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(g − 2)µ at four loops in QED
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Abstract. We review the four-loop QED corrections to the anomalous magnetic moment

of the muon. The fermionic contributions with closed electron and tau contributions are

discussed. Furthermore, we report on a new independent calculation of the universal

four-loop contribution and compare with existing results.

1 Introduction

The anomalous magnetic moment of the muon, which is usually written as aµ = (g− 2)µ/2, measures

the deviation from Dirac’s prediction g = 2. Experimentally it is known with high precision from

measurements at BNL [1, 2]

a
exp
µ = 116 592 089(63)× 10−11 . (1)

It is expected that the uncertainty will be reduced in the coming years. Actually, there are two experi-

ments which are currently under construction, one at Fermilab and one at J-PARC [3–5]

Also on the theory side an impressive precision has been reached. However, since many years

there is a persistent discrepancy of the order of about 3 sigma. The uncertainty of the theory prediction

is dominated by the hadronic contributions, both from the vacuum polarization [6–8] (see Refs. [9–11]

for a recent compilations) and the so-called light-by-light part [12].

The numerically largest contribution to aµ is given by the QED part which is known up to five

loops. One-, two- and three-loop corrections are known analytically from Refs. [13–16] and four-

and five-loop contributions have been computed in Refs. [17–20] using numerical methods. The

fermionic contributions involving closed tau and electron loops have been cross checked in Refs. [21–

23]. Very recently, semi-analytic results for the universal contribution, i.e., the purely photonic and

muon-loop contribution, have been obtained in a remarkable calculation by Laporta [24]. It is based

on an evaluation of Feynman integrals with high-precision (several thousand digits) which was enough

to reconstruct rational coefficients of known transcendental constants with the help of the PSLQ al-

gorithm [25]. In addition, there were several contributions which were not recognized as known

constants. The final result for the four-loop contribution to aµ from [24] is known to 1100 digits.
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In this work we present results of an independent calculation of the universal contribution.

In order to fix the notation we provide numerical results for aµ up to five-loop order which are

given by (numbers are taken from Refs. [19, 20])

aµ =
(g − 2)µ

2

=
α

2π
(2)

+(−0.328 478 . . .+ 1.094 336 . . . |e,τ)

(

α

π

)2

+ (1.181 241 . . .+ 22.869 268 . . . |e,τ)

(

α

π

)3

+(−1.912 98(84)+ 132.790 3(60)|e,τ)

(

α

π

)4

+ (9.168(571)+ 744.123(870)|e,τ)

(

α

π

)5

,

where the ellipses indicate that the numbers are truncated and actually more digits are known. The uni-

versal part (first number in the brackets) has been separated from electron and tau contributions (sec-

ond number), which appears for the first time at two loops. Note that the latter is numerically dominant

due to unsuppressed large logarithms of the ratio of the electron and muon mass, log(mµ/me) ≈ 5.332.

At ℓ-loop order such logarithms occur up to the (ℓ − 1)th order. On the other hand, heavy virtual

particles are decoupled and thus the tau contributions are suppressed by m2
µ/m

2
τ. They are numerically

small.

Let us note that up to terms suppressed by m2
e/m

2
µ the first numbers in the coefficients of Eq. (2)

coincide with the anomalous magnetic moment of the electron, ae.

It is interesting to note that after inserting the fine structure constant the four-loop coefficient

evaluates to

a(8)
µ = (−1.912 98+ 132.790 3|e,τ)

(

α

π

)4

≈ 381 × 10−11 , (3)

which is of the same order of magnitude as the current difference between the Standard Model predic-

tion of aµ and the experimental value given in Eq. (1). Furthermore, it is larger than the uncertainties

of the hadronic vacuum polarization and light-by-light contributions which are both of the order of

40 × 10−11. Thus, an independent cross check of the four-loop QCD contributions is indispensable.

2 Technical remarks

The techniques used to obtain the results in Refs. [21–23] and for the universal part, which we report

below, have largely been developed in the context of the MS-on-shell quark mass relation in QCD.

To obtain the mass relation one has to evaluate on-shell integrals up to four loops which are also the

basis for the anomalous magnetic moment. In fact, we use the same integral families as defined in

Refs. [26, 27] and express the four-loop expression for aµ as a linear combination of scalar integrals.

The latter are reduced to master integrals with the help of FIRE [28] and Crusher [29]. Let us mention

that the reduction of the integrals contributing to aµ is more expensive since vertex integrals (instead

of two-point functions) are considered which are expanded around vanishing momentum transfer of

the photon. Thus, in the corresponding integrals the total power of the propagators is increased by

at least two as compared to the integrals needed for the MS-on-shell relation. For the MS-on-shell

relation we have to evaluate 386 master integrals; a subset of 357 master integrals contribute to aµ.

For details concerning their evaluation we refer to Ref. [27]. To obtain the precision mentioned below

some of the master integrals had to be evaluated with higher precision following the methods of [27].

Additional work is needed for the fermionic contributions with closed electron or tau loops. In

both cases it is appealing to perform an asymptotic expansion either for me ≪ mµ or mµ ≪ mτ. The



latter is a Euclidean-like asymptotic expansion which can be performed with the help of the program

exp [30, 31]. The most complicated integrals which have to be evaluated are four-loop vacuum

integrals which are well studied in the literature (see, for example, Ref. [27] and references therein).

All other contributions are of lower loop order and also known analytically. Thus, the four-loop

contribution to aµ containing tau leptons is known analytically as a series in mµ/mτ which is rapidly

converging [21].

To obtain an expansion of the electron-loop contribution in me/mµ an asymptotic expansion around

the on-shell limit has to be performed. The complicated integrals one has to compute are either of on-

shell type (as for the universal contribution) or integrals which contain linear propagators of the form

1/p·q where q2 = m2
µ is the external momentum and p is a loop momentum. Some integrals of this type

can be computed analytically, others are computed numerically using FIESTA [32]. In Refs. [22, 23]

expansion terms up to order m3
e/m

3
µ have been computed which show a good convergence behaviour.

Let us remark that the numerically dominant contribution arises from the light-by-light-type contribu-

tions which have been computed in [22].

In Refs. [17–19] a completely different technique has been used to compute the four-loop correc-

tions to aµ. In a first step a finite expression is constructed by generating the proper counterterms

together with four-loop diagrams which is afterwards integrated numerically.

In Ref. [24], similar to our approach, all occurring integrals are reduced to a small set of master

integrals. However, different software is used and most probably also a different basis of master

integrals is chosen. Furthermore, Ref. [24] manages to obtain high-precision numerical expressions

for all master integrals whereas we have chosen a more automated approach and stopped manipulating

the integrals once the desired precision has been reached.

3 Results

Let us start with discussing the universal part to aµ which consists of the pure photon contribution

and the contribution with closed muon loops. It can be subdivided into six gauge invariant subsets; a

representative diagram for each one is shown in the first column of Tab. 1. The second column in Tab. 1

contains the corresponding results from Ref. [33], this work, and Ref. [24], respectively (from top to

bottom). The results from Ref. [33] are taken from Table I of that reference and the uncertainties

are added in quadrature in case several contributions had to be combined. The uncertainty of the

results obtained in this work are the quadratically combined results from the individual ǫ coefficients

of the master integrals. We refrain from introducing a “security factor” (as, e.g., in Ref. [27]) for the

universal contribution since the four-loop result for aµ has also been computed by two other groups.

There is no uncertainty in the result provided in Ref. [24].

Within the given uncertainties the results from [33] and this work agree with the semi-analytic

expressions of [24]. In most cases our uncertainty is at the per cent level or below, except for the

contribution in the second row where a 40% uncertainty is observed. Note, that the absolute size of

the uncertainty is of the same order as the one in the first and third row. However, due to cancellations

from individual contributions, the central value is significantly smaller.

In the following we summarize the four-loop QED contributions and compare the results from the

different groups. Denoting the coefficient of (α/π)4 by a
(8)
µ we have

universal e− τ e− + τ

a(8)
µ = −1.87(12) + 132.86(48) + 0.0424941(53)+ 0.062722(10) this work and [21–23]

a(8)
µ = −1.912 98(84)+ 132.6852(60)+ 0.04234(12) + 0.06272(4) [19]

a(8)
µ = −1.9122457649264 . . . [24]



Representative Contribution of aµ
Feynman diagram

−2.1755 ± 0.0020

−2.161 ± 0.065

−2.176866027739540077443259355895893938670

0.05596± 0.0001

0.077 ± 0.031

0.056110899897828364831469274418908842233

−0.3162 ± 0.0002

−0.3048 ± 0.021

−0.316538390648940158843260382381513284828

−0.074665± 0.000006

−0.07461± 0.00008

−0.074671184326105513860159965722793126809

0.598838± 0.000019

0.597204± 0.0012

0.598842072031421820464649513201747727836

0.000876865858889990697913748939713726165

0.000876865858889990697913748939713726165

0.000876865858889990697913748939713726165

Table 1. The three numbers given in each row (from top to bottom) are taken from [33], this work, and [24],

respectively.

Note that the uncertainties in the first line in the parts involving a tau lepton are due to the lepton

masses only. After multiplication with (α/π)4 we obtain for the three equations

(−5.44(35) + 386.77(1.40)+ 0.12371(15)+ 0.182592(29))× 10−11 this work and [21–23]

(−5.56894(245)+ 386.264(17) + 0.12326(35)+ 0.18259(12))× 10−11 [19]

(−5.56679893738506 . . .+ . . .) × 10−11 [24]

The uncertainty of our result is about two orders of magnitudes larger. It is nevertheless much smaller

than the current and foreseen uncertainties from both experiment and the hadronic contributions. This

can be seen by considering the difference between the experimental result and the Standard Model

prediction which is given by (see, e.g., Ref. [19])

aµ(exp) − aµ(SM) ≈ 250(90)× 10−11 .

The uncertainty is about two orders of magnitude larger than our numerical uncertainty cited above.

This remains even true after applying the improvements by a factor 4. Thus, it can be claimed that

the four-loop contribution for aµ is cross-checked: There are three independent calculations for the

universal part and the electron and tau contributions have been computed by two independent groups.

Let us finally remark on ae. The Standard Model prediction given in Ref. [24] reads

ae(SM) = 115 965 218.1664(23)(16)(763)× 10−11 , (4)



where the three uncertainties have their origin in the numerical accuracy of the five-loop calculation,

the hadronic and electroweak corrections and the fine structure constant. Due to the result of Ref. [24]

an additional uncertainty of “(60)”, which is still present in [33], has been removed. Note that our

result for the universal part of aµ can also be applied to ae. However, since it has an uncertainty which

is two orders of magnitude larger than the one cited in [33] it is not competitive to [33] and [24].

4 Conclusions

We summarize all four-loop QED contributions to the anomalous magnetic moment of the muon.

They have been computed for the first time in Refs. [17–19]. An independent cross check of the tau-

loop contributions can be found in Ref. [21] where analytic results are provided for the expansion in

mµ/mτ. The electron-loop contributions have been cross checked in Refs. [22, 23] where an asymp-

totic expansion in me/mµ has been used. An independent semi-analytic calculation of the universal

(purely photonic and muon-loop) contribution has been obtained in Ref. [24]. In this work we provide

yet another independent cross check. In summary, all four-loop QED contributions to aµ have been

computed by at least two groups independently using completely different methods.
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