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Heavy quark form factors in the large 5y limit
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Abstract

Heavy quark form factors are calculated at Soas ~ 1 to all orders in a at the first order
in 1/Bo. The nfcaf. terms in the recent results [1] for the vector form factors are confirmed,

and nj% ~tol terms for higher L are predicted.

1 Introduction

Quark form factors are building blocks for various production cross sections and decay widths in
QCD. Recently massive-quark vector form factors have been calculated to to 3 loops [1].

We'll consider heavy-quark form factors in the large 5y limit, where Spas ~ 1, and 1/8p is an
expansion parameter (see the reviews |2 [3]). A bare form factor can be written as

F—1+§:I§ ﬁ"(g%)L 1
= A1nPg (47r)d/2 . ()

L=1n=0

Keeping terms with the highest degree of By in each order of perturbation theory, we get

1 Bogs 1
F=1+— Ol—=|. 2
* 5, ((47r)d/2 TO\R ®
The leading coefficients ay, ;1 can be easily obtained from nJLc ~1 terms (Fig. . ‘We shall consider
only the first 1/5 orderﬂ

Figure 1: Diagrams producing the highest degree of n; in each order of perturbation theory.
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2 Heavy-quark bilinear currents

We consider the QCD currents

Jo=QoTQo = Z(a™ () J (1), T =l ..qmnl, (3)

where (Qy is a bare heavy-quark field. The antisymmetrized product of n v matrices has the
property

YTy =n(d=2n)l, n=(=1)". (4)
In situations when the initial heavy-quark momentum p; and the final one py can be written as

P12 = mui2 + k12 (m is the on-shell mass) with ki o < m, these currents can be expanded in
HQET ones [0} [7]:

T = 3 H ) + 510 57610600 +0 (5 ) 9

where the leading HQET currents are
Jio = huolihu,0 = Z(al™ (1)) Ji(1), Ti =T, $T + Ty, p1T%s, (6)

and O; are local and bilocal dimension-4 HQET operators with appropriate quantum numbers.
The HQET current renormalization constant Z does not depend on the Dirac structure and is a
function of the Minkowski angle ¥: vy - v9 = cosh¥ = w.

The coefficients in can be obtained by matching the on-shell matrix elements (k1 2 = 0) in
QCD and HQET:

2
<Q(p2 = m)|Jo|Q(pr = mv1)> = > FitioTus )

<Q(ko = 0)|Jio|Q(k1 = 0)> = Fyaoljuy, Fy =1
(all loop corrections to F; vanish because they contain no scale). Therefore the bare matching

coefficients (in the relation similar to (5) but for the bare currents) are H? = F;/F; = F;. The
renormalized matching coefficients are

2" (W) _ FZ

Hi(p, i) = Hzoni ==,
72" () FZ

(8)

UV divergences cancel in the ratio F;/Z as well as in the ratio Fi/Z. Both F; and F; contain
IR divergences which cancel in the ratio F;/ F; because HQET is constructed to reproduce the IR
behaviour of QCD (Fz have no loop corrections because their UV and IR divergences cancel each
other).

The dependence of H;(u, ') on p and p’ is determined by the RG equations. Their solution
can be written as

(nyg)
(ny) Tno/ (2B, )
N Qg W
Hi(p, i) = B (”) K () (1)

("f)(
140)
< (ny) (9)
O[(nl)(,u,/) —50/(285 *7) (
’ ( " > KU (0 (),
(n1)
as™ (o)
where for any anomalous dimension y(a) = Yoous/(47) + v1 (s /(47))% + - - - we define
e d(ls V(CMS) Yo ) Yo (’71 tﬁ,) Qs
K, (o :ex/ ( =1+=L=-= 4. 10
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Matrix elements of the currents with n = 0, 1 can be written via smaller numbers of form
factors:
<Q(mvg)\J|Q(mv1)> :FS’I_LQU1, FS :F0+2F1+(2w— 1)F2 (11)

(where F; with n =0, n = 1 are used), and

(v1 + v2)¥

<Q(mw2)|J*|Q(muy)> = (FY + Fy )tioy*uy — Fy tiguy 5 , (12)

FV =Fy+2F — (2w —3)F,, F) = —4(F, +F)

(where F; with n =1, n = —1 are used).

3 Inversion relations

e/ ® 5 ww

Figure 2: On-shell massive self-energy integrals and off-shell HQET ones.

On-shell massive self-energy integrals with one massive line and any number of massless ones
in some cases can be expressed via similar off-shell HQET integrals. Suppose all massless lines
can be drawn at one side of the massive one and the resulting graph is planar (e.g., the diagram
in Fig. ) Lines of such a diagram subdivide the plane into a number of polygonal cells (plus
the exterior); with each cell we can associate a loop momentum (flowing counterclockwise). Then
outer massless edges of the diagram correspond to the denominators —k? —i0; inner massless edges
~to —(k; — k;)? — i0; and massive edges — to m? — (k; +mv)? — i0 (Table[l). The corresponding
HQET diagram (Fig. ) has HQET denominators —2k; - v — 2w — ¢0 instead of massive ones.
First we perform Wick rotation of all loop momenta k;o — ik;o (in the v rest frame). Then, in
Euclidean momentum space, we invert each loop momentum [g]:

k; — % (13)

Inversion transforms massive denominators to HQET ones (and vice versa) if we identify
—2w=m"", (14)

see Table [l As a result, a massive on-shell diagram (Fig. [2h) becomes m~ 2" (the sum runs
over all massive line segments, n; are their indices, i. e. the powers of the denominators) times the
off-shell HQET diagram (Fig. ) with w = —(2m) 1 . The indices of all inner massless edges,
as well as of all massive edges (which become HQET ones), remain intact (see Table . From the
same table it is clear that the index of an outer massless edge becomes d — Y n;, where the sum
runs over all edges of the cell to which this outer edge belongs (they can be all massless, or one
of them can be massive). If there is a cell k; bounded only by inner massless edges, and maybe
one massive one, then the denominator (k%)d_zni will appear (Fig. . This denominator does
not correspond to any line, and hence the resulting integral is not a Feynman integral at all; in
this case, the discussed relation becomes rather useless (though formally correct). The inversion
relations [§] were used, e.g., in [9, [I0]).



Table 1: Inversion relations.

Minkowski Euclidean Inversion
1
outer massless —k? —i0 k? 2
ki — k)2
inner massless —(k‘z — k)j)Q —10 (k‘z — ]4}]')2 ( ZkaQJ)
i V]
—2w — 2tk;
massive —k‘f —2mv - k; — 10 k? —2imk;g | m d 2 !0
57— 2k,
HQET 9w — 2% v —i0 | —2w — ik | mL kzl 0
a7k,
measure dk; idk (kf)d

NN LY

Figure 3: Examples of on-shell massive diagrams which cannot be transformed to off-shell HQET
ones by inversion relations.

The inversion relations can be generalized to similar vertex integrals; the masses of the initial
particle and the final one may differ. At one loop (Fig. , the integrals

d%k
M(n17n27n;19;m17m2)Z/md/g
x : (15)
—k= —2mqvy - k — 0] [ —k* — 2movg - kK — 10|™2(—k=* —i0)"
k2 -2 k — 10 k2 -2 k — 10 k2 —i0)"’
d%k
I(nl,n%n?ﬁ?wha&):/m
1
X (16)

[72]@ cvp — 2w1 — ZO]nl [72]6 c Uy — 2wy — ZO]"2(71€2 — ZO)”
are related by

M(ny,n2,n;9;my,ma) = my "my " I(ny,na,d —ny —ng —n;9; —(2m) 1, —(2mo) ™Y . (17)
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Figure 4: One-loop vertex integrals.

The integrals have been investigated in [I1]. Here we need only the integrals M
with m; = msy; they reduce to the integrals I with w; = wy which are especially simple [IT]:

1 — cosh
o)

d
. Q. d—ni—ns—2n niy,n2,5 —N
I(nl,ng,n,ﬁ‘,w,w) = (_QW) ! 2 I(nl +n2>n) 3F2 ( n1+;12 ;112+n2+1
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)



where
I(—d+ny +2n)T'(d/2 —n)

L(n1)l(n)
is the one-loop HQET self-energy integral. We only need integer n; o; in this case all I reduce by
IBP to 2 master integrals [I1]: I(1,0,n) (trivial) and I(1,1,n) (given by (18)).

Inversion relations can be generalized to diagrams with more external legs. For example, the
one-loop massive box diagram with 2 on-shell legs and the corresponding off-shell HQET one

(Fig.

(19)

I(ny,n) =

d?k
M (n1,ng, ng, ;95 m1,ma5 6%, q - 01,4 - v2) = | —775 X
imd/2
: (20)
(—k2 — 2mquy - k)™M (—k2 — 2mausg - k)2 (—(k + q)2)ms (—k2)na '
) dik
I(n1,n2,ms, na; i wi, w5 q”,q - v1,q - v2) = —aj2 X
T
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Figure 5: Box diagrams.

4 Large-f3, limit

We need only terms with the highest degree of ny; therefore, there is no need to distinguish
between ny and n; = ny — 1, or any ny + const. The gluon propagator can be written as

1 K,k
Duu(k) = m (gul/ - k2 ) ) (23)

where the gluon self energy is

2
112) = oy e P oy,

(24)
(1—e)T(1+e)%(1—¢) 5
D(e) = ¢ =14+ —-c+---
(€) (1—2e)(1— 2e)I(1 — 2) 3
At this leading large Sy order, the coupling constant renormalization is simple:
2
s 1
o e = bZa ), b= g : (25)

(47T)d/2€ 4T o~ 1+0b/¢



The bare QCD matrix elements can be written in the form [I2] [4]

o UK file Le) 1
Fh(s“ﬁﬁo; I mz)L+O<ﬁg>' (26)

It is convenient to write the functions f;(¢, u) in the form usual for on-shell massive QCD problems
(see [3])
e’ T(1 —2u)T'(1 4 u)
D) TB—-u—c¢)
We calculate the vertex function (Fig. and multiply it by Zg& with the 1/8o accuracy (see [3]).
Reducing on-shell massive QCD integrals to off-shell HQET ones by the inversion relation
and then to the master integrals by IBP [I1], we obtain

fz-(e,u) = CF

N;(e,u). (27)

n—2+4e¢
w—1

No(e,u) = [—nu —2(w+ Du(n —2)* — u(nu+ 4(w + 1)e) (n — 2)

+2(2 —u)(w+ (w+ L)u) — (6w + 2u + nu?)e + 2(w — (w + L)u)e? | F

-2
+ nu% +2(n—2)? +4e(n — 2) — 6(1 — u?) +2(1 — u)(5 + 2u)e — 2(1 — 2u)e?,
—2 -2
Ni(e,u) =u nwu—nu(n—%—?—i—u—ke—nue F—nuu,
w—1 w—1
-2
Ni(e,u) = nu% [1 —(1+ (w— 1)u)F] , (28)
where )
. L1+u —w
F2F1( 32 |5 > (29)

At ¥ = 0 this result agrees with the result of [13] at m; = mq, see also [SJH
Re-expressing the bare form factors via the renormalized coupling we obtain

s 1 < file, Le) AN
F; _&ﬁ%;T [D@) <mz> Hb] . (30)
We should have (see (8))
log Fy = log(Z (as(n))/ Z(cvs())) + log H (i, p) : (31)

negative degrees of € go to log(Z/Z), non-negative ones — to log H. The function

2 u oo
fole,u)D(e)"/* (%) = 3 fame ™ (32)

n,m=0

is regular at the origin; expanding (b/(¢ +b))” in b, we obtain a quadruple sum. In the coefficient
of e all f,.m except fno cancel; differentiating this coefficient in logb we obtain the anomalous
dimension corresponding to Z/Z [12] []:

o
Bo

4Note a typo: the unnumbered formula below (8.93) should read

sinh[(1 — 2u)L/2]
sinh(L/2)

== =22 fo(=b,0) + O (1> . (33)

B3

Ro = cosh(Lu), Ri=



These anomalous dimensions at the 1/, order are [14, [15]

b (14 20)T(2 + 2b)
Tn = 4Cp —
Bo (14+0)2(2+ )3 (14+)I'(1—0)
. b (1+2b)(2+2b) ( 1 )
=4CF— i’ Yeothd —1)+ O | — | . 35
VA e T ) ) 3 (35)
Our results satisfy this requirement (f12(—b,0) = 0 because the QCD current J does not mix
with currents with other Dirac structures).
In the coefficient of % all f,,,,, except f,,0 and fo,,, cancel. The coefficients f,,o form K., _5(cs(p)),
see (9)); we have [4]

(n—l)(3—n+2b)+(’)(61) Y

2
0

ﬁi = 61’0 + i /C>O du e_“/bSi(u) + O (12) 5 (36)
Bo Jo e
where the Borel images of the perturbative series for H; are
s =2 (7 8) f0 - 50,0 (37)
u m? ’ n

The integral is not well defined because of poles at the integration contour. The leading
renormalon ambiguities are given by the residues at u = 1/2 [I6] (see also [3]). It is easy to
calculate these residues because F at u=1/2is just 2/(w + 1):

4 AA 1 AA
( 3> —, AH=———, AH;=0, (38)

om’ Cw+12m’

where

AA = —2@5’/%@.
Bo

As demonstrated in [I6], these IR renormalon ambiguities are compensated by the UV renormalon
ambiguities in the matrix elements of the HQET operators O; in .
Using the Mathematica package HypExp [I7] (which uses uses HPL [I8]) we expand F' in

F = g |~ o (D (B () = 200

— (H_ (1) —2H_,_(7)l+2H_,(7)%) %
u4

— (H_+___(T) —2H_ (1)l +2H_4_(1)I* — ;lH_+(T)l3) T

— (H_+____(T) —2H (1)l +2H___(1)I* — gH_+_(T)13 + SH_+(T)14> =

— (H_+ _____ (7') — 2H_+____(7')l —+ 2H_+___(7')12 — %H__;,___(T)ZS + %H_+_(T)l4

4 5 ub
- ) =
where 9 ) 9
T:tanh§7 lziH,(T)zlogcoshg, H (r)=19, (40)

and H..(7) are harmonic polylogarithms (see [19, [I8]). The expansion is sufficient up to 6
loops; it can be extended if desired. Only one new polylogarithm appears at each order.
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Karlsruhe, where the major part of this work was done, and to J. M. Henn for useful discussions
and hospitality in Mainz.



A Anticommuting v; and ’t Hooft—Veltman ~5

For flavour-nonsinglet currents one may use the anticommuting 5 without encountering contradic-
tions; they are related to the currents with the 't Hooft—Veltman 75 by a finite renormalization [20]:

(@13°Tara), = Ze—n (@™ (1) (@3 Tura) , - (41)

where 7 is a flavour matrix with Tr7 = 0. The currents with 42T, have anomalous dimensions
Yn, because they can be obtained from the case of massless quarks; 7iVT,, is just ['y_, with
reshuffled components. Equating the derivatives in dlog i1 we obtain

Zo-nlas) = K (ay), (42)
where the anomalous dimensions ~,, and 74—, differ starting from 2 loops. In particular, Zy(as) =

1. In HQET currents with ¥AC and with 7£'V have the same anomalous dimension 7, and the
finite renormalization factor similar to is 1. In the large Sy limit (see (34))

B 8n [° (1+ 2b)[(2 + 2b) 1
Zn(as) = exp l_ﬁo/o AT +:Z)r3(1 Tora—p ¢ (53)] ' (43)

At the leading 1/8y order we may use these formulae for flavour singlet currents, too. The
matrix 72CT, has the same property () but with = —(—1)". From our results (26)-(28) we
see that, indeed,

H,per, = Hr,

= Hpvp, = Hr,_, . (44)

n——1

Matrix elements of the currents with v2¢ and n = 0, 1 can be written via smaller numbers of
form factors:

<Q(mv2)|J|Q(mvl)> = FPﬁgfy?Cul s FP =Fy—2F — (2’LU + ].)FQ (45)

(where F; with n =0, n = —1 are used), and

vy — vp)H
<Q(mw2)|J*Q(muvy)> = Ftigyi Sy uy + Ffﬂgvﬁcm% ) (46)
FA=Fy+2F + (2w —1)F,, F=4F - F)
(where F; with n =1, n = 1 are used).
The divergence of the axial current is
i, (Qo72 7" Qo) = 2moQo7e° Qo , (47)

where the bare mass mo = Zgom. Taking the matrix element of this equation we obtain

w—1

A
1"‘2

Ff = Z2FF (48)

The on-shell mass renormalization constant Z2° at the first 1/5 order is given by the formula
similar to (26), with Ny, (g,u) = —2(3 — 2¢)(1 — u), see, e.g., [3]. And indeed, from (28],
(45H46) we obtain

1
NA + “’TN;‘ = NP4 N,,. (49)



B Vector form factors
The vector form factors Fl‘,/Z can be written in the form , ; from , we obtain

NY (e,u) = 2 [2w + u — 3u® — 3we + 2wue — (w — 3)u’e + we® — (w + L)ue’| F
—2[24u - 3u® — 3¢ + 2ue + 2u’e + €% — 2ue?] | (50)
Ny (g,u) = du(l +u — 2ue)F . (51)
All loop corrections to F) vanish at ¢ = 0, and hence N} =0 at w = 1.
The form factor FY = H)Y /Z, where Z at the 1/By order is determined by the anomalous
dimension , and H{ contains only non-negative powers of e. We choose p = p/ = po = m.
HY at e = 0 is given by the coefficients f,o (which produce K_5 (10)) and fo, (which produce

ﬁY ); e™ terms (n > 0) require all f,,,,. Writing the expansion 1) as F = fo— fiu— fou?/2—
fsu?/3 — - -+ we obtain up to 4 loops

2 2
Hlvzl—i-CF;{—2wf1+(3w+1)f0—4— (wf2+(3w+1)f1— (7;+8>wf0+776+8)5
0

2 3w+ 1 2 2 2 2 2 2
<3wf3+ 2 f2+( 8)wf1+<3C3’w7rw7r16w> f03C3+7r+16)52

6 3
w 1 2 2 2 w2
B e - T 4y (igw-Tw-T 1
<2f4+(w+3>f3+(12+ )wfg <3C3w 4w 13 6w>f1

7 2 4 7t 4 2
5 4 = 2 a4+ Zn2 4323+
(80w C3w — (5+37r w+ 3 w)f0+80 3§3—|—37r + 32 |e” +

19 1 209 1 2 53
—b U)f2+ <3w+1)f1—3 (27r2w+6w+2)fo+3 <7T2+3>

1 /47 3 281 1
+<2wf3+2(3w+3>f2+<2 +7 3)f1

—|—<7wf4+ (12)3w—|—7>f3_|_3 (149 2 +3z1)>7w+1)f2
;(46C3w+21721 2 +% 2+%w 203) £



4 19 1 203
- [Bwngr (3w+1> f2+ 3 (47r2w+3w+1> fi

1 38 4919 139 1 44 1834
3<28C3w+37r2w+27r2+54w )f0+ <28(3+ 3 2+27>

52 1171 5
+<6wf4+4<9w+1>f3+ <72 5 w+3>f2

359 7, 5366 310
(44C3w+7r +oml+ ——w )fl

18 2 27
(Zg o+ 119144_3104r 226 + %W% N %Wg N 2598;424510 B 914O;3>
+$ (952 +1312C3+¥ 2+LB2237)>5+---1
—b Swf4+2<139w+1) f3+ (27‘(‘2’11}-}-22?)’(1)—1-;) fo
+(24ggw+?f7r +22+% )
(Zé fw + —ng +12¢3 + 2—33w2w + %2 - % 6100087> fo

1/71 206 4229
Z (= 2 24 227
+3<207T +269¢3 + — 3 + 27)+

+} (52)

The form factor Fy' = HJ is finite at € = 0 (this requirement explains why Ny’ vanishes
at u = 0). We obtain

EY _cpﬁ {2f0—2(f1 4f0)s—<f2+8f1—<7;2+16> f0> e
§<f3+6f2+(7;+24)f1+@37r248)f0>€3+

—b 2f1—235f0+<3f2+ f1—<32 961)f0>
;(14f3+86f2+<129 2+ 1105) fi— (46§3+233 2+23M5> f0> g2 4.

6 36
50 1 317
2f2+3f13<472 >fo

+<8f3+1§9f2+<77r2 1912) fi- <44<3+5f81 2+18451)fo> ]
4f3—|—25f2—|—<47r —|-37>f1 (24g + 30 2+8609>f0+--- +} (53)

3 54
We use HPL [I8] to convert harmonic polylogarithms with £ indices to the usual ones (with
indices 0, +1), then convert the argument to z = e~? from 7 = (1—2)/(1+x), and finally transform

products of harmonic polylogarithms to linear combinations; we have successfully reproduced all
nklal

n, terms with L = 1, 2, 3 in F', from [I].

b2

_p
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