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1 Introduction

In perturbative QCD the knowledge of the infrared divergences of scattering amplitudes
are of utmost importance. In the recent past this issue has obtained significant attention
both from formal considerations and explicit calculations up to four-loop order.

We consider form factors of quarks of mass m at total energy squared ¢%. The simplest
example is the correlator of the electromagnetic current with two massive quarks that is
parametrized by two form factors F; and F5 which enter the photon quark vertex as follows

7
I'(q1,q2) = Qq | Fi(g*)v" — %Fz(QQ)UWQV . (1.1)

Fy is a building block for a variety of observables. Among them are the cross section of
hadron production in electron-positron annihilation and derived quantities like the forward-
backward asymmetry. The form factor F; is of particular interest in the limit ¢> = 0 where
it describes the quark magnetic anomalous moment. In the massless case only one form
factor proportional to v* is sufficient to parametrize the photon quark vertex. In the
remainder of the paper we call this form factor F to avoid confusion with the massive case.

Exchanges of soft particles between the massive quarks can lead to infrared divergences.
The latter are conveniently regulated by dimensional regularization, with d = 4 — 2¢, where
d is the space-time dimension. The divergences can be effectively described by cusped
Wilson lines and their associated cusp anomalous dimensions [1]. In the high-energy, or
massless limit, additional collinear divergences appear, that give rise to large logarithms
involving the mass and the momentum transfer. Alternatively, if m = 0 is chosen from the
start, the latter are replaced by higher poles in the dimensional regularization parameter
€. While at leading order in the coupling this correspondence between poles in ¢ and
logarithms of the mass is straightforward, making it quantitive at higher orders requires
the use of renormalization group equations, see Refs. [2-4]. One obtains conversion factors



between infrared divergences regularized with a small quark mass and those regularized
using dimensional regularization. Due to the universal nature of infrared divergences, once
obtained from one quantity, the conversion factors can be used in other calculations as
well.

Renormalization group equations allow the use of information from lower-loop cor-
rections in order to predict poles in € and logarithms in the mass at higher loop orders.
In this way, high-energy terms of massive form factors at three loops were predicted in
Refs. [2, 4] based on two-loop computations. Similarly, the pole structure of three-loop
massless form factors in dimensional regularization is available in the literature (see, e.g.,
Ref. [5]). We note that in conformal theories, the renormalization group equation can be
solved exactly [6, 7].

Recently, new perturbative results at higher loop orders have become available, such
as the planar massless four-loop form factors [8, 9], and the planar massive three-loop
form factors [10]. Motivated by this, we determine the solution of the aforementioned
renormalization group equations to higher orders of perturbation theory. We then use the
wealth of new information to determine the integration constants appearing in the latter
to higher orders. In this way, we are able to make new predictions about the high-energy
behavior of massive form factors at four loops, as well as about the infrared terms appearing
in five-loop massless form factors.

The paper is organized as follows. In section 2, we review renormalization group
equations satisfied by massive form factors, and their solution. In section 3, we perform the
analysis for the massless case. Then, in section 4, we use the new planar results to perform
a matching, and give the new predictions at higher loop orders. In section 5, we explicitly
compute the universal conversion factors between massive and massless regularizations.
We conclude in section 6.

2 Renormalization group equation: massive case

The form factors satisfy the KG integro-differential equation [2, 4] which is merely a con-
sequence of the factorization property and of gauge and renormalization group (RG) in-
variances. It reads
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where the quantity F is related to form factor! F through a matching coefficient C (see
also below) via the relation

F =C (as (m2) J€) et (2.2)

In Eq. (2.1), we have Q? = —¢?> = —(p1 + p2)? where p; are the momenta of the external
massive partons satisfying p? = m? with m being the on-shell quark mass. The momentum

n this section we generically write F which stands for the form factor F; in Eq. (1.1). Note that F» is
suppressed by m2/q2 in the high-energy limit.



of the colorless particle, i.e. the virtual photon, is represented by ¢. The quantities
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are the bare and renormalized strong coupling constants, respectively. To keep a5 dimen-
sionless in d = 4 — 2¢, the mass scale p is introduced. ppg is the renormalization scale. In
Eq. (2.1), all the m? dependence of the In F' is captured through the function K, whereas
G contains the Q? dependent part. The RG invariance of the form factor with respect to

ur implies
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where A is the light-like cusp anomalous dimension. The renormalized and bare strong
coupling constants are related through

2\ —€
1,5 = as(42) Za, (13) (ij) , (25)

with S. = exp[—(vg — In4n)e]. The renormalization constant Z,, (u%) [11] is given by
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up to O(a?) with the first coefficient of QCD f function given by

Bo = %C A — %n f- (2.7)
Ca = N and Cr = (N? —1)/2N are the eigenvalues of the quadratic Casimir operators of
SU(N) group of the underlying gauge theory. n; is the number of active quark flavors. For
our calculation of the massive form factors up to four-loop order, we need Z,, to O(a3).
However, for the massless case at five loop, which is discussed in Section 3, the term to
O(a?) is required if the bare coupling constant is replaced by the renormalized one. The 3
functions to three and four loops can be found in Refs. [11] and [12, 13], respectively.
We solve the RG equation (2.4) and consequently (2.1) following the methodology used
for the massless case which has been discussed in [14, 15] (see also [16] for details). The
solutions of K and G are obtained as?

_ . m2 ,U’2 :U’2
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2In the following, we will tacitly assume that m? is small with respect to Q2.
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where the functions K and G are determined at the boundaries ;ﬁ% = m? and u% = Q2
respectively. Our initial goal is to solve for In F' in Eq. (2.1) in powers of the bare coupling
a,. In order to achieve that we need to obtain the solutions of K and G in powers of a,. We
begin by expanding the relevant quantities in powers of the renormalized strong coupling
constant as

(as ( )\2 EZag )\2 (2.9)
k=1

with B € {K,G, A} and the argument \ of a, refers to the corresponding parameter, i.e.,
A€ {m,Q,ur}. The dependence of G and K on € is implicit in Bg. In order to obtain the
expansion of B in powers of as, we require the Z, 1(A\?) which is obtained as
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up to O(a?). Employing Eq. (2.5) and Za:l, we can express B in powers of d as
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With the help of Eq. (2.12) we evaluate the integral appearing on the right hand side of

Eq. (2.8) and we obtain
—ke —ke
(o) - ()
112

where we either have A2 = m? or A2 = Q2. At this point it is straightforward to solve for
K and G using Egs. (2.12) and (2.14) which consequently leads us to the solution for the
KG equation (2.1) in powers of a5 as
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Equivalently, we can express the solution of In F in powers of renormalized coupling con-

stant a, (,u%%) using Eq. (2.5). Without loss of generality, we present the results for ,u% =m?

and write
~ e ~
mF =Y af(m?Ly. (2.17)
k=1
This is achieved with the help of the d-dimensional evolution of as(,u%%) satisfying the RG
equation
d oo
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which is solved iteratively. The solution up to O(a?) reads
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with Lr = In(u%/m?). We have presented Eq. (2.19) only up to the order in € relevant for
our calculation. The terms up to @(a?) can be found in [5, 17]. Upon employing Eq. (2.19),
we get
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with L = log(Q?/m?). Up to three-loop order we find agreement with the results provided
in Refs. [2, 4]. The four-loop expression £ is new.

Before proceeding further, let us make some remarks on the solution of KG integro-
differential equation. The solution provided in Eq. (2.15) relies on the fact that we have a
through-going heavy quark line from the external quark to the photon-quark coupling and
then to the external anti-quark. In particular, we do not consider contributions originating
from closed heavy-quark loops or so-called singlet contributions where the photon does not
couple to the external quark line. Note that, these contributions also contain Sudakov loga-
rithms which obey an exponentiation similar to the case under consideration [2]. However,
in the large-N limit they are sub-leading.

To arrive at the solution of the KG equation, Eq. (2.20), we have used the standard MS
coupling running with n; light flavours. On the other hand, the explicit fixed order results
of the form factors depend on ay with ny = n; + 1 active flavours. Hence, to compare
these two results (in particular, to perform the matching) it is necessary to use the d-
dimensional decoupling relation [18-21] (see also [22]) which establishes the connection
between «; in the full and effective theory. Note, however, that the decoupling relation
generates contributions which are sub-dominant in the large- N limit. Hence, in this article
we can ignore the difference between o defined with ny or n; active quark flavours.

Results for the form factor are obtained with the help of Eq. (2.2) where the matching
coefficient C is expanded in powers of as(m?) according to

C (as (m?),e) =1+ Zalg (m?) Ck (e) . (2.21)
k=1

The coefficients C, Gy, and K} are obtained from comparing Eq. (2.2) with explicit cal-
culations for F. We determine F up to the 1/e? pole at four loops which requires the
following input: G to O(€?), Ga to O(e), and G3 to O(e"). Furthermore we need K and
A to three-loop order and C to O(e) and Co up to the constant term in e. The explicit
results for Gy, K, A and Cj to the relevant order in € are presented in the Section 4.



It is interesting to note that in the conformal case, i.e. 5; = 0, the above considerations
simplify, and one obtains the following all-order solution

N s Ll ApL
Ly = Z(—Gk‘)l_lf <Gk + 0o K — k> (2.22)
=0 ’

where ¢;; is the Kronecker delta function.

3 Renormalization group equation: massless case

The massless form factors also satisfy KG integro-differential equation [23-26], similar to
the massive one (see Eq. (2.1)). It is also dictated by the factorization property and by
gauge and RG invariance

d *AQz :[—Alu,%2 *AQ2M%
dlncylnF<a5,M2,€> 25 |:K <a8’/¢276 +G CL%E,?,G s (3]_)

with Q% = —¢> = —(p1 + p2)? and p; are the momenta of the external massless partons
satisfying p? = 0. The quantities K and G play similar role to those of K and G in Eq. (2.1).
Because of the dependence of the form factor on the quantities Q? and p? through the ratio
Q?/u?, the KG equation can equally be written as

- 2 1 — 2 - 2 2
4 nF (e C ) 2 R (a2 ) 1 as,%,“ﬁ,e . (32)
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This equation is the analogue to Eq. (2.1) with the difference that there is no mass depen-

dence. Hence, it can be solved in a similar way as discussed in the previous section for the
massive case. The general solution is obtained as

= (., @ S rar (@)
InF <as,lu2,e> => als! <u2> Ly (€) (3.3)

2Q = am
which corresponds to Eq. (2.15) with £, = £ and vanishing £, . This is consistent with
the existing solutions up to four loops [5, 14]. The solution at the five loop level reads
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The form factor can be obtained by exponentiating the In F:
o - 00 Q2 —kei A
F=etF =14 aksh <2> 7 (3.5)
7

Note that in the massless case the matching coefficient is identical to 1. In the next section
the results of the F(E)) is presented in the planar limit including terms up to 1/€3, where we
restrict ourselves, as in the massive case, to the non-singlet contributions, since the singlet
terms only contribute to sub-leading colour structures.

In the conformal case, for which ; = 0, the above considerations simplify, and one
obtains an all order result [7, 27]

= 1 1 1 1

4 Matching of perturbative results: four- and five-loop predictions

In this section, we use the results of the recent three-loop computation of the planar massive
form factors [10] in order to determine the undetermined coefficients in section 2, in the
planar limit. This will allow us to make concise four-loop predictions. For the massless
form factor the results from Ref. [8, 9] are used to predict the leading five-loop terms.

A comment is due regarding the definition of the planar limit. The easiest way of
thinking about it is to consider SU(N) gauge group, and take the ‘t Hooft limit, N — oo,
keeping asN fixed. In the presence of light fermions, we also want to keep the planar
diagrams involving fermion loops, which means that? n; should count the same as N. This
can be reformulated in the simple rule that we keep all terms n;* N*2a3 with a1 4+ a2 = a3.

The cusp anomalous dimension is known to three loops from [28-34], and all the n,
terms in the planar limit at four loop are known from [8, 35, 36]. The n; independent terms
at four loops recently became available [9]. In the planar limit we have

A, = 2N,
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3In this paper we denote the number of massless quarks for the massless form factor by n; to be consistent
with the notation for the massive form factor.
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The coefficients C, G, and K}, are determined by comparing the general solutions obtained
from solving the KG equations with the results of the explicit computations. The coeffi-
cients C7 up to O(e?) and Cy to O(e) have been obtained in Ref. [4], in agreement with
our findings. In this article we extend C; to O(e*) and Co to O(€?), respectively, which
is needed for the conversion factors discussed in Section 5. Moreover, using the results of
Ref. [10] we obtain a new expression for C3 up to the constant term in e. For convenience
we present explicit results in the planar limit. We have
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(4.2)

The coefficients G to O(e®) and Gy to O(e”) are presented in Ref. [2]. In this article, we
extend the results to higher orders in € and obtain the G3 for the first time from the recent
results of the massive form factors [10] in planar limit. It has been observed in Ref. [2] that
the Gy, for the massive quark form factor coincide with those of the massless ones [5, 31].
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This is also true for the newly computed coefficients. Note that within our method this
feature is not surprising since the massless results are obtained from the massive one by
putting the mass-dependent part (Ek ) of the solution (2.15) to zero and by setting C' = 1.
It is interesting to note that the quantities K;, which capture the mass dependence of In F,
only enter into the pole terms of £, in Eq. (2.17). As a consequence, the constant and €
term can be determined from the massless calculation and are thus universal. This could
lead to deeper understanding of the connection between the massive and massless form
factors.

In order to predict the four loop massive form factors to 1/€2, we require G to O(€2),
G> to O(e) and G3 to O(e). Moreover, to obtain the predictions of the massless quark
form factors at five loop order up to 1/e3, we need G4 to O(e”) and in addition G, G5 and
G3 to O(e%), O(et) and O(€?), respectively. With the help of the results of the massless
quark form factors to three loops [33, 34, 37|, we calculate Gi(k = 1,2,3) to the required
orders in €. G4 is obtained from the recent results of four loop massless quark form factors
in the planar limit [8, 9]. These quantities to the relevant orders in € are given by
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The remaining quantities for the predictions of the massive form factors, K in the large-IN
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limit, are obtained as

K, = —N,
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consistent with the existing results up to two loop from Ref. [4]. The corresponding quan-
tities for the massless case, see K in Eq. (3.1), can be expressed in terms of the cusp
anomalous dimensions and S-function [14]. They do not appear in the final expressions of
the massless form factors (as can be seen in Eq. (3.4)) since they get canceled against the
similar terms arising from G. Hence, we do not present the results for K.

Expanding the massive quark form factor, Eq. (2.2), in powers of as as

F=1+) a,(m*)F® (4.5)
k=1

and using the results of the above quantities, we predict F' to four-loop order in the planar
limit. The result reads
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where L is defined after Eq. (2.20). Similarly, we obtain predictions for the massless quark

A7?L? 21517 28LC3+557T2L 1019L+16g‘3 3172 1163)

form factor at five-loop order, 9 in Eq. (3.5), in the planar limit including pole terms
up to 1/€3. It is given by
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All results presented in this paper can be found in the ancillary file submitted to the arXiv

3380652283) ) :3< 1029499¢;  19614377% 212511172 72339173)
_ 3380652283 3 N

and can be downloaded in computer-readable form from
https://www.ttp.kit.edu/preprints/2017/ttp17-023/.

5 Regularization scheme independent ratio functions

We use the results derived in the previous sections and extend the conversion formula
which relates dimensionally regularized amplitudes to those where the infrared divergence
has been regularized with a small quark mass. In Ref. [2] the following formula has been
derived which relates amplitudes computed in the two regularization schemes

1/2
(m) _ o (m*\17? 0
M 11 2 2 MO (5.1)
ic{all legs}

where for simplicity most of the arguments are suppressed. Note that the amplitudes M (™)
and M©) depend on all kinematical variables and the regularization scale . The universal
factor Z[(Z.Enw)
all three quantities in Eq. (5.1) are expansions in «; and e. It is an important observation

, however, only depends on the ratio of the (small) mass m and p. Of course,

of Ref. [2] that the Z (m|0) are process independent and can thus be computed with the help
of the simplest possible amplitudes, the form factors. In particular, for the photon quark
form factor we have

Z(m|0) _ F(QZ,W’LQ,}Lz)

- FQ2?, 1) (5.2)
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Note that the two quantities on the right-hand side of this equation depend on @) which
has to cancel in the ratio. The cancellations of Q? is obvious from the general solutions
of the massive, Eq. (2.15), and massless form factors, Eq. (3.3), which show that the Q2
dependent parts of In F and In F are identical. Thus they drop out from In ng'o) given by

mZ = C+mF—nF. (5.3)

Note that C' is independent of Q2.

In Refs. [2, 4] the quantity Z[(;}nlo) has been computed including O(e) terms at two

loops and up to the pole part at order a. We are in the position to add the constant term
in the large-N limit and furthermore extend the considerations to four loops up to order
1/€%. For convenience we present the results for g = m and write

700 =14 Z as(m?) 2\, (5.4)
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The analytic expressions of these equations (both explicit and generic) can be found in the
ancillary file to this paper.

6 Conclusions and outlook

It is among the primary goals of modern quantum field theory to investigate the structure of
perturbation theory. QCD corrections to the photon-quark form factors, both with massless
and massive quarks, constitute important quantities in this context. In this paper, we
discuss in detail the equations which govern the renormalization group dependence both of
the massless and massive form factors and present an elegant derivation of explicit analytic
solutions valid for a general gauge group SU(N). The key idea of the derivation is the
use of the bare coupling for the solution of the integrals in Eq. (2.8). The solutions are
expressed in terms of a function G governing the Q? dependence of the RG equation and
the cusp anomalous dimension A. Both of them are universal in the sense that they are
equal for the massive and massless form factors. The solution contains furthermore the
function K which is different for the massless and massive case. In the massive case one
has in addition a non-trivial matching condition, parametrized with the function C', which
is determined from the comparison with the explicit calculation.

The comparison of the generic formula with explicit calculation to three (massive) and
four (massless) loops, and the knowledge of the cusp anomalous dimension, enables us to
extend K, G and C to higher orders in «as and €, which in turn leads to new four and five
loop predictions for the massive and massless form factors, respectively. Since the highest
loop order of the form factors are only known for large N our predictions are restricted
to this limit. The new results for the form factors are used to extract new information
about the universal conversion factors between amplitudes where infrared singularities are
regularized dimensionally or with the help of a small quarks mass.
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