2 θW (tan2 θW − 1) + λ
(L)
e (3 tan2 θW − 1)

(3.16)

Cµ10 = −Cµ9 ×
2 tan2 θW (tan2 θW − 1) + λ

(R)
e (2 tan4 θW + tan2 θW − 1)

2 tan2 θW (tan2 θW − 1)− λ(R)
e (6 tan4 θW − 5 tan2 θW + 1)

Since 0 ≤ λ(L)
e , λ

(R)
e ≤ 1, these expressions yield a wedge in the (Cµ9 , C

µ
10) plane. The

constraint from λ(L) is the more stringent one, imposing the ratio Cµ10/C
µ
9 to remain

between -1.75 and -1 (we use sin2 θW ' 0.235), as indicated as a grey wedge on the
left-hand side of Fig. 1.

In summary, in case A, we find that the electron has to be identified with the generation
with a non-vanishing entry in the rotation matrices V and W . Muons and taus give the
same NP contribution to the Wilson coefficients C9 and C10 Eqs. 3.16, imposing that
|Cµ10| ≥ |C

µ
9 |.
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3.3.2 Case B

In case B, we have two different indices I 6= J such that V (e)
1I 6= 0 and W (e)

3J 6= 0 (so that
λ

(L)
I 6= 0 and λ

(R)
J 6= 0). The system of equations defining the Wilson coefficients, Eqs.

(3.8), becomes

CI9 = fZ
′
[
−1

2λ
(L)
I + 1+tan2 θW

4

]
+ fZ(−1 + 3 tan2 θW )

CI10 = fZ
′
[

1
2λ

(L)
I + −1+3 tan2 θW

4

]
+ fZ(1 + tan2 θW )

CJ9 = fZ
′
[

1−2 tan2 θW
2 λ

(R)
J + 1+tan2 θW

4

]
+ fZ(−1 + 3 tan2 θW )

CJ10 = fZ
′
[

1−2 tan2 θW
2 λ

(R)
J + −1+3 tan2 θW

4

]
+ fZ(1 + tan2 θW )

(3.17)

Inverting with respect to fZ′ , fZ , λ(L)
J fZ

′
, λ

(R)
J fZ

′ we get

fZ
′

=
CI9 + CI10

2 tan2 θW
+

CJ9 − CJ10

1− tan2 θW
fZ =

CI9 + CI10

8 tan2 θW
+
−CJ9 + CJ10

4(1− tan2 θW )

λ
(L)
I fZ

′
= −CI9 + CI10 + CJ9 − CJ10 λ

(R)
J fZ

′
=
−CI9 − CI10 + CJ9 + CJ10

1− 2 tan2 θW

(3.18)

Moreover, if we denote K the remaining SM generation (K 6= I, J) we have the following
relationships

CK9 =
1

2
[CI9 + CI10 + CJ9 − CJ10] CK10 =

1

2
[CI9 + CI10 − CJ9 + CJ10] (3.19)

We still have not identified which of the I, J,K indices refers to the electron, muon, or
tau leptons:

• If we identify the electron with J , we set CJ9 = CJ10 = 0 and from the first and last
relations of Eq. (3.18) we get

λ
(R)
J = − 2 tan2 θW

1− 2 tan2 θW
< 0 (3.20)

leading to an inconsistency, since the λ must be non-negative.

• If we identify the electron with K, we set CK9 = CK10 = 0 and from Eq. (3.19) we get

CI9 = −CI10 = −1

2
fZ
′
λ

(L)
I CJ9 = CJ10 =

1

2
fZ
′
(1− 2 tan2 θW )λ

(R)
J (3.21)

which can be used in Eq. (3.18) to show that fZ = fZ
′

= 0, so that this solution can
be discarded.

• If we identify the electron with I, we set CI9 = CI10 = 0, the solutions Eq. (3.18)
become

fZ
′

=
CJ9 − CJ10

1− tan2 θW
fZ =

−CJ9 + CJ10

4(1− tan2 θW )

λ
(L)
I fZ

′
= CJ9 − CJ10 λ

(R)
J fZ

′
=

CJ9 + CJ10

1− 2 tan2 θW

(3.22)
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from which we can read the expressions for the λ:

λ
(L)
I = 1− tan2 θW ∈ [0, 1] λ

(R)
J =

CJ9 + CJ10

CJ9 − CJ10

1− tan2 θW
1− 2 tan2 θW

. (3.23)

leading to the following conditions on the non-vanishing NP Wilson coefficients

CJ10 = −CJ9 ×
1− tan2 θW + (2 tan2 θW − 1)λ

(R)
J

1− tan2 θW − (2 tan2 θW − 1)λ
(R)
J

(3.24)

CK9 = −CK10 = CJ9 ×
tan θ2

W − 1

tan θ2
W − 1 + (2 tan2 θW − 1)λ

(R)
J

We see that the value found for λ(L)
I = λ

(L)
e lies in the allowed interval [0, 1]. Fur-

thermore, requiring that λ(R)
J also remains in this interval yields a constraint on the

Wilson coefficients: if we identify the muon with K, we have the exact equality
Cµ10/C

µ
9 = −1, and if we identify the muon with J , the slope Cµ10/C

µ
9 is constrained

between -1 and -0.28 (using sin2 θW ' 0.235). These constraints are indicated in grey
on the right-hand side of Fig. 1.

In summary, in case B, we find that the electron generation must be identified with
the non-vanishing entry I in the rotation matrices V . Two possibilities can be considered
concerning the non-vanishing entry J in the rotation matrices W . If we identify J with
the muon generation, muons and taus have different NP contribution for the corresponding
Wilson coefficients C9 and C10, imposing that |Cµ10| ≤ |C

µ
9 |, the NP contribution to Cµ10

is different from zero, and Cτ9 = −Cτ10. If we identify J with the tau generation, one gets
again different NP contributions for the Wilson coefficients C9 and C10 for muons and taus,
the roles played by muons and taus are reversed, and thus one gets Cµ9 = −Cµ10. Both cases
yield thus NP contributions given by Eq. (3.24).

4 Comparison with global analyses

We perform a comparison between the 331 model contributions to the process b → s`+`−

and the global analysis of b→ s`` anomalies performed in Refs. [18, 19, 32] (similar results
were obtained in recent works from other groups, see Refs. [32–36]). In these works, the
authors pointed out scenarios in which NP contributions to the Wilson coefficients Cµ9(′),10

are favoured whereas no NP contributions occur for other Wilson coefficients (including all
the electronic ones). In particular they identified three specific one-dimensional scenarios
as particularly favoured:

• NP in Cµ9 = −Cµ9′ , with the 1σ interval [-1.18, -0.84]: this scenario cannot be described
in the framework of our non-minimal 331 model, where no FCNC arise for right-
handed quarks, meaning that Cµ9′ = 0 (see Sec. 3.2);

• NP in Cµ9 , within the 1σ interval [-1.27, -0.92]. From the discussion of the previous
section and Fig. 1, we observe that this scenario is allowed neither in scenario A nor
B.
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• NP in Cµ9 = −Cµ10, within the 1σ interval [-0.73, -0.48]. From the discussion of the
previous section and Fig. 1, we see that this scenario is allowed in both scenarios A
and B.

Our non-minimal 331 model appears to be able to account for the b → s`` anomalies
observed as far as we consider the Cµ9 = −Cµ10 case. More generally, it would be able to
reproduce other favoured values for the two-dimensional scenario (Cµ9 , C

µ
10) with negative

NP contributions to Cµ9 and positive to Cµ10 (see top-left plot in Fig. 1 in Ref. [32]).
For simplicity and illustration of the potential of our 331 model, we will focus here on

the one-dimensional (1D) scenario Cµ9 = −Cµ10 considered in Refs. [18, 32]. Imposing this
equality, we see that in both cases A and B we have λ(L)

e = 1− tan2 θW
5 and

Cµ9 = −Cµ10 = fZ
′ 1− tan2 θW

2
= − 1

VtbV
∗
ts

1− tan2 θW
3− tan2 θW

4π

α

M2
W

M2
Z′
V

(d)∗
3k V

(d)
3l [1D] (4.1)

so that NP contribution to Cµ9 is given by parameters of the 331 model included in fZ
′ ,

where the only unknown quantities areMZ′ and V
∗(d)

32 V
(d)

33 . These can be further constrained
by other processes, and in particular Bs meson mixing, as explained in the next section.

5 Phenomenological constraints on Z and Z ′ couplings

We have built our 331 model in order to generate vector/axial LFUV contributions to
b → s`` transitions. This has led us to assume that the dominant contributions for these
couplings (bs and µµ) came from the gauge bosons rather than the Higgs sector, and actually
that the dominant contributions came from anomalous couplings of the Z gauge boson as
well as tree-level exchanges of a Z ′ gauge boson. Even in this restricted setting, there are
additional constraints to be considered on these couplings from the phenomenological point
of view, as discussed in Refs. [42–44, 56, 57].

A first class of constraints for additional contributions from neutral gauge bosons comes
from the violation of unitarity in the CKM matrix. One has to consider the corrections to
the decay µ− → e−νµν̄e (as it defines the normalisation for all decays through GF ) as well
as the decays b, s, d→ ue−ν̄e (leading to |Vub|, |Vus| and |Vud| determinations assuming the
SM). This corresponds to box diagrams involving both W and Z or Z ′ bosons, as shown
in graphs (a) and (b) of Fig. 2. One can expect the Z ′ contribution to be small, as the
diagrams require to have a Z ′ coupling to the first generation, which is suppressed in our
model. On the other hand, the FCNC couplings of the Z to quarks occur (in principle)
between all down-type quarks, meaning that we need a detailed understanding of the O(ε)

mixing matrix V̂ (d), see Eq. (3.4), in order to compute this correction in our model. Such
a detailed knowledge might be obtained by a complete analysis of all flavour constraints on
our model, which is far beyond the scope of the present article.

In our model, both Z and Z ′ gauge boson give a tree level contribution to the Bs−Bs

mixing, as can be seen on Fig. 2. Contrary to the previous constraint, this one focuses only
5According to Eq. (3.11), λ(L)

I −1 = O(ε2), indicating that ε should be of the same order of magnitude as
tan θW in this scenario. Nevertheless, this estimate can be relaxed by the magnitude of the lepton Yukawa
couplings, on which λ(L)

I depends.
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Figure 2: Gauge contributions to the violation of unitarity of the CKM matrix in the
first row (for matrix elements determined leptonic and semileptonic processes) and to BsB̄s
mixing (see Refs. [56, 57]).

on the bs mixing, and can provide useful information in addition to the b → s`` decay.
As before, we restrict our discussion to contributions of order O(ε2), borrowing from the
results in Sec. 3.2. At this order, Z gives no contributions to the mixing. Indeed, the bsZ
vertex has a suppression of O(ε2), due to the structure of the unitary matrices needed to
obtain physical states. The contribution to Bs−Bs mixing will have two such vertices, and
hence be suppressed by a factor O(ε4). Concerning the Z ′ contribution, we only need to
take into account the O(ε2) suppression coming from the heavy gauge boson propagator,
since the bs vertex for this gauge boson is already mediated at O(ε0).

As discussed in Eq. (D.8), the relevant part of the interaction for Bs − Bs is thus (in
the interaction eigenbasis)

LZ′ ⊃
cos θ331

gX
Z ′µ

g2
X

3
√

6 cos2 θ331

D̄Lγµ

0 0 0

0 0 0

0 0 1

DL (5.1)
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Expressing in terms of effective operators of eigenstates and using Eq. (2.15), one obtains

Heff ⊃
g2
X

54M2
Z′ cos2 θ331

(V
∗(d)

3k V
(d)

3l )2(Dkγ
µDl)(Dkγ

µDl) =

=
8GF√

2(3− tan2 θW )

M2
W

M2
Z′

(V
∗(d)

3k V
(d)

3l )2(Dkγ
µDl)(Dkγ

µDl)

(5.2)

where we will focus as usual on the case k = 2, l = 3.
The SM contribution to the mixing reads [58]

HSM
eff = (V ∗tsVtb)

2G
2
F

4π2
M2
W η̂BS

(mt
2

M2
W

)
(sLγ

µbL)(sLγ
µbL) (5.3)

where S is the Inami-Lim function and mt is the top quark mass defined in the MS

scheme. As in Ref. [58], we take S
(
mt2

M2
W

)
' 2.35, for a top mass of about 165 GeV, and

η̂B = 0.8393± 0.0034, which comprises QCD corrections.
Considering the modulus of the ratio of the NP contribution over the SM, one gets

rBs =

∣∣∣∣CNP

CSM

∣∣∣∣ =
32π2|V ∗(d)

32 V
(d)

33 |2√
2(3− tan2 θW )|V ∗tsVtb|2GFM2

W η̂BS

M2
W

M2
Z′

(5.4)

In this expression, the only values that are not assigned are d = V
∗(d)

32 V
(d)

33 and M2
Z′ or,

equivalently, M2
W

M2
Z′
. Since d consists of products of elements of unitary matrices, its value

must necessarily lie in the interval [−1, 1] (assuming that it is real).
In order to get an impression of the values allowed, we perform a scan varying d in

[−1, 1], as it consists of products of elements of unitary matrices, and MW /MZ′ in the
range [0, 0.3], corresponding roughly to a NP scale at least of the order of 3 times the
electroweak scale. We allow the NP contributions to the Bs mixing to be at most 10% (i.e.,
rBs ≤ 0.1), in agreement with recent global fits to NP in Bd and Bs mixings where the
constraint from ∆Ms is the main limiting factor [59, 60]. For those values, we evaluate the
NP contribution to the Wilson coefficient Cµ9 = −Cµ10 in the one-dimensional scenario as
expressed in Eq. (4.1). The allowed values found in the scan are plotted in Fig. 3.

We see that values of Cµ9 = −Cµ10 can reach -1.8, in agreement with the results of global
analyses of b → s``, corresponding to rBs = 0.1, MW /MZ′ = 0.3 and d ' −0.002. The
allowed region is limited by the fact that we have numerically

rBs ' 347 · 103×
(
MW

MZ′

)2

× d2 ≤ 0.1 Cµ9 ' 11.3 · 103×
(
MW

MZ′

)2

× d |d| ≤ 1 (5.5)

using Refs. [2, 67], which leads to the parabolic constraint rBs = (Cµ9 )2×0.003/(MW /M
′
Z)2 ≥

0.03× (Cµ9 )2, represented in Fig. 3.
As we saw in the previous sections, our 331 model can accommodate various NP con-

tributions to (Cµ9 , C
µ
10). In the simple one-dimensional scenario Cµ9 = −Cµ10, we can ac-

commodate both BsB̄s mixing and b→ s`` data, with a NP scale (and in particular a Z ′)
around the TeV scale. Choosing different values for (Cµ9 , C

µ
10) would extend the parameter

space for NP allowed, with the possibility to use not only the value of fZ′ , but also fZ , to
accommodate the data.
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Figure 3: Allowed points in the (Cµ9 , rBs) plane.

6 Conclusions

Among many achievements, the LHC experiments have been able to investigate many rare
flavour processes, with very interesting outcomes. In particular, the LHCb experiment has
identified several deviations from the Standard Model in the b → s`` transitions, with
interesting hints from violation of the lepton flavour universality. These deviations can
be elegantly explained within model-independent effective approaches, where a few Wilson
coefficients receive significant NP contributions. This has triggered a lot of theoretical
work to identify viable models explaining such deviations, among which Z ′ models and
leptoquark models have been often used.

In the present paper, we try to embed a Z ′ model in a more global extension, widely used
in the literature, namely the 331 models where the gauge group SU(3)C×SU(3)L×U(1)X
breaks down at a high scale into the SM gauge group, before undergoing a second transition
at the electroweak scale. The minimal versions of such models do not feature lepton flavour
universality violation as they have to obey anomaly cancellations. We thus investigated
a non-minimal 331 model with 5 lepton triplets able to include LFUV. We described the
choices made to build this model in order to have all additional gauge bosons and fermions
with heavy masses (of the order of the scale of SU(3)L breaking) and electric charges similar
to those present in the SM. We worked out how this model could reproduce the deviations
observed in b → s`` transitions. This requires us to assume that the deviations are domi-
nated by neutral gauge boson contributions (anomalous bsZ coupling due to fermion mixing
as well as flavour-changing neutral coupling to a heavy Z ′ boson). The absence of signifi-
cant contribution to b → see and lepton-universality violating processes allowed us to set
constraints on the mixing matrices between interaction and mass fermion eigenstates.

We identified two different cases for the mixing matrices, with a rather simple outcome.
Our model turns out to have no right-handed currents, but it is able to accommodate
significant NP contributions to Cµ9 (negative) and Cµ10 (positive), in agreement with NP
scenarios favoured by global fits. In each case, we could make predictions concerning the
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τ Wilson coefficients (the electron ones being assumed to receive no NP contribution). We
considered additional phenomenological constraints on Z and Z ′ couplings in order to check
the viability of our model: if the unitarity of the first row of the CKM matrix is not powerful
in our case due to the large number of parameters involved, BsB̄s mixing proves much more
powerful.

Considering these results, it would be interesting to progress further in the study of
this non-minimal 331 model. Since we are able to predict in each case the values of Wilson
coefficients for b → sττ from the electronic and muonic ones, it would be interesting to
predict the deviations arising to related observables from our model, whether in decays or
in BsB̄s mixing [61–64].

Under our simplifying assumptions (no lepton-flavour violation b → s`i`j , no contri-
bution to b → see, opposite contribution to Cµ9 and Cµ10), we saw that we are able to
accommodate both b → s`` and BsB̄s mixing observables at the price of a NP scale of
order 1 TeV. Considering different values of NP contributions to Cµ9 and Cµ10 might also
enable to increase the scale of NP allowed. It would also be interesting to compare this
constraint with direct searches for Z ′ bosons, taking into account the pattern of couplings
specific to our model.

Moreover, it would also be natural to consider the other hints of LFUV currently
present in flavour physics, namely RD and RD∗ . Global model-independent analyses show
that the LFUV deviations seen in b→ c`ν branching ratios can be explained by vector/axial
exchanges, whereas scalar/pseudoscalar exchanges are disfavoured [65, 66]. In our model,
the situation is a bit different compared to b → s`` transitions. Indeed the heavy charged
bosons have no couplings with SM fields in the interaction eigenbasis, which means that the
SM quark and lepton couplings will be induced again by mixing (each counting at O(ε)) and
further suppressed by the heavy gauge boson mass, leading to a contribution O(ε4). The
light W± bosons have diagonal couplings in the SM subspace in the interaction eigenbasis
(see Eq. (D.2)), which means that LFUV will appear only due to mixing effects in leptons.

This effect can in principle be of order O(ε2) or lower, depending on the structure of
the mixing in the neutral lepton sector. For this reason, the deviations observed in b → c

transitions could also be explained in our model through gauge boson contributions only.
The discussion requires an accurate analysis of the neutrino spectrum, and we leave it for
future work.

The additional requirements from RD and RD∗ would thus allow us to further refine
our non-minimal 331 model, and to determine if it constitutes a viable alternative to explain
the LFUV processes currently observed in b-decays. If it passes these tests, it could provide
an interesting alternative to current NP models used to explain the deviations in b-quark
decays, with a potential to be tested both through deviations in flavour processes among
other generations of quarks and leptons and through direct production searches at LHC.
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A Fermionic content of the model

We summarise the U(1) charges of the fermionic content of our model (for the charged
fermions) in Tab. 1. We recall that the lower case letters denote light fields corresponding
to the SM, whereas upper case letters correspond to heavy exotic fields. As discussed in
Sect. 2.1, all fields have only charges already present in the SM.

B Higgs fields and Yukawa Lagrangian

We need to build gauge invariant terms for the coupling between a Higgs field and two
fermions, so that we obtain appropriate mass terms after SSB. This constrains possible
representations for the scalar fields. Since the fermions transform either as a 3 or as a 3̄

under SU(3)L, we only have a limited number possibilities [46] for a scalar field Φ, which
can only be a singlet, a triplet or a sextet 6.

In the following, we will not analyse the possibility of a singlet scalar. Electromagnetic
invariance makes it a scalar under U(1)X. Thus, after the two steps of SSB, its vacuum
expectation value will never give rise to a mass term for the gauge bosons or the charged
fermions, and, as indicated before, neutral leptons are outside the scope of the present work.

B.1 SU(3)L × U(1)X → SU(2)L × U(1)Y

For the first transition 331 → 321, we can have triplet or sextet scalar fields, denoted χ,
χ? and S1 respectively. In order to break neither SU(2)L nor U(1)EM invariances at this
stage, the following conditions for vacuum expectation values of the Higgs fields hold

T̂ 1〈Φ1〉 = T̂ 2〈Φ1〉 = T̂ 3〈Φ1〉 = Q̂〈Φ1〉 = 0, Φ1 ∈ {χ, χ?, S1} (B.1)

which sets the v.e.v.s and U(1)X charges of the scalar fields responsible for the first SSB.
We have

〈S1〉 =

0 0 0

0 0 0

0 0 a3

 , X = −2

3
〈χ〉 =

1√
2

0

0

u

 , X = −1

3
(B.2)

6We could have also considered antitriplets with opposite charge under U(1)X with respect to the
doublets, and analogous Yukawa couplings. This would have lead to a doubling of the content in Higgs
triplet, but with no further impact on the general discussion outlined here.
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Fermion Q X

Quarks

uL1 , u
L
2

2
3 0

dL1 , d
L
2 −1

3 0

uR1 , u
R
2

2
3

2
3

dR1 , d
R
2 −1

3 −
1
3

uL3
2
3

1
3

dL3 −1
3

1
3

uR3
2
3

2
3

dR3 −1
3 −

1
3

BL
1,2 −1

3 0

BR
1,2 −1

3 −
1
3

TL3
2
3

1
3

TR3
2
3

2
3

Leptons

e−L1 −1 −2
3

e−R1 −1 −1

νL1 0 −2
3

E−L1 −1 −2
3

E−R1 −1 −1

e−L2,3 −1 −1
3

e−R2 −1 −1

νL2,3 0 −1
3

N0L
2,3 0 −1

3

E−L4 −1 −1
3

N0L
4 0 −1

3

P 0L
4 0 −1

3

N0L
5 0 2

3

Table 1: Fermionic content of the model and associated U(1) charges.

The Yukawa terms that can be built with the sextet are then of the form

¯̀L
i S1(`Lj )c, i, j = 2, 3, 4 (B.3)

leading only to Majorana masses for the exotic leptons N0
2,3, P 0

4 .
The Yukawa terms built with the triplet and antitriplet contribute to both quarks and

lepton mass terms. The up-quarks mass terms are of the form

χ∗Q̄LmD
R (B.4)

where DR represents both dRi and BR
n , with i = 1, 2, 3 and n,m = 1, 2. The down-quark

mass terms are of the form
Q̄L3χU

R (B.5)
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where UR represents both uRi and TR3 . The equivalent form in the lepton sector is

χ∗ ¯̀L1L
−R (B.6)

where L−R represents any of e−R1,2 , E
−R
1 . The lepton sector also allows combination of

SU(3)L triplets and antitriplets, as

εijkχ
∗i ¯̀Lj

a (`L5 )c k (B.7)

where the label a can assume values 2, 3, 4 and i, j, k are indices referred to SU(3)L.

B.2 SU(2)L × U(1)Y → U(1)EM

The second, electroweak, transition 321→ 31 can involve two triplets η and ρ, and sextets,
denoted Si. The electromagnetic gauge invariance still holds after this SSB, which yields
the following constraints on the v.e.v.s

Q̂〈Φ2〉 = 0, Φ2 ∈ {η, ρ, Si} (B.8)

In order to choose the right alignment for sextet and triplets, we start from the most general
ones, impose a zero charge and verify if we can build Yukawa terms involving these scalar
fields and invariant under U(1)X . The v.e.v.s of the scalar fields responsible for EWSB are

〈Sb〉 =

b1 0 b5
0 0 0

b5 0 b3

 , X = −2

3
〈Sc〉 =

0 0 0

0 c2 0

0 0 0

 , X =
4

3
(B.9)

〈η〉 =
1√
2

w1

0

w3

 , X = −1

3
〈ρ〉 =

1√
2

0

v

0

 , X =
2

3
(B.10)

The U(1)X invariant terms built with sextets are

¯̀L
i Sb(`

L
j )c, i, j = 2, 3, 4 ¯̀L

5 Sc(`
L
5 )c, ¯̀L

1 S
∗
c (`L1 )c. (B.11)

and for the triplets, we have

• for quarks:
Q̄Lmη

∗DR, Q̄L3 ηU
R, Q̄L3 ρD

R, Q̄Lmρ
∗UR; (B.12)

• for leptons:
¯̀L
1 η
∗L−R, ¯̀L

a ρL
−R; εijkη

∗i ¯̀Lj
a (`L5 )c k. (B.13)

where we have used the same notation of the previous SSB. Therefore, the Yukawa La-
grangian is

• for quarks

LqY =
(
Q̄Lmχ

∗Y d
mi + Q̄L3 ρy

d
3i + Q̄Lmη

∗jdmi
)
DR
i +

+
(
Q̄L3χY

u
3j + Q̄Lmρ

∗yumj + Q̄L3 ηj
u
3j

)
URj ,

(B.14)

where Y d,u, yd,u, jd,u represent the Yukawa couplings introduced respectively for χ, ρ
and η.
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• for leptons

L`Y =
(
¯̀L
1χ
∗Y

(−)
1b + ¯̀L

a ρf
(−)
ab + ¯̀L

1 η
∗y

(−)
1b

)
L−Rb + εijk(χ

∗)i(`L5 )c kJa ¯̀Lj
a + εijk(η

∗)i(`L5 )c kja ¯̀Lj
a +

+ ¯̀L
aS1(`Lb )cKab + ¯̀L

aSb(`
L
b )ckab + c5

¯̀L
5 Sc(`

L
5 )c + c1

¯̀L
1 S
∗
c (`L1 )c.

(B.15)

where Y, y,K, k, f, c, J, j represent the Yukawa couplings, with a, b = 2, 3, 4 and Li =

e−R1,2 , E
−R
1 , and where the i, j, k indices are referred to the SU(3) space.

B.3 Quark masses

After the two SSBs, the quark mass terms arising from the Yukawa Lagrangian read

LqY →
[ u√

2
B̄L
mY

d
mi +

v√
2
d̄L3 y

d
3i +

(
w1√

2
d̄Lm +

w2√
2
B̄L
m

)
jdmi

]
DR
i +

+
[ u√

2
T̄L3 Y

u
3i −

v√
2
ūLmy

u
mi +

(
w1√

2
ūL3 +

w2√
2
T̄L3

)
ju3i

]
URi .

(B.16)

It is possible to rewrite these mass terms in the form of a matrix product with the flavour
vectors D,U , introduced in Eq. (2.10) as

Mq = D̄LMdDR + ŪLMuUR (B.17)

where

Mu =
1√
2


−yu11v −yu12v −yu13v −yu14v

−yu21v −yu22v −yu23v −yu24v

ju31w1 ju32w1 ju33w1 ju34w1

ju31w2 + Y u
31u j

u
32w2 + Y u

32u j
u
33w2 + Y u

33u j
u
34w2 + Y u

34u

 (B.18)

Md =
1√
2


jd11w1 jd12w1 jd13w1 jd14w1 jd15w1

jd21w1 jd22w1 jd23w1 jd24w1 jd25w1

yd31v yd32v yd33v yd34v yd35v

jd11w2 + Y d
11u j

d
12w2 + Y d

12u j
d
13w2 + Y d

13u j
d
14w2 + Y d

14u j
d
15w2 + Y d

15u

jd21w2 + Y d
21u j

d
22w2 + Y d

22u j
d
23w2 + Y d

23u j
d
24w2 + Y d

24u j
d
25w2 + Y d

25u


(B.19)

The diagonalisation in the limit v = w1 = w2 = 0 (before the EWSB) shows that
the number of quarks that remain massless after the SU(3)L SSB is three for up-type and
three for down-type quarks (for a given colour). This is exactly equal to the number of SM
particles, meaning that all the new exotic particles acquire a mass of the scale ΛNP of the
SU(3)L SSB. This feature of the model is required if we want to justify why such particles
have not yet been observed at the electroweak scale.

B.4 Charged lepton masses

In our model, we have identified the charged elements of `5 with the charge conjugated
right handed components of particles already introduced in other generations; to be more
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precise, we have set

`L5 =

E+L
5

N0L
5

F+L
5

→

(
E−R4

)c
N0L

5(
e−R3

)c
 . (B.20)

Apart from limiting the number of additional degrees of freedom, the main reason of
this identification is not clear until we consider the charged exotic masses.

Without such identification, the introduction of the right-handed degrees of freedom of
the charged leptons appearing in the fifth generation implies the additional Yukawa term

L`Y ⊃ ¯̀L
5

(
χY

(+)
5k + ηy

(+)
5k

)
P+R
k . (B.21)

where P+R represents the right handed components of the positively charged elements E+
5 ,

F+
5 of `5. Furthermore, the vector La in (B.15) stands now for Li = e−R1,2,3, E

−R
1,4 . Introducing

the flavour vector for negatively charged leptons

e1

e2

e3

E1

E4

Ec5
F c5


(B.22)

after the first SSB we get the following mass matrix



0 0 0 0 0 0 0

0 0 0 0 0 −J15u∗√
2

0

0 0 0 0 0 −J25u∗√
2

0

Y
(−)
11 u∗√

2

Y
(−)
12 u∗√

2

Y
(−)
13 u∗√

2

Y
(−)
14 u∗√

2

Y
(−)
15 u∗√

2
0 0

0 0 0 0 0 −J35u∗√
2

0

0 0 0 0 0 0 0

0 0 0 0 0
Y

(+)
5E u√

2

Y
(+)
5F u√

2


(B.23)

One can check that the degeneracy of the 0 eigenvalue of this matrix is greater than 3,
implying that out of all the charged leptons, not just the ones to be identified with the SM
ones acquire mass at the EW scale.

As indicated in Sec. 2.2, we avoid the presence of charged exotic particles with masses of
the order of the EW scale, which have not been observed phenomenologically, through the
identification of the charged elements of `5 with the charge conjugates of the right-handed
components of particles already introduced for other generations. With this assumption,
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the mass matrix of charged leptons originating after the two stages of SSB becomes [48]

Me =
1√
2


ye1w1 ye2w1 0 yE1w1 0

k2e1v k2e2v je2w1 k2E1v −Je2u− je2w2

k3e1v k3e2v je3w1 k3E1v −Je3u− je3w2

Ye1u+ ye1w2 Ye2u+ ye2w2 0 YE1u+ yE1w2 0

k4e1v k4e2v jE4w1 k4E1v −JE4u− jE4w2

 (B.24)

The diagonalisation in the limit v = w1 = w2 = 0 (before the EWSB) shows that the
number of leptons that remain massless after the SU(3)L SSB is three. This is exactly
equal to the number of SM particles, meaning that all the new exotic particles acquire a
mass of the scale ΛNP of the SU(3)L SSB. This feature of the model is required if we want
to justify why such particles have not yet been observed at the electroweak scale.

C Anomaly cancellation

Particularly stringent constraints for 331 model building arise from requiring that the theory
is free from quantum anomalies. We list here the relations among the fermion charges
that need to be satisfied. We denote with Q the quark left-handed generations, q the
corresponding singlets, ` the leptonic multiplets and s the corresponding singlets. Imposing
the vanishing of the triangular anomaly coupling to the different gauge bosons of the theory
leads to [45]

[SU(3)c]
2 ⊗ U(1)X ⇒ 3

∑
Q

XL
Q −

∑
q

XR
q = 0 (C.1)

[SU(3)L]3 ⇒ equal number of 3 and 3̄ fermionic representations (C.2)

[SU(3)L]2 ⊗ U(1)X ⇒ 3
∑
Q

XL
Q +

∑
`

XL
` = 0 (C.3)

[Grav]2 ⊗ U(1)X ⇒ 9
∑
Q

XL
Q + 3

∑
`

XL
` − 3

∑
q

XR
q −

∑
s

XR
s = 0 (C.4)

[U(1)X ]3 ⇒ 9
∑
Q

(XL
Q)3 + 3

∑
`

(XL
` )3 − 3

∑
q

(XR
q )3 −

∑
s

(XR
s )3 = 0 (C.5)

It is clear from Eq. (C.2) that we cannot generate LFUV couplings for the gauge bosons
unless we introduce additional lepton families. Indeed, if we call NQ (NQ̄) the number
of quark generations transforming as a 3 (3), with similar notation for the leptons `, the
anomaly cancellation in Eq. (C.2) yields

3NQ − 3NQ +N` −N` = 0 . (C.6)

Restricting to just three generations of quarks NQ + NQ̄ = 3, we see that one has several
possibilities. If we assume that all three quark families transform in the same way, one needs
at least 9 lepton generations (3 SM leptonics and 6 exotic ones), which would then transform
all in the same opposite way to get the appropriate anomaly cancellation. Since all leptons
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transform in the same way, there is no possibility to generate different couplings between
the leptons and the gauge bosons, and thus no LFUV can arise from these couplings.

The situation changes if one of the quark families transforms differently compared to
the others. Indeed, if we assume only two quark families to transform as a 3, we obtain

N` −N` = 3 (C.7)

Assuming three lepton generations implies that N` = 3, N` = 0. In this minimal model,
often considered in the literature, there is no possibility to generate LFUV from the identical
couplings of the gauge bosons to all lepton families. We can increase the number of lepton
generations. Assuming four generations, i.e., N` + N` = 4, yields no integer solutions for
Eq. (C.7). The next possibility is N` + N` = 5 lepton families, so that N` = 4, N` = 1,
which provides LFUV in the gauge couplings to leptons [45]. This is the non-minimal choice
that we adopt.

D Currents

We provide the expression of the couplings of the gauge bosons with the fermions, the latter
being expressed in the interaction eigenbasis.

D.1 Charged currents

For the non-SM charged gauge boson V ± we get

LV =
g
√

2
V −µ

{
D̄Lγµ


0 0 0 0

0 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

UL + N̄Lγµ



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0


(f−R)c + f̄−Lγµ


0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

NL
}

+

+
g
√

2
V +
µ

{
ŪLγµ


0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

DL + N̄Lγµ



0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1


f−L + (f−R)cγµ


0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

NL
}
.

(D.1)
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For the SM charged gauge bosons W± we get

LW =
g
√

2
W−µ

{
D̄Lγµ


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

UL + N̄Lγµ



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0


(f−R)c + f̄−Lγµ


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

NL
}

+
g
√

2
W+
µ

{
ŪLγµ


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

DL + N̄Lγµ



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


f−L + (f−R)cγµ


0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

NL
}

(D.2)

In the previous relations the flavour vectors of charged fields D, U and f− have been intro-
duced in Sect.2.10, and the neutral flavour vector is defined asN ≡ (ν1, ν2, ν3, N

0
2 , N

0
3 , N

0
4 , N

0
5 , P

0
4 ).

D.2 Neutral currents

First we provide the interactions with the non-SM neutral gauge bosons W 4,5, Z ′

L4 =
g

2
W 4
µ

{
ŪLγµ


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

UL − D̄Lγµ


0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

DL+

−f̄−Lγµ


0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

 f−L + N̄Lγµ



0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0


NL − f̄−Rγµ


0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

 f−R
}

(D.3)

L5 =
i

g
2W 5

µ

{
ŪLγµ


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

UL + D̄Lγµ


0 0 0 −1 0

0 0 0 0 −1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

DL+

+f̄−Lγµ


0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

 f−L + N̄Lγµ



0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0


NL − f̄−Rγµ


0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0

 f−R
}

(D.4)
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LZ′ =
cos θ331

gX
Z′µ

{
ŪLγµ


−
√

3
2
g2 0 0 0

0 −
√

3
2
g2 0 0

0 0
9g2+g2X

3
√
6

0

0 0 0
−18g2+g2X

3
√
6

UL +

√
2g2X

3
√

3
ŪRγµUR+

+D̄Lγµ



−
√

3
2
g2 0 0 0 0

0 −
√

3
2
g2 0 0 0

0 0
9g2+g2X

3
√
6

0 0

0 0 0
√

6g2 0

0 0 0 0
√

6g2


DL −

g2X
3
√

6
D̄RγµDR+

− f̄−Lγµ



9g2+2g2X
3
√
6

0 0 0 0

0
−9g2+g2X

3
√
6

0 0 0

0 0
−9g2+g2X

3
√

6
0 0

0 0 0
2(−9g2+g2X )

3
√
6

0

0 0 0 0
−9g2+g2X

3
√
6


f−L+

+ f̄−Rγµ



g2X√
6

0 0 0 0

0
g2X√

6
0 0 0

0 0
√
2(9g2−g2X )

3
√
3

0 0

0 0 0
g2X√

6
0

0 0 0 0 −
√
2(9g2+2g2X )

3
√
3


f−R+

+N̄Lγµ



− 9g2+2g2X
3
√
6

0 0 0 0 0 0 0

0 −−9g2+g2X
3
√
6

0 0 0 0 0 0

0 0 −−9g2+g2X
3
√

6
0 0 0 0 0

0 0 0 − 18g2+g2X
3
√
6

0 0 0 0

0 0 0 0 − 18g2+g2X
3
√
6

0 0 0

0 0 0 0 0 −−9g2+g2X
3
√
6

0 0

0 0 0 0 0 0
9g2+2g2X

3
√
6

0

0 0 0 0 0 0 0 − 18g2+g2X
3
√
6



NL
}

(D.5)
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Moving to the SM neutral gauge bosons Z,A, we have

LZ = cos θW gZµ
{
ŪLγµ


1−cos2 θ331

2
0 0 0

0 1−cos2 θ331
2

0 0

0 0 1−cos2 θ331
2

0

0 0 0 −2 cos2 θ331

UL − 2 cos2 θ331Ū
RγµUR+

+ D̄Lγµ


− 1+cos2 θ331

2
0 0 0

0 − 1+cos2 θ331
2

0 0 0

0 0 − 1+cos2 θ331
2

0 0

0 0 0 cos2 θ331 0

0 0 0 0 cos2 θ331

DL + cos2 θ331D̄
RγµDR+

+ f̄−Lγµ



−1+3 cos2 θ331
2

0 0 0 0

0 −1+3 cos2 θ331
2

0 0

0 0 −1+3 cos2 θ331
2

0 0

0 0 0 3 cos2 θ331 0

0 0 0 0 −1+3 cos2 θ331
2

 f−L+

+ f̄−Rγµ


3 cos2 θ331 0 0 0 0

0 3 cos2 θ331 0 0 0

0 0 3 cos2 θ331 0 0

0 0 0 3 cos2 θ331 0

0 0 0 0 −1+3 cos2 θ331
2

 f−R+

+
1 + 3 cos2 θ331

2
N̄Lγµ



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0


NL

}

(D.6)

LA =
√

3 cos θ331 cos θW gAµ
{
−

2

3
ŪγµU +

1

3
D̄γµD + f̄−γµf−

}
(D.7)

D.3 Z and Z ′ couplings contributing to the b→ s`` decay

We focus on NP contributions from gauge bosons able to generate b→ s`` transitions. The
analysis of the various contributions in Sec. 3.2 shows that only Z and Z ′ transitions are
the leading corrections in this 331 model. Moreover, FCNC transitions at the quark level
are generated by couplings that are not proportional to the identity matrix in the flavour
SM subspace.

For the Z ′ contribution we isolate the relevant part, i.e. the one involving D, f−, from
Eq. (D.5) and rewrite it removing the terms that are proportional to the identity in flavour
space. We also restrict to the light part of each flavour vector, i.e. the one spanned by the
light eigenvectors. We get

LRZ′ =
cos θ331

gX
Z′µ

{
−
√

3

2
g2D̄LγµDL +

g2X
3
√

6 cos2 θ331
D̄Lγµ

0 0 0

0 0 0

0 0 1

DL+

+
9g2 − g2X

3
√

6
f̄−Lγµf−L −

g2X
3
√

6 cos2 θ331
f̄−Lγµ

1 0 0

0 0 0

0 0 0

 f−L+

+
g2X√

6
f̄−Rγµf−R +

1− 6 cos2 θ331

3
√

6

g2X
cos2 θ331

f̄−Rγµ

0 0 0

0 0 0

0 0 1

 f−R
}
.

(D.8)
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A similar analysis can be carried out for the interaction with Z. The restriction of the
interaction Eq. (D.6) to the light part of the fermions involved in the process reads

LZ = g cos θWZµ
{
−

1 + cos2 θ331

2
D̄LγµDL +

−1 + 3 cos2 θ331

2
f̄−Lγµf−L + 3 cos2 θ331f̄

−Rγµf−R
}
. (D.9)
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