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Abstract

We compute the leading mass corrections to the high-energy behavior of the massive
quark vector form factor to three loops in QCD in the double-logarithmic approxi-
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The vector form factor of a quark is a crucial building block in the perturbative
analysis of many processes in quantum chromodynamics. It is also the simplest
scattering amplitude which can be used to study the infrared structure of perturbative
QCD. The form factors of a massless quark have been evaluated through the three-
loop approximation [1, 2] and even to four loops in the leading-color approximation
[3]. For a massive quark however only the two-loop result is available so far [4, 5]. The
complete calculation of the three-loop corrections is quite a challenging problem for
the existing computational techniques. Only recently the leading-color contribution
of the planar three-loop Feynman diagrams has been found analytically in terms of
Goncharov polylogarithms retaining the full dependence on the quark mass mq [6].
At the same time the full mass dependence is often excessive for practical applications
and proper expansion of the result in a given kinematical region could be sufficient
(see e.g. [7, 8, 9, 10, 11]). In particular, in the high-energy limit the corrections
to the form factor can be expanded in a small ratio ρ = m2

q/Q
2, where Qµ is the

large momentum transfer. The resulting series is asymptotic with the coefficients
dominated by the double-logarithmic contribution enhanced by the second power of
the large logarithm ln ρ per each power of the strong coupling constant αs. In the
leading order of the small-mass expansion the origin and structure of the “Sudakov”
double logarithms have been established long time ago [12, 13]. The analysis has
been subsequently generalized to subleading logarithms [14, 15, 16] and the leading-
power result for the massive quark form factor is currently known through three loops
up to the O(α3

s) nonlogarithmic contribution, which is only available in the leading-
color approximation (see [17] and references therein). By contrast, the logarithmic
structure of the power suppressed terms is not well understood and currently is under
study in various contexts [18, 19, 20]. In particular, the leading power corrections
to the form factor in QED have been recently evaluated in the double-logarithmic
approximation to all orders in the coupling constant [18]. The result determines the
abelian part of the corrections to the quark form factor. In the present paper we
complete the analysis of the three-loop contribution by evaluating its nonabelian part
and derive the O(ρ ln6ρα3

s) correction to the form factor in QCD.
The amplitude F of the quark scattering in an external singlet vector field can be

parametrized in the standard way by the Dirac and Pauli form factors

F = q̄(p2)

(

γµF1 +
iσµνQ

ν

2mq
F2

)

q(p1) . (1)

The Pauli form factor F2 does not contribute in the approximation discussed in this
paper and we focus on the high-energy behavior of the Dirac form factor F1. We
consider the on-shell quark p21 = p22 = m2

q and the large Euclidean momentum transfer
Q2 = −(p2−p1)

2 corresponding to positive values of the parameter ρ. The asymptotic
expansion of the Dirac form factor can be written as follows

F1 = Sε

∞
∑

n=0

ρnF
(n)
1 , (2)

where F
(n)
1 are given by the power series in αs with the coefficients depending on ρ
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Figure 1: The two-loop diagram generating the O(ρ) double-logarithmic contribution. The blob
stands for the color singlet vector current.

only logarithmically. The factor

Sε = exp

[

−
αs

2π

Γ(1)

ε

]

(3)

accounts for the singular dependence on the parameter of the dimensional regulariza-
tion d = 4 − 2ε used to treat the infrared divergences of the amplitude. Here Γ(1) is
the one-loop cusp anomalous dimension. In the high-energy limit ρ → 0 it reads [21]

Γ(1) = CF ln ρ
(

1 +O(ρ2)
)

, (4)

where CF = N2
c−1
2Nc

, Nc = 3. In the double-logarithmic approximation the leading term
is given by the Sudakov exponent [12, 13]

F
(0)
1 = e−CF x , (5)

where
x =

αs

4π
ln2 ρ (6)

is the double-logarithmic variable. The goal of this paper is to compute the leading
power correction coefficient F

(1)
1 to O(x3). The origin of the O(ρ) double-logarithmic

corrections is quite peculiar. They are induced by the emission of soft virtual fermions
rather than gauge bosons responsible for the Sudakov logarithms [18, 20]. The mass
suppression factor in this case comes from the helicity flip term in the soft fermion
propagator, which effectively becomes scalar and is sufficiently singular at small mo-
mentum to develop the double-logarithmic contribution. In the case of the form factor
the O(ρ) double-logarithmic contribution is associated with the soft scalar quark pair
exchange and appears first in the two-loop nonplanar vertex diagram, Fig. 1 [18].
The higher-order double-logarithmic corrections are obtained by dressing this dia-
gram with extra soft gluons. The relevant three-loop diagrams are given in Fig. 2.

Let us briefly describe how the diagrams are evaluated in the double-logarithmic
approximation [18, 19, 20]. Since two soft quark propagators provide the explicit
mass suppression factor, the double logarithmic asymptotic of the integral over the
virtual momenta can be obtained by the technique originally applied to the analysis
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of the leading-power term [12]. To introduce the main idea of the method we consider
the evaluation of the two-loop diagram, Fig. 1. The double-logarithmic contribution
originates from the momentum configuration when the large external momenta flow
through the edges of the diagram. In the infrared region all the propagators with the
external momenta are eikonal and the edges of the diagram effectively turn into the
light-cone Wilson lines. At the same time the momenta li of the exchanged quark pair
are soft and the corresponding propagators in the infrared region become scalar. The
effective Feynman rules for this momentum region, which retain the leading infrared
behavior of the full theory, are given in [20]. To separate the double-logarithmic con-
tribution the Sudakov parametrization li = uip1+vip2+li⊥ is used for each virtual soft
quark momentum. The integration over the transverse components li⊥ is performed
by taking the residues of the soft propagators. In general the resulting expression has
double-logarithmic scaling when ui, vi ≪ 1 and the Sudakov parameters are ordered
along the Wilson lines. For the nonplanar diagram under consideration this condition
reads v2 ≪ v1 ≪ 1, u1 ≪ u2 ≪ 1. An additional constraint ρ ≪ uivi ensures that the
soft quark propagators can go on-shell. This condition also suggests that ρ ≪ ui, vi,
which sets the infrared cutoff on the integral over the Sudakov parameters. Thus
the quark mass regulates both collinear and soft divergences and the result for the
diagram is infrared finite. In this way the two-loop contribution can be reduced to
the following expression [18]1

F
(1,2l)
1 = 2 (CA − 2CF ) x

2

∫

K(η1, η2, ξ1, ξ2)dη1dη2dξ1dξ2 , (7)

where CA = Nc, ηi = ln vi/ ln ρ and ξi = ln ui/ ln ρ are the normalized logarithmic
integration variables, the integration goes over the four-dimensional cube 0 < ηi, ξi <
1, and the kernel

K(η1, η2, ξ1, ξ2) = θ(1− η1 − ξ1)θ(1− η2 − ξ2)θ(η2 − η1)θ(ξ1 − ξ2) (8)

selects the kinematically allowed region of double-logarithmic integration discussed
above. After integrating Eq. (7) one gets

F
(1,2l)
1 =

CF (CA − 2CF )

6
x2 , (9)

in agreement with [4]. The three-loop correction can be represented as a sum over
the contribution of the diagrams in Fig. 2

F
(1,3l)
1 =

CF (CA − 2CF )

2

∑

λ

cλdλ x
3 , (10)

where the diagrams (d)-(i) with a symmetric counterpart should be counted twice.
Here cλ stands for a reduced color factor and the three-loop integrals are converted

1 The detailed derivation can be found in Ref. [20] in the context of two-loop analysis of Bhabha
scattering. The relevant contribution is proportional to the integral I1 in the Appendix A.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: The three-loop diagrams contributing to the O(ρ) double-logarithmic corrections. Sym-
metric diagrams are not shown. The remaining diagrams either do not have the double-logarithmic
integration region or have vanishing color factor.

into the following form

dλ = 4

∫

wλ(η, ξ)K(η1, η2, ξ1, ξ2)dη1dη2dξ1dξ2 , (11)

where wλ is the weight function resulting from the double-logarithmic integration
over the soft gluon momentum. The results for wλ, dλ, and cλ are listed in Table 1.
Examples of the calculation of the functions wλ are given in the Appendix A. Note
that the diagram Fig. 2 (a) has an infrared divergent contribution which reproduces
the factorized singular structure of Eq. (2) and is not included into Eq. (10).

Collecting the contributions of the individual diagrams we get

F
(1,3l)
1 =

8C3
F − 2CAC

2
F − C2

ACF

30
x3 (12)

and

F
(1)
1 =

CF (CA − 2CF )

6
x2

[

1−
CA + 4CF

5
x +O(x2)

]

. (13)
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λ wλ dλ cλ
a −((η2 + 2)η2 + (ξ1 − 2η2 + 2)ξ1 − 1) −

17
45

−CF

b 2ξ2η1
1
45

−CF

c 2(ξ1 − ξ2)(η2 − η1)
1
15

CA − CF

d −η1(η1 − 2ξ1 + 2) −
1
10

CA − CF

e (η2 − η1)(2− 2ξ1 + η1 + η2)
8
45

−
CA

2

f 2η1(ξ1 − ξ2)
1
30

−
CA

2

g 2η2(ξ1 − ξ2)
1
10

−
CA

2

h η1(η1 − 2ξ1 + 2) 1
10

CA

2
− CF

i η2(η2 − 2ξ1 + 2) 5
18

CA

2
− CF

Table 1: The weights wλ, integrals dλ, and color factors cλ of the diagrams in Fig. 2. To obtain wa

the singilar part of the infrared divergent diagram (a) is subtracted as discussed in the Appendix A.

Thus, we have evaluated the dominant power corrections to the tree-loop massive
quark vector form factor at high energy. Only the nonplanar diagrams contribute to
Eq. (13) and the result has the subleading color factor CA−2CF which scales as 1/Nc

in the largeNc limit. This agrees with the leading-color analysis of Ref. [6], where such
term is absent and the O(ρα3

s) contribution has at most the fifth power of the large
logarithm. Our result can be used as a cross check for the future exact calculation
of the three-loop corrections. It can be used also to identify and extend the domain
where the high energy approximation [17] is applicable. An interesting and important
problem is to extend Eq. (13) to all orders in x. So far all-order resummation of the
non-Sudakov double logarithms has been performed only in abelian gauge theories
[18, 19, 22]. Generalization of the analysis to the nonabelian case can be crucial in
particular for the analysis of the light quark effects in Higgs boson production [19],
and our result can be considered as the first step towards this goal.
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Appendix A. Evaluation of the soft gluon momentum integrals

Besides the integration over two soft quark momenta, the three-loop diagrams
include an extra integration over the soft gluon momentum. In general, this integra-
tion can be performed in the double-logarithmic approximation within the Sudakov
method outlined above. However, the analysis of the diagrams with the soft gluon
emission from the on-shell external or soft quark lines is more subtle due to soft di-
vergences which are not regulated by the quark mass as in the two-loop case. We
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describe how this problem is treated for the two typical cases of the diagrams (a) and
(h) in Fig. 2.

Fig. 2 (a) is the only diagram with the infrared divergence in the final result. The
integration over the soft gluon momentum l3 in this diagram is double-logarithmic
when one can neglect it in the eikonal propagators with the the soft quark momenta
l1,2. This defines the conditions l3p1 ≪ l2p1, l3p2 ≪ l1p2 corresponding to the ordering
of the Sudakov parameters v3 ≪ v2, u3 ≪ u1. Thus l3 should be retained only in
the propagators without the soft quark momenta and the integral over the soft gluon
momentum is reduced to

2iQ2

π2

∫

d4l3
l23((p1 + l3)2 −m2

q)((p2 + l3)2 −m2
q)

, (A.1)

with the above restriction on l3 and the prefactor introduced for convenience. In
the double-logarithmic approximation the propagators in this expression take the
following form

1

l23
≈ −iπδ(Q2u3v3 + l3

2
⊥
) ,

1

(p1 + l3)2 −m2
q

≈
1

Q2(v3 + 2ρu3)
,

1

(p2 + l3)2 −m2
q

≈
1

Q2(u3 + 2ρv3)
. (A.2)

After integrating Eq. (A.1) over l3⊥ with the double-logarithmic accuracy we get

2

∫ v2

ρu3

dv3
v3

∫ u1

ρv3

du3

u3
. (A.3)

Eq. (A.3) has soft divergence when v3 and u3 simultaneously become small. This
divergence can be removed by subtracting the factorized expression

2

∫ 1

ρu3

dv3
v3

∫ 1

ρv3

du3

u3

. (A.4)

The subtraction term does not depend on the soft quark momenta. It is equivalent
to the double-logarithmic approximation of the one-loop correction to the form factor
and gives the following contribution to Eq. (2)

−

(

αs

2π

Γ(1)

ε
+ CFx

)

ρF
(1,2l)
1 . (A.5)

The first term of Eq. (A.5) reproduces the singular O(ρα3
s) part of Eq. (2) while the

second term should be included in Eq. (10). The subtracted expression reads

− 2

(
∫ 1

v2

dv3
v3

∫ u1

ρv3

du3

u3
+

∫ v2

ρu3

dv3
v3

∫ 1

u1

du3

u3
+

∫ 1

v2

dv3
v3

∫ 1

u1

du3

u3

)

= − (ln v2 (ln v2 + 2 ln ρ) + ln u1 (lnu1 − 2 ln v2 + 2 ln ρ)) . (A.6)
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After converting to the logarithmic variables the above equation together with the
nonsingular term of Eq. (A.5) gives the expression for wa in Table. 1.

A characteristic feature of the diagram Fig. 2 (h) is that the soft gluon is emitted
by a soft quark. In this case the Sudakov parametrization of its virtual momentum
should be defined with respect to the corresponding soft quark momentum l3 =
u3l1 + v3p2 + l3⊥. As in the two-loop contribution the integration over the transverse
component of l2 is performed by taking the residue of a soft quark propagator pole
and there exist two contributions corresponding to the on-shell propagators on either
side of the soft gluon emission vertex. When in Fig. 2 (h) the soft quark propagator
above the vertex is on the mass shell, the soft gluon momentum has to flow through
the quark propagator below the vertex and the integral over l3 coincides with the
one-loop correction to the on-shell form factor with the external momenta p1 and l2.
Using the same normalization as in Eq. (A.1) it can be written as follows

−
2i(p2 − l1)

2

π2

∫

d4l3
l23((p2 + l3)2 −m2

q)((l1 + l3)2 −m2
q)

(A.7)

and in the standard way reduces to the integral over the Sudakov parameters

2

∫ 1

ρu3/u1

dv3
v3

∫ 1

ρv3/u1

du3

u3
, (A.8)

where we used the relation (p2 − l1)
2 ≈ −Q2u1. When in Fig. 2 (h) the soft quark

propagator below the vertex is on the mass shell, the soft gluon momentum has to
flow through the quark propagator above the vertex and instead of Eq. (A.7) one gets

−
2i(p2 − l1)

2

π2

∫

d4l3
l23((p2 + l3)2 −m2

q)((l1 − l3)2 −m2
q)

, (A.9)

with an additional condition p1l3 ≪ p1l1 or v3 ≪ v1 on the double-logarithmic inte-
gration region. This gives

− 2

∫ v1

ρu3/u1

dv3
v3

∫ 1

ρv3/u1

du3

u3

. (A.10)

Both Eq. (A.8) and Eq. (A.10) are infrared divergent. However, their sum

2

∫ 1

v1

dv3
v3

∫ 1

ρv3/u1

du3

u3

= ln v1 (ln v1 − 2 lnu1 + 2 ln ρ) (A.11)

is finite and after converting to the logarithmic variables coincides with the expression
for wh in Table. 1.

The evaluation of the rest of the diagrams poses no new technical problem and
can be performed in the same way.
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