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Abstract

A generalization of the forest technique procedure — the R−1-operation—is
elaborated and then employed to treat a variety of problems. First, it is employed
to reveal the underlying simple structure of the Bogoliubov-Parasiuk renormaliza-
tion prescription based on momentum subtractions. Second, we use this structure
to derive a generalized Zimmermann identity connecting two different renormalized
versions of a given Feynman integral. Third, the recursive procedure to minimally
subtract the ultraviolet and infrared divergences from euclidean, dimensionally reg-
ularized Feynman integrals—the R∗-operation— is simplified by reformulating it in
terms of the R-operation alone. The new formulation is shown to lead immediately
to a simple and regular algorithm for evaluating the overall ultraviolet divergences
of arbitrary dimensionally regularized Feynman integrals, (including the ones ap-
pearing in two-dimensional field-theoretical models), the algorithm neatly reducing
the problem to computing some massless propagator-type integrals. Finally, we
construct a brief and concise proof of a general theorem which gives an explicitly fi-
nite large momenta and/or masses asymptotic expansion of an arbitrary (minimally
subtracted) euclidean Feynman integral.

∗This is an Archive copy of a preprint MPI-Ph/PTh 13/91 issued by the Max-Plank-Institute für
Physik (Munich, Germany) in March of 1991. See the Comments Section in the very end.
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1 INTRODUCTION

One of cornerstones of the local quantum field theory is renormalization, i.e. proper
identification and self-consistent subtraction of infinities that plague perturbation series.
A rigorous all-order treatment of the renormalization problem was began with the classic
papers of Bogoliubov and Parasiuk [1–3] who constructed a recursive subtraction scheme
— the R-operation — to remove ultraviolet (UV) divergences from a given Feynman
integral in a way compatible with adding local counterterms to the Lagrangian. Unfor-
tunately their proof of the main theorem of the renormalization theory, — the fact that
the R-operation does subtract all infinities — had included an intermediate statement
which in fact was not true. This has been corrected by Hepp [4] and hence the theorem
is known as BPH (a simpler version of the proof have been presented by Anikin, Zavialov
and Polivanov [5]).

A major step in elaborating the discussed approach to renormalization has been made
by Zimmermann [6–10]. In particular, he has introduced the concept of oversubtractions
and developed a graph-theoretical forest technique to disentangle the complicated recur-
rence structure of the R-operation with oversubtractions. (Note that the forest formula
for the R-operation without oversubtractions was first derived by Zavialov and Stepanov
in a somewhat disguised form [11]). The forest technique and oversubtractions form the
basis for the normal product method which has been of great use in treating theories
with massless particles [12–15], in deriving rigorously Wilson expansion [7, 9, 16], and in
proving various general relations between renormalized Green functions meet (Zimmer-
mann identities [7, 8, 17, 18], renormalization group equations [19], the Quantum Action
Principle [19–21], etc.). Further important development of the method has been made
by Anikin, Polivanov and Zavialov [22–25].

A notorious problem of the renormalization theory is the choice of the ultraviolet cut-
off and of the renormalization scheme. Though in perturbation theory one can manage
to avoid any cut-off (by using the so-called regulator-free formalism which proves to
especially useful in rigorous study of supersymmetric theories [26]) in general there is no
a preferred choice of the renormalization scheme. On the other hand, a suitable choice
of regularization and of the renormalization prescription can facilitate doing field theory
considerably.

In practice, the dimensional regularization [27–31] (DR) has become a very useful tool
in perturbative treatment of various field theories, including the non-abelian gauge ones.
In particular, the DR is used to perform virtually all complicated perturbative calcula-
tions. There are at least two good reasons for doing so, in addition to its explicit gauge
invariance. The first one is that within the DR the divergent FI’s can be treated, in many
aspects, as if they were convergent. In other words, such operations as cancellation of
identical factors in the numerator and denominator of the integrand, (formal) integration
by parts, and replacement of the integral of a sum by the sum of the corresponding inte-
grals are well-defined (a more complete list is given in [32]). Another very useful property
of the DR is its ability to regularize simultaneously both the UV and the infrared (IR)
divergences by transforming these into poles in ǫ = (D0 − D)/2, where D0 > 0 is the
integer dimension of space-time while D is the running dimension.

As for the choice of the renormalization prescription, it is the minimal subtraction
(MS) scheme [33] along with its straightforward modifications such as theMS-scheme [34]
and the G-scheme [35] that prove to be very convenient both for calculation and for
phenomenological applications.
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A remarkable feature of the MS-scheme is the fact that in its framework all UV
counterterms (or, equivalently, UV renormalization constants) are polynomial both in
momenta (which must be the case for every meaningful renormalization prescription) and
in masses [36]. It is this property, along with the useful features listed above, that gives
the DR its calculational power in such problems as evaluation of various renormalization
group functions. Indeed, the overall divergence of a log-divergent Feynman integral (i.e.
the divergence remaining after minimally subtraction of all its subdivergences) must
be a polynomial in ǫ−1, with purely numerical coefficients without any dependence on
dimensional parameters. Thus, when computing the UV renormalization constants one
is free to perform arbitrary rearrangements of masses and external momenta, e.g to nullify
some of them provided this does not lead to IR divergences. This observation , first made
in ref. [37] (see also [35,38]) has since then been used repeatedly in a number of important
calculations. Among the latter are the analytical evaluation of the α2

s-correction to the
total cross-section of the e+ e− process [39] and the calculation of the β-functions for
QCD and N=4 supersymmetric Yang-Mills theory [40, 41] both made at the three-loop
level.

However, the condition of that the IR divergences do not appear restricts considerably
our calculational abilities, since for complicated FI’s this requirement prevents one from
reducing a given FI to a simpler one (see e.g. ref. [42] and Sect.4).

The R∗-operation — a generalization of the R-operation for subtracting both UV and
IR divergences — was invented [42] just to overcome this difficulty and solved the problem
by allowing for arbitrary rearrangements of masses and external momenta [42,43]. This,
in turn, has greatly extended the class of problems amenable to analytical solution. It is
sufficient to say that it was the use of the R∗-operation that has enabled one to evaluate
analytically the β-function at the five loop level for two theories: the φ4 model [44, 45]
and the supersymmetric two-dimensional sigma-model [46].

Another field of interest where the R∗-operation has been working successfully is the
investigation of various short-distance expansions and heavy mass decoupling [47–55].

The so-called R−1-operation — the inverted usual R-operation — was first introduced
in [56,57] in the study of asymptotic expansions of minimally subtracted FI’s. An explicit
resolution of the involved recursion structure of the R−1-operation was found in [58, 59]
and then applied to construct a rigorous algebraic derivation of the renormalization group
equations in the MS-scheme [59].

The present work is aimed at making a regular and uniform treatment of the combi-
natorics of R-, R−1-, and R∗- operations and of the generic large-mass and/or momentum
asymptotic expansions of euclidean FI’s.

The outline of this work is as follows. In the next section we introduce definitions and
notations for Feynman graphs, integrals and the generic subtraction operation. Section
3 is devoted mainly to the derivation of a forest representation of the R−1-operation and
to studying its implications for the BPHZ renormalization formalism. We show that the
R−1-operation reveals the underlying simple structure of the BPHZ renormalization and
is a natural tool for constructing general conversion formulas connecting two different
renormalization versions of a given FI. As an example we give a simple derivation of
the Zimmermann identities and the conversion formulas from the MS-scheme to the
momentum subtraction and vice versa.

In Sect.4 we develop the theory of the R∗-operation in a general situation where the
Feynman integrals to be renormalized may (i) have their external momenta put under
an arbitrary number of linear constraints and (ii) may be formally expanded in some
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external momenta and/or masses1. It is shown that in the MS-scheme the R∗-operation
may be naturally expressed through the usual R-operation and its inverse — the R−1-
operation. Then, as a result of this representation we get a simple and regular algorithm
for evaluating the UV counterterms of arbitrary dimensionally regularized FI’s, including
the ones appearing in the two-dimensional field models.

Section 5 is devoted to combinatorics of the large momentum and/or heavy mass ex-
pansions of euclidean, minimally renormalized FI’s in a very general setting. The integrals
under consideration may be of arbitrary form, including the non-scalar and (completely or
partially) massless ones, and with their external momenta may be subjected to any num-
ber of linear constraints. This also includes the case where these integrals are considered
as being formally expanded in some of their external momenta and/or masses.

It should be stressed that the above integrals form a natural class for studying large
momentum and/or heavy mass behavior. This is due to the fact that the resulting
asymptotic series can be expressed exclusively in terms of the FI’s from the same class.

Our starting point is Theorem 8 of subsect. 5.1 that describes the complete asymptotic
expansion of FI’s of the form specified above at ρ → 0, in which some of their external
momenta and/or masses are scaled by ρ−1. The expansion is presented in a concise form
convenient for practical calculations: in terms of the (again dimensionally regularized!)
FI’s for some subgraphs and reduced graphs. Once the expansion of regularized FI’s at
ρ → 0 is at hand it becomes a purely combinatorial problem to derive the corresponding
expansion for minimally renormalized FI’s or Green functions. The complete solution of
the problem given in subsect. 5.2 naturally leads to the appearance of the R∗-operation
in the resulting, explicitly finite expansion. The section ends with a simple combinatorial
proof of the main theorem of the R∗-operation theory — of the fact that this does subtract
all divergences from the generic dimensionally regularized FI.

Section 6 contains a comparative discussion of the relevant results of previous studies.
Finally, in Sect.7 we present our main conclusions together with a brief outline of some
of the problems awaiting their solution in the developed framework.

2 STRUCTURE OF FEYNMAN GRAPHS AND IN-

TEGRALS

In this section we briefly recall basic graph-theoretical notations relevant to (Feynman)
graphs and integrals. The material is partially taken from refs. [38,60,61]. We also discuss
the definition and main properties of the c-operation — a generalization of the standard
ultraviolet counterterm operation ∆U — which will be in constant use in the following.

2.1 Basic graph-theoretical notations and definitions

A graph Γ is a set of lines and vertices which can be associated with a Feynman integral
(FI) — a term in the perturbation expansion. The collections of internal lines, vertices
and external lines will be denoted as LΓ, VΓ and EΓ, while LΓ = |LΓ|, VΓ = |VΓ| and
EΓ = |EΓ| will stand for the numbers of elements in each set. Every internal line l ∈ LΓ

has two (possibly coinciding) vertices incident to, it, viz., the initial vertex π−(l) ∈ VΓ

and the final vertex π+(l) ∈ VΓ. Every external line l ∈ EΓ has with one vertex, π(l) ∈ VΓ,

1 That is one first expands the corresponding integrands and then dimensionally regularizes
resulting FI’s.
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incident to it, and a sign factor fΓ(l) = ±1. If fΓ(l) = +1(−1), the corresponding external
momentum is supposed to flow in(out) the vertex v = π(l).

The empty graph Γ∅ is the unique graph with L∅ = ∅, V∅ = ∅ and E∅ = ∅.
Let l ∈ LΓ. A subgraph Γ′ = Γ\l of Γ is obtained via deleting l from LΓ and adding

two new external lines l− and l+ produced by ”cutting” the line l and incident to the
vertices π−(l) and π+(l), respectively. The mappings π′

± and π′(l) and the function fΓ′ are
defined in the natural way, 2 with π′(l±) = π±(l), and fΓ′(l±) = ±1. A subgraph Γ\L′ is
defined for any set L′ ⊂ L by repeated applications of this prescription. Every subgraph
γ of Γ is (unambiguously) determined by a pair of subsets Lγ ⊂ LΓ and Vγ ⊂ VΓ (Vγ

is understood to comprise all the vertices incident to the lines from Lγ ). It is obtained
from the subgraph Γ′ = Γ\(LΓ\Lγ) by throwing away all the isolated vertices of Γ′ not
belonging to Vγ. Thus, the external lines incident to a vertex v of γ are the original
external lines together with some ”fragments” of internal lines from LΓ. Sometimes we
shall write L, E , V and L(γ), E(γ), V(γ) instead of LΓ, VΓ, EΓ and Lγ, Eγ, Vγ respectively.
Every subgraph γ of Γ, except for the Γ itself is said to be a (proper) subgraph of Γ. If γ
is a (proper) subgraph of Γ, we shall write γ ⊆ Γ(γ ⊂ Γ). A graph γ is trivial if Lγ = ∅.
If v ∈ V then v̇ will stand for the (unique) trivial subgraph of Γ with Vv̇ = v.

The number of c-components (that is of the maximal connected subgraphs of Γ)
and independent loops (circles) of Γ will be denoted as c(Γ) or, equivalently, c

Γ
and

N (Γ) = LΓ − VΓ + c
Γ
respectively.

If γ and h are two subgraphs of Γ, their union δ = γ ∪ h is the subgraph with
Lδ = Lγ ∪ La and Vδ = Vγ ∪ Vh; their intersection γ ∩ h is defined in a similar way. γ
and h are called disjoint if γ ∩ h = Γ∅.

We skip over the well-known definitions of a connected graph and of a one-particle-
irreducible (1PI) graph. Given a connected graph γ ⊂ Γ, the reduced graph Γ/γ is
obtained by reducing γ to a single vertex, vγ . If γ is a disconnected subgraph than Γ/γ
is produced by reducing each of its c-components γi into a single vertex, vγi .

A (proper) spinney S of a graph Γ is a pairwise disjoint family of non-empty 1PI
(proper) subgraphs of Γ. A (proper) wood W{Γ} (W̄{Γ}) is the collection of all (proper)
spinneys of G. A (proper) forest F (F̄ ) is a set of non-empty 1PI subgraphs of Γ such
that if γ,γ′ ∈ F then either γ∩γ′ = Γ∅, or γ ⊂ γ′ or γ′ ⊂ γ. The collection of all (proper)
forests of Γ will be denoted as F{Γ} ((F̄{Γ}). Given a forest F , we shall denote by |F |
and (F )max, respectively, the number of elements in F and the (unique) maximal spinney
S such that S ⊆ F . The empty spinney S∅, i.e. the unique spinney without elements,
belongs to both W{Γ} and F{Γ}.

In what follows we shall repeatedly deal with various relations between forests. Being
a particular example of a forest, a spinney (or even a single graph) may also take part
in these relations. Let F and F ′ be two forests. We shall define the relations between
these forests in terms of their members γ ∈ F and γ′ ∈ F ′. F ∼ F ′ if for all γ and γ′

γ ∩ γ′ = Γ∅; F ≥ (>)F ′ if every γ′ is a (proper) subgraph of an element from F ; F>̃F ′ if
for every γ′ either F > γ′ or F ∼ γ′; F ≻ F ′ if F>̃γ′ and there is no such element γ ∈ F
that γ ∼ F ′. For every nonempty forest F one has S∅ ∼ F , F > S∅, F>̃S∅, S∅>̃F and
S∅ ≻ F .

If S is a spinney of Γ, then Γ/S will stand for the graph obtained by reducing every
non-trivial element of S. By S ↓ γ we shall mean a spinney formed by all the elements
of S which are subgraphs of γ. If S1 and S2 are two spinneys of Γ such that S1>̃S2 or

2 That is as restrictions of π±, π, and fΓ onto L′ = L\l, and V ′ = V respectively.
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S1 ≥ S2, than the family S1/S2 is defined according to

S1/S2 = {γ/(S2↓γ)|γ ∈ S1}

and is to be, naturally, interpreted as a spinney from W{Γ/S2}.
Finally, we shall denote the collection of graphs {γ|γ = δ/S, δ ⊆ Γ, S ∈ W{δ}} as

P{Γ}.

2.2 Dimensionally regularized Feynman integrals

Having recalled the graph-theoretical background, we turn to the second part of the
notion of the Feynman diagram — the Feynman integral. Consider an unrenormalized
Feynman amplitude F̄Γ(q,m) corresponding to a connected graph Γ with q = {ql|l ∈ E}
and m = {ml|l ∈ L} standing for its external momenta and masses, respectively. Within
the dimensional regularization it can be formally represented as3

F̄Γ(q,m, µ, ǫ) = δµ(
∑

l∈E

f
Γ
(l)ql) < Γ > (q,m, µ, ǫ),

< Γ >=

∫
YΓ(q,k) dµk,

(2.1)

where

YΓ =
∏

v∈V

Pv(q
v̇)
∏

l∈L

Dl(pl), dµk =

N (Γ)∏

i=1

dµki, dµki =
µ2ǫ

(2π)D
dki,

and Dl(pl) = Pl(pl)/(m
2
l + p2l ), with Pl being a polynomial of degree al. The momentum

pl is a linear combination of the loop momenta k = {k1, . . . kNΓ
} and of the external

momenta flowing through the internal line l. Pv(q
v̇) is a polynomial of degree av in

momenta qv̇ = {qv̇l |l ∈ Ev̇} — the set of external momenta of the (trivial) subgraph
v̇ ⊂ Γ. By definition, qv̇l = ql if l ∈ EΓ ∩ Ev̇, and qv̇l = pl′ if l ∈ Ev̇, l = l′± . D = D0 − 2ǫ is
the running space-time dimension, with the (positive) integer D0 being the physical one.

We have introduced the mass µ to preserve the correct dimension of < Γ >; after
minimally subtracting the UV poles in ǫ, µ will serve as the MS-scheme renormalization
parameter. Finally, every polynomial Pl (and Pv) should be considered as a member of
the formal algebra of D-dimensional covariants (which includes the γ-matrices and the
metric tensor in addition to the D-dimensional vectors in the case of theories with fermion
fields). We shall assume that every polynomial that may serve as a particular example
of Pl (or Pv) is written in the normal form [29] and, thus, does not contain any explicit
dependence on ǫ. The index of UV divergence of the FI < Γ > reads

ω(Γ) = D0NΓ − 2LΓ +
∑

l∈LΓ

al +
∑

v∈VΓ

av.

Let us denote a formal algebra formed by polynomials in ql ∈ q as A(q, ǫ); the
coefficients of these polynomials may depend meromorphically on ǫ. By {ei(q)} we shall

3We use this formal presentation only as a convenient substitution for rigorous definitions of refs.
[29,32,62]. The main role of the former is to help one to formulate concise definitions of various operations
with dimensionally regularized FI’s.
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mean a monomial basis in the algebra, so that every element e ∈ A(q, ǫ) can be uniquely
presented in the form

e =
∑

i

ξi(ǫ)ei(q
γ),

with all its dependence on ǫ concentrated in the coefficients {ξi}.
For a given a connected subgraph γ ⊆ Γ, the corresponding Feynman subintegral

< γ > is the FI defined by (2.1), with the polynomials P γ
v and P γ

l being equal to Pv

and Pl, respectively. If S is a spinney, then we shall denote the FI corresponding to the

(disconnected) graph
⋃

γ∈Sγ as < S >=
∏

γ∈S

< γ > .

Now let S ∈ W{Γ} and let {eiγ (q
γ)|γ ∈ S} be a collection of basic monomials.

Proceeding in the same manner we construct the FI < Γ/S >i with i = {iγ |γ ∈ S} from
propagators and vertex factors of < Γ > ,with the understanding that every element eiγ
serves as the vertex polynomial P

Γ/S
vγ (qv̇γ ) (missing in the initial FI < F > ). Finally, if

{Pγ|γ ∈ S} is a collection of polynomials such that

Pγ ∈ A(qγ , ǫ), Pγ =
∑

iγ

ξiγ(ǫ)eiγ (q
γ),

then we define the FI (
∏

γ Pγ)∗ < Γ/S > as the following multifold series of FI’s

∑

i

(
∏

γ∈S

ξiγ) < Γ/S >i .

2.3 c-operation and its properties

Let us suppose that we are provided with a rule, ∆, which associates a polynomial from
A(qγ , ǫ) to every FI < γ > with γ being a 1PI graph:

∆ < γ >=
∑

i

ξi(< γ >, ǫ) ei(q
γ), (2.2)

where ξi is a meromorhic function of ǫ. Unless otherwise is explicitly stated we shall also
demand that ∆ < γ >= 0 if γ is a trivial graph.

If γ ⊆ Γ then the action of the c(counterterm)-operation ∆(γ) corresponding to the
rule ∆ on a FI < Γ > is defined as follows

∆(γ) < Γ >=
∑

i

ξi(< γ >, ǫ)(ei∗ < Γ/γ >)

or, equivalently,
∆(γ) < Γ >= ∆ < γ > ∗ < Γ/γ > .

Next, let S be a spinney of Γ and < Γ/S > be an arbitrary FI corresponding to the
graph < Γ/S >. We define

∆(γ) < Γ/S >=

{
< γ/(S↓γ) > ∗ < Γ/(S ∪ γ)max >, if Γ ⊇ γ>̃S;
0, otherwise.

Thus, if h ⊂ γ ⊆ Γ and ∆ and ∆′ are a pair of (possibly identical) c-operations then

∆(h)∆′(γ) = ∆(γ)∆(γ) = ∆′(h)∆′(h) = 0,
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and
∆′(γ)∆(h) < Γ >=

∑

i

ξi(< h >, ǫ)∆′(γ) < Γ/h >i .

Moreover, if γ, h ⊆ Γ and h ∩ γ = Γ∅ then

∆′(h)∆(γ) = ∆(γ)∆′(h)

and
∆(γ)∆′(h) =

∑

i,i′

ξ′i(< γ >, ǫ)ξ′i′(< h >, ǫ) < Γ/(γ ∪ h) >i,i′ .

If S ∈ W{Γ}, then we put

∆(S) =
∏

γ∈S

∆(γ), (2.3)

with
∆(S) < Γ >= ∆ < S > ∗ < Γ/S > and ∆ < S >=

∏

γ∈S

(∆ < γ >).

Similarly, if F is a forest, then

∆(F ) =
∏

γ∈F

∆(γ), (2.4)

where it is understood that in the product in the r.h.s. of (2.4) the order is determined
by the c-operation ∆(γ) for smaller graphs acting first (on the right). As a consequence
of (2.3) we get that for the empty spinney S∅

∆(S∅) = 1

It is worth noting that as for their algebraic properties c-operations are, in fact,
identical to the subtraction operators widely used in the renormalization theory (see,
e.g. [25]).

3 R- AND R−1- OPERATIONS

In this section we first give a precise definition of the R- operation corresponding to a given
c-operation and elaborate on its inverse — the R−1- operation —, which will prove to be a
very convenient tool in treating both the R∗-operation and the asymptotic expansions of
Feynman integrals. Then we consider the particular versions of these operations adopted
to the MS-scheme and reveal the deep connection between the R−1-operation and the
BPHZ renormalization and finally derive general conversion formulas connecting the FI’s
renormalized according to different renormalization prescriptions, viz. by the minimal
subtraction and by the BPHZ momentum subtraction.

3.1 R-operation

Let ∆ be an arbitrary c-operation and Γ be a (not necessarily connected) graph. Accord-
ing to the notation developed above the corresponding R-operation reads as

R(Γ) =
∑

S∈W
U
{Γ}

∆(S), (3.1)

9



where the wood4 W
U
{Γ} comprises only such spinneys from W{Γ} that do not include

trivial subgraphs of Γ as their members. In addition, it is also convenient to define

′R(Γ) =

S 6=Γ∑

S∈W
U
{Γ}

∆(S) ≡ R(Γ)−∆(Γ),

and write R< Γ > and ′R< Γ > instead of R(Γ)< Γ > and ′R(Γ)< Γ >, respectively.
Theorem 1

(a) If Γ is a trivial graph, then
R(Γ) = ∆(S∅) = 1. (3.2)

(b) If ∆1 and ∆2 are two (not necessarily different) c-operations, then

R1(Γ)R2(Γ) =
∑

S∈W
U
{Γ}

∏

γ∈S

(∆1(γ)
′R2(γ) + ∆2(γ)). (3.3)

(c) Let γ be a graph of the form γ = δ/Φ with δ ⊂ Γ and Φ being a spinney of Γ such
that δ > Φ. Then there holds the following chain of equations:

R(Γ)< δ/Φ >=
∑

S∈W
U
{γ}

∆(S)< δ/Φ >= R< γ > . (3.4)

Proof.

(a) Follows directly from the definition of the c-operation.

(b) Indeed, due to the a properties of the product of c-operations discussed above

R1(Γ)R2(Γ) =
∑

S′∈W
U
{Γ}

S′>̃S∑

S∈W
U
{Γ}

∆1(S
′)∆2(S). (3.5)

Further, if a spinney S obeys the relation S ′>̃S then it can be unambiguously
decomposed into two ”subspinneys” Sa and Sb such that S = Sa ∪ Sb, Sa < S ′ and
Sb ∼ S ′. This allows one to transform the second sum over S in the r.h.s. of (3.5)
as follows:∑

Sa<S′

∑

Sb∼S′

∆1(S
′)∆2(Sa)∆2(Sb) =

(∏

γ′∈S′

∆1(γ
′)′R2(γ

′)
)(∑

Sb∼S′

∆2(Sb)
)
.

Using this relation and going to the summation over S = S ′∪Sb and Sb, one readily
obtains (3.3).

(c) As a direct consequence of the properties of c-operations, one gets

R(Γ)< γ >=
∑

Φ<̃S∈W
U
{δ}

∆(S/Φ)< δ/(Φ ∪ S)max > .

On the other hand, the mapping

{S|Φ<̃S ∈ W
U
{δ}} r−→ W

U
{δ/Φ}

with r(S) = S/Φ provides a one-to-one correspondence between these two sets,
whence (3.4) follows.

4The subscript U is to recall that the genuine U ltraviolet subdivergences are connected with 1PI,
non-trivial subgraphs.
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3.2 R−1-operation

Let us define
R−1(Γ) =

∑

S∈W
U
{Γ}

∆−1(S), (3.6)

where ∆−1 is a c-operation5. It was shown in refs. [56, 57] that the c-operation ∆−1 is
unambiguously determined by demanding that

R(Γ)R−1(Γ) = 1 (3.7)

and
R−1(Γ)R(Γ) = 1. (3.8)

We are going to find an explicit representation for the R−1-operation in terms of the
∆-operation. We begin by proving that (3.7) is equivalent to the following equation

∆(γ)R−1(γ) = −∆−1(γ) (3.9)

provided the latter holds for any 1PI graph γ. Indeed, given (3.9), (3.7) is derived by a
straightforward application of (3.3)

R(Γ)R−1(Γ) = 1 +
∑

∅6=S∈W
U
{Γ}

∏

γ∈S

(∆(γ)R−1(γ) + ∆−1(γ)) (3.10)

On the other hand, if (3.7) holds then (3.9) can be proved trivially by considering
(3.10) with Γ = γ and using induction in the loop number Nγ.

The identity (3.9) is a convenient starting point for constructing ∆−1. Let us rewrite
it as follows

∆−1(Γ) = −∆(Γ)−
∑

∅6=S∈W
U
{Γ}

∆(Γ)∆−1(S). (3.11)

Due to the identity ∆(Γ)∆−1(Γ) = 0, (3.11) expresses the ∆−1-operation in terms of the
∆ and ∆−1-operations, the latter appearing only for graphs with their loop number less
than NΓ. The next step is to use the same equation (with Γ substituted by γ with γ ∈ S)
for every factor ∆−1(γ) in the r.h.s of (3.11). This recursion process will stop when there
remain only one-loop diagrams as arguments of the ∆−1-operations. The resulting sum
may be further simplified by collecting similar terms and the final result reads

∆−1(Γ) = −∆(Γ)
∑

F∈F̄
U
{Γ}

(−)|F |∆(F ), (3.12)

where the the collections of forests F
U
{Γ} comprises only such forests from F{Γ} that do

not include trivial graphs as their elements.
Proof. By induction in the loop number N . The statement is obviously true at the

one-loop level. Assuming its validity for N (Γ) ≤ n, we transform the relation (3.11) with
N (Γ) = n + 1 as follows:

∆−1(Γ) = −∆(Γ)
∑

S∈W
U
{Γ}

∏

γ∈S



−∆(γ)

∑

F∈F̄{γ}

(−)|F |∆(F )



 ,

5∆−1 is not an inverted ∆!
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whence (3.12) follows immediately. Note that the representation (3.12) leads directly
to the forest formula for the R−1-operation, viz.

R−1(Γ) =
∑

F∈F
U
{Γ}

(−1)|F |∆(F ). (3.13)

As we shall see later on, the remarkable similarity between (3.13) and the forest for-
mula for the BP R-operation (see subsection 3.4) is by no means an accidental coincidence
but, rather, reflects the deep relation of the R−1-operation to the BPHZ formalism.

3.3 R- and R−1-operations within the MS-scheme

The main application of the R-operation is to make a given FI finite at ǫ → 0 via
subtracting from it the UV divergences in a way compatible with the general principles
of quantum field theory (see, e.g. refs. [3,25]). Any particular version of renormalization
scheme can be obtained by making a proper choice of the corresponding c-operation.
A very convenient choice, inherently connected with dimensional regularization, is the
minimal subtraction scheme, with its main virtue of respecting formal symmetries6 of
dimensionally regularized FI’s and, hence, dimensionally regularized Green functions.

Let A(qγ ,mγ) denote the formal algebra A(qγ) extended by allowing for every mass
from mγ to act as an extra generator. In other words, every ei ∈ A(qγ,mγ) is, in fact, a
basis vector from A(qγ) multiplied by a monomial in masses from mγ . The R-operation
in the MS-scheme, R

U
, which, when applied to a FI< Γ >, converts the latter into the

corresponding minimally subtracted FI, reads [35–37]

R
U
(Γ) =

∑

S∈W
U
{Γ}

∆
U
(S). (3.14)

Here the c-operation ∆
U
(γ) is supposed to evaluate the ultraviolet MS-counterterm cor-

responding the overall UV divergence of the FI < γ >. Considering the linearity of the
R

U
-operation [36], we may assume, without essential loss of generality, that polynomials

Pv and Pl are homogeneous. This allows us to present the action of the c-operation ∆
U

on a FI < Γ > in the following form

∆
U
< γ >=

∑

i

Zi(< γ >, ǫ)ei(q
γ,mγ), (3.15)

where {ei(q
γ ,mγ)} are the basis vectors of mass dimension ω(γ) from A(qγ,mγ). The

dimensionless renormalization constants {Zi} are polynomials in 1/ǫ such that

K Zi = Zi, (3.16)

where K f(ǫ) stands for the singular part of the Laurent expansion of f(ǫ) in ǫ near ǫ = 0.
The main theorem of the renormalization theory in the case of the MS-scheme can be

formulated as follows [29]:
Theorem 2 There exists a unique choice of the renormalization constants {Zi} ful-

filling the minimality restriction (3.16) and such that the R
U
-operation makes arbitrary

(infrared convergent7) FI finite in the limit ǫ → 0.

6With notorious exceptions being symmetries evoking chiral transformations.
7Any euclidean FI without massless lines is infrared convergent; the FI’s that include massless lines

are discussed in the next section.
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The finiteness of R
U
< Γ > at ǫ → 0 means that

∆
U
< γ >= −K ′R

U
< γ > .

This equation may be used to define the UV counterterms and, thereby, the R
U
-

operation for any FI’s including the IR divergent ones. This is achieved by (i) introducing
an auxiliary non-zero mass µ0 into every massless propagator to ensure suppression of all
the IR divergences; (ii) computing ∆

U
< γ > (qγ ,mγ, µ0, µ, ǫ) and (iii) setting µ0 = 0 in

the final result. Being quite correct this a brute force prescription is surely not to be
considered as a practical one; there exist much more subtle tricks that are more convenient
for practical calculations (see refs. [35, 37, 42, 43] and below).

Now we turn to the R−1
U — to the inverse of the R

U
-operation. It reads

R−1
U (Γ) =

∑

S∈W
U
{Γ}

∆−1
U (S). (3.17)

As a consequence of (3.16) we get that the ∆−1
U -operation also possesses the minimality

property, i.e.

∆−1
U

< γ >=
∑

i

Z
(−1)
i (< γ >, ǫ)ei(q

γ ,mγ).

with K Z
(−1)
i = Z

(−1)
i .

It was stressed by the authors of refs. [56, 57] that in the MS-scheme R−1
U -operation

plays a role which, in a sense, is similar to that of the Zimmermann identities in the
momentum subtraction scheme8. It could be effectively employed to express an un-
renormalized (or only partially renormalized) FI as a sum of appropriately constructed
MS-renormalized FI’s.

The main idea of these applications of the R−1
U -operation is very simple and could

be illustrated best by the following example. Let the product RUR
−1
U (Γ) act on an

unrenormalized FI < Γ >. Simple manipulations based on (3.4) give the identity

< Γ >=
∑

S∈W
U
{Γ}

{
∏

γ∈S

∆−1(γ) < γ >

}
∗R

U
< Γ/S >, (3.18)

which expresses the initial FI < Γ > in the form of a linear combination of completely
MS-renormalized FI’s times some constants (divergent in the limit of ǫ going to zero).

3.4 BPHZ renormalization and the R−1-operation

In this section we shall clarify the relation between the R−1-operation and the good
old Bogoliubov-Parasiuk renormalization prescription which is based on the momentum
subtractions. It will be shown that the use of the combinatorial technique above developed
uncovers a remarkable hidden structure of this renormalization scheme. We shall then
employ this structure to obtain simple regular derivations of the Zimmermann identities
and the conversion formulas establishing a connection between the minimal subtraction
and momentum subtraction schemes.

8See in this connection the next subsection.
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We begin, as usual, by fixing our notation. The BP R-operation, R(Γ), is defined in
terms of the corresponding c-operation δ as follows

R(Γ) =
∑

S∈W
U
{Γ}

δ(S), (3.19)

δ(γ) = −M(γ)′R(γ), (3.20)

where M(γ) is a subtraction operator (in fact another c-operation) which associates with
a given FI < γ > its truncated Taylor expansion in the external momenta qγ . The
formal definition of M is (note that this definition assumes that one first chooses an
initial FI < Γ > so that Feynman subintegrals < γ′ >, γ′ ∈ Γ and, thereby, ω(γ′) are
well-defined)

< γ >=

{
T ω(γ′)
qγ < γ >, if γ = γ′/S, γ′ ⊆ Γ, < γ′, S ∈ W

U
{Γ},

0, if γ is an isolated vertex,
(3.21)

T n
... =

(n)∑

i≥0

T (i)
... , (3.22)

where 9 we have denoted by T (i)
... the operator that picks out the terms of the i-th order

of the Taylor expansion with respect to the corresponding variables, e.g.

T (n)
ρ f(ρ) =

1

n!

(
d

dκ

)n

f(κρ)|κ=0

and T (n)
ρ f(ρ) ≡ 0 if n < 0. The complicated recurrence structure of the R-operation can

be explicitly resolved via the forest formula [6, 11] which has the form

R(Γ) =
∑

F∈F{Γ}

(−)|F |M(F ). (3.23)

The BPH theorem ensures that for every FI <Γ> without massless lines the combination
R < Γ > is finite at ǫ → 0.

In view of (3.12), it is clear that the inverse R−1-operation assumes a remarkably
simple explicit form, viz.

R−1(Γ) =
∑

S∈W
U
{Γ}

M(S). (3.24)

Below we shall see that it is the simplicity of the R−1- operation that distinguishes
the BHZP renormalization prescription.

Indeed, as is well known, the concepts of oversubtractions and the so-called Zimmer-
mann identities are of vital importance for most applications of the BPHZ approach.
Now we employ the general formalism of the R−1-operation to give a simple and regular
way of deriving these identities and their generalizations.

Suppose we are given a rule which associates an integer a(γ) with every 1PI subgraph
γ ⊂ Γ. Let us put, in addition, a(γ) = a(γ′) for any graph γ′ = γ/S with γ′ ⊆ Γ

9Throughout this subsection it is assumed that Feynman integrals encountered contain no massless

lines and thus are free of any IR divergences.This qualification ensures that the operator T
(i)
qγ is well

defined for any integer i ≥ 0.
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and S ∈ W
U
{Γ}. The R-operation with oversubtractions corresponding to the rule a(γ)

reads [6]

Ra(Γ) =
∑

F∈F
U
{Γ}

(−)|F |Ma(F ), (3.25)

where the c-operation Ma is defined as

Ma < γ >=

{
T a(γ)
qγ < γ > ifγ is a non-trivial 1PI graph from P{Γ},

0, otherwise.
(3.26)

The following proposition is valid [6].
Theorem 3 The Feynman integral Ra < Γ > is finite at ǫ = 0 if the subtraction degrees
a(γ) satisfy the inequalities

a(γ) ≥ ω(γ) +
∑

δ∈S

(a(δ)− ω(δ)) (3.27)

for any 1PI subgraph γ ∈ Γ and any spinney S ∈ W
U
{γ}.

An example of choosing the function f(γ) meeting the constraint (3.27) is, in fact,
provided the R-operation.

As a direct consequence of the theorem, we get that the R-operation Ra makes also

finite every FI γ =

(
∏

γ′′∈S

Pγ′′(qγ′′

)

)
∗ < γ′/S > with γ′ ⊂ Γ and γ > S ∈ W

U
{γ} provided

the degree of every polynomial Pγ′′ is less than or equal to a(γ′′). In what follows we
shall refer to such FI as a-admissible ones.

An equivalent form of (3.25) is (cf. eqs.(3.23) -(3.24) )

Ra(Γ) =
(
R−1

a (Γ)
)−1

, (3.28)

with
R−1

a (Γ) =
∑

S∈W
U
{Γ}

Ma(S). (3.29)

Let us now consider two different R-operations with oversubtractions, viz. Ra and
Rb such that both functions a(γ) and b(γ) are constrained by (3.27) and the inequality

a(γ) ≥ b(γ) (3.30)

holds for every γ ⊆ Γ. At the level of individual FI’s the Zimmermann identity may
be considered as a conversion formula to express an Ra-normalized FI in terms of Rb-
normalized FI’s . To derive the conversion relation it suffices to elaborate a trivial identity

Ra(Γ) ≡ Rb(Γ)R
(−1)
b (Γ)Ra(Γ) (3.31)

with the help of (3.3) and (3.29). As a result we get

Ra(Γ) = Rb(Γ)Rb,a(Γ), (3.32a)

Rb,a(Γ) = R(−1)
b (Γ)Ra(Γ) =

∑

S∈W
U
{Γ}

δb,a(S), (3.32b)

δb,a(γ) = (Mb −Ma)
′Ra(γ). (3.32c)
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Here Rb,a is an R-operation, with

δb,a < γ >=
∑

iγ

ξb,aiγ eiγ (q
γ) (3.33)

and the coefficients ξb,aiγ being finite at ǫ → 0 for every a-admissible FI < γ > . Indeed,
it follows from (3.32) that

δb,a < γ >=

b(γ)∑

i>a(γ)

T (i)
qγ Ra < γ >, (3.34)

with Ra < γ > being finite due to Theorem 3. We now combine (3.32) and (3.34) to
come to the following conversion formula

Ra < Γ >=
∑

S∈W
U
{Γ}

δb,a < S > ∗Rb < Γ/S > (3.35)

or, explicitly,

Ra < Γ >=
∑

S∈W
U
{Γ}

∑

i

∏

γ∈S

(
ξb,aiγ

)
Rb < Γ/S >i . (3.36)

Let us turn to the derivation of the conversion formulas which allow one to express
easily a minimally subtracted FI in the form of an appropriate linear combination of FI’s
renormalized by the Ra-operation, and vice versa. Let us define

Ra,U(Γ) = R−1
a (Γ)R

U
(Γ) (3.37a)

RU,a(Γ) = R−1
U
(Γ)Ra(Γ). (3.37b)

An almost literal repetition of the above argument shows that the corresponding c-
operation is

δa,U < γ >= Ma
′R

U
< γ > +∆

U
< γ > (3.38a)

while

δU,a < γ >≡ δ−1
a,U < γ >= δa,U(γ)

∑

F∈F
U
{γ}

(−1)|F |δa,U(F ) < γ > . (3.38b)

Thus,

R
U
< Γ >=

∑

S∈W
U
{Γ}

δa,U < S > ∗Ra < Γ/S >, (3.39a)

and
Ra < Γ >=

∑

S∈W
U
{Γ}

δU,a < S > ∗R
U
< Γ/S > . (3.39b)

As a consequence of Theorem 2 the R-operations Ra,U and RU,a are evidently finite10

on the class of a-admissible FI’s if and only if the subtraction degrees a(γ) meet condition
(3.27). It is worth noting that Theorem 3 follows directly from this observation and the
conversion relation (3.39b).

10That is both c-operations δa,U (γ) and δU,a(γ) transform any a-admissible FI < γ > into polynomials
in qγ finite at ǫ → 0.
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4 R∗-OPERATION

The purpose of this section is twofold. First, we formulate an extended version of the
R∗-operation which minimally removes both the UV and IR divergences from a (dimen-
sionally regularized) euclidean Feynman integral with arbitrary set of external momenta
(including the exceptional ones) and formally expanded in some of its masses and ex-
ternal momenta. Second, we employ the forest technique developed above to simplify
considerably the apparatus of the R∗-operation by explicitly expressing the correspond-
ing IR counterterm operation in terms of its UV counterpart. This extended formulation
of the R∗-operation is useful for the studying asymptotic expansions of generic Feynman
integrals (see the next section) and computing the UV renormalization constants (see
below).

Since the R∗-operation is comparatively a newcomer in the renormalization market we
begin with a special introductory section which provides the reader with a short overview
of the main ideas of the R∗-operation and a simple illustrative example of its use in
calculations.

4.1 R∗ - primer

A lot of information about the structure of the renormalized quantum field theory is
contained in the renormalization group (RG) functions (the β-functions and anomalous
dimensions). These functions, in their turn, are expressible through some combinations of
UV renormalization constants (see any textbook on QFT). Historically, the R∗-operation
was invented [42] in the attempt to get rid of some limitations of the so-called IR rear-
rangement (IRR) trick [37], where, in fact, it was first demonstrated that the problem
of evaluating the UV renormalization constants can be drastically simplified by proper
use of the rich possibilities offered by the MS-scheme. Coupled with the R∗-operation,
the IRR trick became a regular powerful method of computing the UV renormalization
constants [42, 43].

The starting ideas both of the IRR trick and of the R∗-operation can be illustrated
best exposed by considering a couple of simple examples. Let us begin with a qudratically
divergent FI,

< Γ1 > (q,m) =

∫
dµk1d

µk2

((q − k2)2 +m2)((k1 − k2)2 +m2)(k1
2 +m2)

(4.1)

The corresponding UV counterterm reads

∆
U
< Γ1 >= Zmm

2 + Z2q
2 (4.2)

where Zm and Z2 contribute to the mass and wave functions renormalizations, respec-
tively, in the ϕ4-model11. After differentiating < Γ1 > with respect to m2, one comes to
another, now only logarithmically divergent, FI:

< Γ2 > (q,m) =

∫
dµk1d

µk2

((q − k2)2 +m2)((k1 − k2)2 +m2)(k1
2 +m2)2

.

The differentiated version of eq.(4.2) is

∆
U
< Γ2 >= −Zm/3. (4.3)

11Throughout this subsection we work in four-dimensional space-time and hence set D0 = 4.
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The idea of the IRR trick is quite simple. Since the UV renormalization constant of a
logarithmically divergent FI does not depend on any dimensional parameters and since
our aim is to calculate just this constant, nothing prevents us from introducing auxiliary
external momenta and/or masses along with setting zero the initial mass and external
momentum provided that this does not lead to any IR divergences. In many cases, the
resulting FI becomes simpler for calculation. For the FI in question this can be easily
achieved if we introduce a new non-zero external momentum q′ to flow through one of
the two lines in the series ( both with one and the same propagator 1/(k2

1 +m2) in (4.3))
and set q and m zero. Indeed, the resulting FI

< Γ3 > (q′) =

∫
dµk1d

µk2
k2
2(k1 − k2)2(k1 − q′)2k2

1

(4.4)

is readily computed in terms of Γ-functions (see, e.g. ref. [35]).
Unfortunately, the condition of that the IR divergences do not appear restricts consid-

erably the range of applicability of the IRR trick, since for complicated FI’s this prevents
one from transforming a given FI to the simplest form (see, e.g. ref. [42]).

A radical generalization of IRR, free of any limitations of this kind, is based on the
R∗-operation. To understand the essence of this approach, let us try to compute Zm

starting directly from FI < Γ2 > (q,m) and this time avoiding any manipulations with
external momenta. By definition of ∆U , we have

∆U < Γ2 >= Kǫ

[
< Γ2 > (q,m) + Zγ

∫
dµk1

(k2
1 +m2)2

]
, (4.5)

where Zγ = −(16π2ǫ)−1 and the second term subtracts the UV subdivergence correspond-
ing to the subintegration over the loop momentum k2. If now we tried to set m = 0 in
the corresponding integrand, then the integration over the small k1 region would lead to
an IR divergence. Within the DR this IR divergence shows up as an extra pole in ǫ. As
a result, a straightforward calculation of the rhs of (4.5) would give the wrong result,
containing spurious IR poles along with the true UV ones. Now there arises a natural
question: can one extract the IR pole and remove it by subtracting from < Γ2 > (q, 0) an
IR counterterm local in the x-space and not in the p-space? The affirmative answer was
given in refs. [42,43] where the R̃-operation with the necessary properties was constructed.
It may be easily checked that the combination

f(k1) = k−4
1 + Z̃δ(k1), with Z̃ = (16π2ǫ)−1 (4.6)

does not lead to any IR poles after a formal D-dimensional integration with a function
smooth at k1 = 0. This means that the pole part of the integral

′RR̃ < Γ2(q, 0) >=

∫ [∫
(q − k2)

−2(k1 − k2)
−2f(k1)dµk2 + Zγf(k1)

]
dµk1 (4.7)

is determined by the behavior of the integrand in the region of large k1, k2 and coincides
with the UV counterterm we are looking for. In (4.7) the symbol R̃ stand for the IR

R̃-operation that removes the IR divergencies by x-local counterterms and in our case
comes to replacing k

(−4)
1 by combination (4.6).

Unfortunately, the representation of the IR counterterms through δ-functions of some
loop momenta becomes rather cumbersome and unnecessarily complicated in general
case. Another approach that is much more convenient and powerful was first outlined in
ref. [58] and will be presented below.
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4.2 Generalized forest technique

In this subsection we extend some of our previous considerations to the more general case
of spinneys and forests formed by arbitrary connected graphs. Though such a general-
ization is quite straightforward it proves to be quite useful in the treatment of the R∗-
operation and asymptotic expansions of Feynman integrals.

Let us denote as C{Γ} the collection of all connected subgraphs of a graph Γ. From
now on a spinney (forest) of Γ will refer to a collection of connected non-intersecting
(non-overlapping) non-empty subgraphs of Γ. Thus, if S is a member of W{Γ} then for
any pair γ, γ′,γ 6= γ′ from S one has

γ ∈ C, γ′ ∈ C{Γ} and γ ∩ γ′ = Γ∅. (4.8)

It is an easy exercise to see that all the reasoning of sections 3.1 and 3.2 can be applied
without any modifications to these extended definitions. Note also that even for a one-
particle-reducible graph γ one has ∆(γ) 6≡ 0, in spite of the fact that by definition
∆ < γ >≡ 0. The reason is that for a subgraph δ ⊆ γ such that the reduced graph γ/δ
is 1PI ∆(γ) < γ/δ > is ∆ < γ/δ > and, hence, can be non-zero.

Let C ′{Γ} ⊆ C{Γ} be an arbitrary subset of the family of connected subgraphs of the

graph Γ and W ′{Γ} ⊆ W{Γ}
(
F ′{Γ} ⊆ F{Γ}

)
stand for the collection of all spinneys

(forests) with their elements from C ′{Γ}. Let us define

R(W ′{Γ},∆) =
∑

S∈W ′{Γ}

∆(S), (4.9)

R(F ′{Γ},∆) =
∑

F∈F ′{Γ}

∆(F ), (4.10)

where ∆ is a c-operation. A literal repetition of the argument given in section 3.3 imme-
diately shows that

R−1(W ′{Γ},∆) = R(F ′({Γ},−∆), (4.11)

R−1(F ′{Γ},∆) = R(W ′({Γ},−∆). (4.12)

For any spinney S ∈ W{Γ} we denote

C ′ ≡ C∼{Γ, S} = {γ|S ∼ γ ∈ C{Γ}},

C ′′ ≡ C≻{Γ, S} = {γ|S ≺ γ ∈ C{Γ}},

C ′′′ ≡ C>̃{Γ, S} = {γ|S<̃γ ∈ C{Γ}},

while
W∼{Γ, S}, W≻{Γ, S}, W >̃{Γ, S}, F∼{Γ, S}, F≻{Γ, S} and F >̃{Γ, S}

will stand for the respective families

W ′{Γ, S}, W ′′{Γ, S}, W ′′′{Γ, S}, F ′{Γ, S}, F ′′{Γ, S} and F ′′′{Γ, S}.

Theorem 4. For an arbitrary spinney S ∈ W{Γ} the following relations are true

R(W >̃{Γ, S},∆) < Γ/S >= R(W{Γ/S},∆) < Γ/S >, (4.13)
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R(W >̃{Γ, S},∆) = R(W∼{Γ, S},∆)R(W≻{Γ, S},∆), (4.14)

R−1(W >̃{Γ, S},∆) = R(F≻{Γ, S},−∆)R(F∼{Γ, S},−∆). (4.15)

Proof. Relation (4.13) is nothing but a shorthand of (3.4). Eq.(4.14) is a direct conse-
quence of the fact that every spinney S from W >̃{Γ, S} can be unambiguously presented
in a form

S = S≻ ∪ S∼ with S≻ ∈ W≻{Γ, S} and S∼ ∈ W∼{Γ, S}

and of the observation that no graph γ from C∼{Γ, S} can have a proper subgraph γ′ ⊂ γ
such that γ′ ∈ C≻{Γ, S}. In order to prove (4.15) it is sufficient to make use of (4.14)
and (4.11).

4.3 Extra notation and definitions for Feynman integrals

Let < Γ > (q,m) be a dimensionally regularized FI corresponding to a (connected) graph
Γ. Its external momenta may obey some extra linear constraints of the form

∑

l∈ci

ϕΓ(l)ql = 0, ci ∈ c. (4.16)

Here c = {ci} is a collection of subsets of EΓ which is to comprise the empty set and EΓ;
this latter constraint is due to the total momentum conservation. Without essential loss
of generality, we shall assume that for any pair i, i′ such that ci∩ ci′ = ∅ or ci ⊂ ci′ , one
has either (ci ∪ ci′) ∈ c or (c′i\ci) ∈ c, respectively. The case of non-exceptional external
momenta corresponds to the choice c = {E , ∅}.

If γ is a connected graph from P{Γ}, then the relevant set of external momenta
qγ will be subjected to linear constraints induced by (4.16) and the total momentum
conservation i.e. ∑

l∈ci

ϕγ(l)q
γ
l = 0, ci ∈ cγ, (4.17)

where
cγ = {ci|ci ⊆ Eγ, ci ∈ c} ∪ {Eγ\ci|ci ⊆ Eγ, ci ∈ c}. (4.18)

Note that even if the external momenta ql ∈ q are non-exceptional the vectors from qγ

will, in general, form an exceptional set of external momenta. Indeed, if, for instance,
E ⊆ Eγ, then cγ = {E , Eγ\E , ∅} for c = {E , ∅}, as it follows from (4.18).

A subset q′ ⊆ qγ = {ql|l ∈ E ′ ⊆ Eγ} is said to be a right (r-)subset of qγ if the
decomposition qγ = q′ ∪ (qγ\q′) is well-defined with respect to constraints (4.17). In
other words, each of the constraints should remain valid after all the momenta from q′

are multiplied by an auxiliary parameter. The requirement is equivalent to demanding
that the intersection (E ′ ∩ ci) ⊆ cγ for every ci from cγ.

Suppose we are given a partition of external momenta and masses of the FI < Γ > of
the form12

q = q1 ∪ q0 , m = m1 ∪m0, (4.19)

qi = {ql|l ∈ E i}, mi = {ml|l ∈ Li}, E0 ∩ E1 = ∅ = L0 ∩ L1, i = 0, 1,

12It is convenient to assume that all the massless lines from L belong to L0.
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with q1 and q0 being r- subsets of q. For every connected graph γ ∈ P{Γ} we define

q
γ
i = {qγl |l ∈ E i

γ} and m
γ
i = {ml|l ∈ Li

γ}, i = 0, 1,

where
E1
γ = E1 ∩ Eγ, E0

γ = Eγ\E
1
γ and Li

γ = Li ∩ Lγ, i = 0, 1. (4.20)

Let γ be a connected graph from P{Γ}. If the external momenta q
γ
1 form an r-subset

of qγ , then γ will be termed as a 1-right graph. A vertex v ∈ Vγ is said to be 1-hard, if

∑

l∈E1∩E(v̇)

ql 6≡ 0

and/or at least one massive line from L1
γ has v as its incident vertex; otherwise v will be

termed 1-soft. For example, if L0 = E0 = ∅, then for a given vertex of Γ to be 1-hard,
the algebraic sum of external momenta flowing into it should be non-zero, or the vertex
should be incident at least to one massive internal line. If γ is 1-right, then it will be
referred to as
(i) 1-soft, if Vγ comprises no 1-hard vertices;

and
(ii) 1-irreducible, if there is no such line l, L1 6∋ l ∈ Lγ, that the graph γ − l obtained
by deleting l from γ remains 1-right and c(γ − l) > c(γ). In other words for γ to be
1-irreducible it must not involve a cut- line l whose corresponding internal momenta pγl
can be identically expressed (via linear constraints on qγ) exclusively in terms of the
momenta from the set qγ

0 . Note that a 1-soft graph γ could be 1-irreducible if and only
if it is 1PI. Finally, a spinney S ∈ W{γ} consisting of 1-right subgraphs of γ will called
(i) a 1-uniting one, if every 1-hard vertex from Vγ belongs to some graph from S;
and
(ii) a 1-hard one, if it comprises no 1-soft graphs.

A very useful transformation of a Feynman integral is its expansion in a (formal)
Taylor series with respect to some of its external momenta and masses. Suppose one is
going to expand the FI < Γ > (q,m) in masses and momenta from the collections q0

and m0, respectively. The operator t0 which performs the procedure is defined as

t0 =

∞∑

n≥0

ξnt
(n)
0 , t

(n)
0 = T (n)

q0,m0
. (4.21)

Thus

t
(n)
0 < Γ >=

1

n!

( d

dξ

)n
< Γ > (q1 ∪ ξq0,m1 ∪ ξm0)|ξ=0, (4.22)

and
t
(n)
0 < Γ >=

∑

i

< Γ >i (q1,m1)ei(q0,m0), (4.23)

with ei(q0,m0) being basis vectors of a (mass) dimension n from A(q,m). Here several
comments are in order.
(i) The differentiation with respect to ξ in (4.22) may be carried out in three ways. In
first place, one could simply differentiate the FI, which is a smooth function of ξ at ξ 6= 0.
Another way is to differentiate the corresponding integrand. Here in turn two options
arise. First, we might employ the momentum space representation as described by (2.1).
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(It is this option, which is always used in carrying out practical calculations because
of flexibility and compactness of this representation.) Second, it is possible to use the
α-parametric representation. In what follows we shall follow to the last option since this
allows for a direct interpretation of < Γ >i (q1,m1) as a FI corresponding to the same
graph Γ with the same but somewhat differently treated α-parametric integrand13.
(ii) The operation of setting ξ zero is meant to be a formal one, i.e., it should act on the
differentiated integrand.
(iii)The infinite series in the rhs of (4.21) is to be understood as a formal one; so no
question about its convergence may arise. Moreover, in every application where the
operator t0 can appear, the terms of too high orders in ξ may be dropped for one reason
or another, while the remaining (finite) series in ξ is taken at ξ = 1. Having this in mind
we put ξ = 1 in all formulas below.

4.4 R∗-operation in the MS-scheme

Given an arbitrary c-operation, ∆g, we define another c-operation, ∆ġ, according to the
following rule

∆ġ < γ >=

{
∆g < γ > if LΓ 6= ∅;

< γ > if γ is an isolated vertex.
(4.24)

Further, let C̃{Γ} stand for a collection of graphs which could be produced from a
graph Γ by reducing some non-empty (possibly disconnected) subgraphs of Γ. In other
words,

C̃{Γ} = {γ|γ = Γ/S, S ∈ W{Γ}}.

It is worth noting that Γ ∈ C̃{Γ}, since by definition Γ/S∅ = Γ, and if Γ is discon-

nected, then for every element γ ∈ C̃{Γ} the number of its c-component will be equal

to that of Γ. Let us also define W̃{Γ} as a subset of W{Γ} comprising all (minimal)

spinneys which generate exactly the set C̃{Γ} as a result of the operation S −→ Γ/S.

The c̃-operation ∆̃
I
(γ) — the ”infrared” counterpart of ∆

U
— is defined as follows

∆̃
I
(γ) t0 < Γ >=





t0
(
< Sγ >

)
∗∆İ < Γ/Sγ >, if γ ∈ C̃{Γ} and

Sγ is 1-uniting

0, otherwise,

(4.25)

where Sγ is the (unique) spinney from W̃{Γ} such that Γ/Sγ = γ. Here ∆
I
such is a

c-operation that for any collection of vertex polynomials {Pγ(q0)|γ ∈ Sγ} the combination

−
(∏

γ∈Sγ

Pγ

)
∗∆

I
< G/Sγ >≡ −∆

I

((∏

γ∈Sγ

Pγ

)
∗ < G/Sγ >

)

is the overall IR divergence of a (tadpole14) FI:

− t0

((∏

γ∈Sγ

Pγ

)
∗ < G/Sγ >

)

13Generally speaking, it is by no means obvious that these ways are equivalent. Fortunately, this is
the case within the dimensional regularization [32].

14This is the case since γ = Γ/Sγ is 1-soft owing to the definition (4.25).
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(more details about the possible choices of ∆
I
are presented below).

Another useful version of (4.25) reads

∆̃
I
(γ)t

(n)
0 < Γ >=





(
t
(n′)
0 < Sγ >

)
∗∆İ < Γ/Sγ >, if γ ∈ C̃{Γ} and Sγ

is 1-uniting;

0, otherwise,

(4.26)

with15 n′ = n− ω(Γ/Sγ).
The ∆

I
-operation has the following easily checked properties:

(i) ∆̃
I
(Γ)t0 < Γ >= t0 < Γ > if Γ is a trivial graph;

(ii) ∆̃
I
(Γ)t0 < Γ >= ∆

I
< Γ > if Γ is a 1-soft, non-trivial graph;

(iii) if the spinney SI comprises at least one 1-reducible element, then

∆̃
I
(γ)t0 < Γ >= 0 due to the very FI t0 < Sγ > vanishes.

Finally, we define the combined action of ∆
U
and ∆̃

I
operations in the natural way:

∆
U
(S)∆̃I(γ) ≡ ∆̃I(γ)∆U

(S), (4.27)

∆
U
(S)∆̃I(γ)t0 < Γ >= (t0∆U

(S) < Sγ >) ∗∆İ < Γ/Sγ > . (4.28)

It follows from (4.28) that the product ∆
U
(S)∆̃I(γ) can be non- zero if and only if S ≤ Sγ .

This condition reflects the simple fact that no propagator can contribute to both UV and
IR divergencies simultaneously.

Now we are sufficiently equipped to introduce the R∗-operation which subtracts all
kinds of divergences from an (euclidean) dimensionally regularized FI formally expanded
in some of its external momenta and masses. We define

R∗(Γ) = R
U
(Γ)R̃

I
(Γ) ≡ R̃

I
(Γ)R

U
(Γ) (4.29)

where we have introduce the ”infrared” R̃
I
-operation which subtracts the IR divergences

only, and does not care for any UV ones:

R̃
I
(Γ) =

∑

γ∈C̃{Γ}

∆̃
I
(γ) ≡

∑

S∈W̃{Γ}

∆̃
I
(Γ/S) (4.30)

Eqs. (4.25,4.30) imply that the R∗-normalized FI R∗t0 < Γ > can be presented in the
following convenient form

R∗t0 < Γ >=
∑

S∈ uW1{Γ}

S′≤S∑

S′∈W{Γ}

∆
U
(S ′) t0 < S > ∗∆İ < Γ/S > (4.31)

or, equivalently,

R∗t0 < Γ >= ∆İ(Γ)
∑

S∈ uW1{Γ}

S′≤S∑

S′∈W{Γ}

∆
U
(S ′) t0 < S > ∗ < Γ/S > (4.32)

15It is understood here that in the evaluation of the UV index of the FI < Γ/Sγ > the unit vertex
polynomial is associated with every vertex vδ ∈ V(Γ/Sγ), δ ∈ Sγ .
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Here uW1{Γ} stands for the collection of 1-uniting spinneys from W̃{Γ}, which com-
prise 1-irreducible elements only.

Note that these definitions coincide with those of ref. [43] in a particular case where
q0 = ∅, c = {E , ∅}, and the set L0 consists of massless lines only (this means that, acting
on the very FI < Γ >, the operator t0 reduces to the unit one, and that the external
momenta are non-exceptional ones). We shall not develop the corresponding argument
since (4.30,4.31) are much more general than definition (8) of ref. [43] and should be
considered in their own right. Moreover, later we shall show that eq.(4.31) provides one
with a very convenient regular algorithm to evaluate UV counterterms — the problem
which in fact has generated the very idea of the R∗-operation.

Theorem 5. There exists such a choice of the c-operation ∆
I
that the R∗-operation

defined by eq.(4.30) makes finite arbitrary dimensionally regularized FI t0 < Γ > at
ǫ → 0.

The proof of this statement will be presented in the next section. Now we use it to
clarify the concept of IR counterterms and to construct an algorithm for their evaluation.

Let us choose E0 = E and L0 = L. In this case the operator t0 converts the (now
1-soft!) FI < Γ > into a sum of massless tadpoles which are to be put zero within
the DR. To put it in another way: in the absence of any dimensional parameters to
counterbalance the factor µ2ǫ (masses and external momenta do not count due to our
choice of t0), the UV and IR divergences have no choice but to cancel each other. Had we
subtracted the UV divergences with the help of the R

U
-operation, this fine tuning would

surely disappear — the FI R
U
t0 < Γ > is free of any UV singularities but still suffers from

the IR ones, and, thus is, in general, not finite at ǫ → 0. On the other hand, Theorem 5
states that R∗t0 < Γ > must be well-defined in this limit. It is thus only natural to fix
unambiguously the IR ∆

I
-operation by demanding

R∗t0 < Γ >= 0 (4.33)

for every 1-soft FI < Γ >. It will be shown soon that this normalization condition
leads to great simplifications in all applications of R∗-operation. To begin, we shall
demonstrate that this convention immediately leads to an explicit expression for the IR
∆

I
-operation in terms of its UV counterpart.
Indeed, if Γ is a 1-soft graph then each of its connected subgraphs is 1-soft, too. This

means, in particular, that the combination t0
(
∆

U
(S ′) < S >

)
is non-zero if and only if

S ′ = S. This observation allows one to use (4.31) together with definition (4.24) in order
to rewrite the normalization condition (4.33) in the form

∆
U
(Γ) < Γ > +∆

I
(Γ) ′R

U
< Γ >≡ 0. (4.34)

The equation holds for any FI < Γ >, whence it follows that

∆
I
(Γ) = −∆

U
(Γ)R−1

U
(Γ), (4.35)

or, equivalently,
∆

I
= ∆−1

U
. (4.36)

Now we are going to derive a more compact representation for the action of the R∗-
operation upon t0 < Γ >. We write

R∗t0 < Γ >
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=
∑

S∈ uW1{Γ}

(R
U
t0 < S >) ∗∆İ < Γ/S > (4.37)

= R
U
t0 < Γ > +

S 6=Γ∑

S∈ uW1{Γ}

(R
U
t0 < S >) ∗∆

I
< Γ/S > . (4.38)

Every spinney S ∈ uW1{Γ} can be unambiguously represented in the form

S = S ′
⋃

S ′′, where S ′ ∼ S ′′, S ′ ∈ uW
h
1 {Γ} and S ′′ ∈ W s

1{Γ}.

Here W h
1 {Γ} (W

s
1 {Γ}) stands for the collection of all spinneys from W̃{Γ} that include

only 1-hard(soft) elements, while uW
h
1 {Γ} is composed of 1-uniting spinneys fromW h

1 {Γ}.
As a result, (4.38) could be presented as follows

R∗t0 < Γ > = R
U
t0 < Γ > + (4.39)

S′ 6=Γ∑

S′∈ uWh
1
{Γ}

R
U
t0 < S ′ > ∗

S′′∼S′∑

S′′∈W s
1
{Γ}

∆
I
(Γ)∆

U
(S ′′) < Γ/S ′ > (4.40)

= R
U
t0 < Γ > +

S′ 6=Γ∑

S′∈ uWh
1
{Γ}

(R
U
t0 < S ′ >) ∗

(
∆

I
(Γ)R (W∼{Γ, S ′},∆

U
) < Γ/S ′ >

)
(4.41)

The account of the generic properties of the c-operation allows one to replace the
operation ∆

I
(Γ) in (4.41) by

−∆
U
(Γ)R−1(W >̃{Γ, S ′},∆

U
).

Indeed, according to (4.35)

∆
I
(Γ) = −∆

U
(Γ)R(F{Γ},−∆

U
).

However, if a forest F ∈ F{Γ} does not meet the condition F>̃S ′, then the expression

∆
U
(F )∆

U
(S ′′)< Γ/S ′ >

vanishes for any spinney S ′′. Thus, in the case under consideration, we may use

R−1(W >̃{Γ, S ′},∆U) = R(F >̃{Γ, S ′},−∆U)

instead of R(F{Γ},−∆U). Finally, on performing the substitution, there appears a pos-
sibility to use (4.15) and represent R∗t0 < Γ > in a partially summed form

R∗t0 < Γ >= R
U
t0 < Γ > (4.42)

+

S 6=Γ∑

S∈uWh
1
{Γ}

(R
U
t0 < S >) ∗

(
−∆

U
(Γ)R(F≻{Γ, S},−∆

U
) < Γ/S >

)
(4.43)

or, equivalently,
R∗t0 < Γ >=

∑

S∈ uWh
1
{Γ}

(R
U
t0 < S >) ∗

(
−∆U̇ (Γ)

F 6=Γ∑

F∈F≻{Γ,S}

(−)|F |∆U(F ) < Γ/S >
)
. (4.44)

25



4.5 R∗-operation and evaluation of UV and IR counterterms

In this subsection we use the above developed machinery of the R∗-operation to give a
simple proof to an important theorem [43] which states that an arbitrary UV (or IR)
counterterm can be expressed in terms of the divergent and finite parts of some properly
constructed massless FI’s depending on one external momenta. As a by-product, we also
get a new, practically convenient and shorter version of the corresponding algorithm of
ref. [43].
Theorem 6. Let t0< Γ > be an arbitrary dimensionally regularized FI corresponding
to a connected graph < Γ > with NΓ = h and with its external momenta constrained by
(4.16). Then

(a) The Laurent expansion in ǫ of the FI t0< Γ > contains only ǫi with i ≥ −h;

(b) Both polynomials ∆
U
< G > and ∆

I
< Γ > can be identically expressed via the first

h-terms16 of the Laurent expansion in ǫ of some massless propagator-type FI’s with
the number of loops not exceeding h− 1.

Proof.

(a) This is a well-known fact in the case of FI’s without IR divergences which follows
naturally way from the transition to the α-parametric representation and a properly
chosen change of integration variables (see e.g. [29]). Though the argument is no
longer operative in the general case, one can still use it to infer that the polynomial
∆

U
< Γ > and, thereby, ∆

I
< Γ > (as a consequence of (4.36)) has poles in ǫ no

stronger than ǫN (Γ) owing to the argument presented after Theorem 2 of sect. 3
Thus, if a FI t0 < Γ > had a pole at ǫ → 0 higher than ǫ−N (Γ), then the R∗-operation
would fail to renormalize away all the poles from t0 < Γ >, which is in evident
contradiction with Theorem 5.

(b) The statement is obviously true at h = 1. Let us prove it for h = h0 + 1 assuming
that it has already been proved for all h ≤ h0. Owing to (4.36) it is sufficient to
consider only the case of the UV counterterm

∆
U
< Γ >=

∑

i

Zi(ǫ)Pi(q,m).

Without essential loss of generality, we may also assume that, first, Γ is 1PI and,
second, the FI < Γ > is only log-divergent (that is ω(Γ) = 0 and ∆

U
< Γ >= Z(ǫ)).

Indeed it is well-known [35, 37, 38] that if ω(Γ) > 0, then every renormalization
constant Zi can be expressed through the UV counterterms of some set of log-
divergent FI’s obtained from < Γ > by differentiating the latter with respect to its
external momenta and masses.

From Theorem 5 it follows that

Z = −K
(
′R

U
R̃ < Γ >

)
, (4.45)

or, in explicit form, (see (4.43))

Z = −K
[
′R

U
< Γ > +

S 6=Γ∑

S∈ uW1{Γ}

R
U
t
ω(S)
0 < S > ∗∆

I
< Γ/S >

]
(4.46)

16By definition, the Laurent expansion of an h-loop FI starts from the term aǫ−h even if a ≡ 0.
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where we have used the identity ω(Γ/S) + ω(S) = ω(Γ) and the definition (4.26). Z is a
dimensionless polynomial in ǫ−1, and we hence have the freedom of setting to zero some
(or even all) external momenta and masses. Now we put q = 0 and m = 0 and introduce
an non-zero auxiliary mass µ0 into a (arbitrarily chosen) line l ∈ L in such a way that
the resulting FI < Γ > (µ0, µ, ǫ) can be written as17

< Γ > (µ0, µ, ǫ) =

∫
< Γ′ > (k, µ, ǫ)

(k2 + µ2
0)

dµk. (4.47)

Here < Γ′ > (k, µ, ǫ) =< Γ − l > (k, µ, ǫ)Pl(k) with Pl(ql)/q
2
l being the propagator

corresponding the line l in the initial FI < Γ >.
After the rearrangement of external momenta and masses has been done, the FI < Γ >

is to be naturally interpreted as having q = ∅ and L1 = l. It is now clear that every
spinney from uW

h
1 {Γ} may contain one and only one graph; the graph must have l among

its internal lines and must get 1PI after reducing this line. Moreover, if γ ∈ uW
h
1 {Γ} is

not 1PI and ω(γ) ≥ 0, then the FI R
U
t
ω(γ)
0 < γ > is, in fact, zero. Indeed, in this case

γ = γ1 ∪ γ0 ∪ γ2, where γ1 and γ2 are two disjoint 1PI subgraphs of Γ attached to the
vertices π−(l) and π+(l), respectively, while γ0 is the (unique) connected subgraph of Γ
such that L(γ0) = l. Since q = ∅, one has qγ

0 = qγ , and the only possibility to get a non

zero contribution to R
U
t
ω(γ)
0 < γ > is due to the term18

t
ω(γ)
0

(
(∆

U̇
< g1 >) < γ0 > (∆

U̇
< γ2 >)

)
. (4.48)

But this expression is itself equal to zero owing to the fact that (4.48) is evidently a
homogeneous polynomial in momenta from qγ of degree ω(γ) + 2 6= ω(γ)! With account
of this remark, (4.43) leads to the following simplified form of eq.(4.46)

Z = −K
[
′R

U
< Γ >

]

−K
[γ 6=Γ∑

γ

R
U
t
ω(γ)
0 < γ > ∗ −∆

U
(Γ)

∑

F∈F≻{Γ,γ}

(−)|F |∆
U
(F ) < Γ/γ >

)]
,

(4.49)

where the first sum goes over a 1PI γ such that γ0 ⊂ γ and ω(γ) ≥ 0. On dimensional
grounds we have

< Γ′ > (k, µ, ǫ) = (µ/q2)h0ǫ
P ′(k, ǫ)

(k2)1+n
,

where P ′(k, ǫ) is a homogeneous polynomial in k of degree 2n with coefficients being
some meromorphic functions of ǫ. This relation means that the pole part of the FI
< Γ > (µ0, µ, ǫ) itself can be found by performing a trivial one-loop integration over k
in (4.47), with the result being expressed through the first (h0 + 1) terms of the Laura
expansion of P ′(k, ǫ) in ǫ.

In order to finish the proof it remains to be checked that the UV c-operation ∆
U
in

the rhs of (4.49) acts, in fact, only on FI’s with the loop numbers less than or or equal

17If we did not introduce any auxiliary momenta or masses after the nullification procedure, the rhs
of (4.45) would have included the IR counterterm ∆

I
< Γ > whose evaluation is as difficult as that of

∆
U
< Γ >.

18In general, one of two 1PI graphs γ1 and γ2 might be trivial. In order to take into account this
possibility we shall use the ∆U̇ -operation in the expression below.
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to h. This is, indeed, the case since a 1PI graph can not contain a proper subgraph with
the same number of loops.

Equation (4.49) is a convenient starting point for evaluating the UV (and thereby IR)
counterterms. Indeed, the initial algorithm of ref. [43] relies on a relation which is nothing
but an unnecessarily complicated form of (4.46). The advantages of (4.49) over the latter
are clearly seen. First, everything here is expressed through the usual UV counterterm
operation; moreover, the calculational procedure prescribed by (4.49) is technically very
similar to the one used in the case where no IR divergences appear. This means that
if someone wants to compute some UV renormalization constant then one can hopefully
use eq.(4.49) only without any need to understand how it is obtained, not speaking about
subtle details of the R∗-operation. Second, the total number of terms in the rhs of (4.49)
is, in general, much smaller than in the rhs of (4.46). Finally, eq.(4.49) is applicable
without any changes to calculating UV counterterms in two-dimensional field theories,
while the definitions of ref. [43] should be somewhat modified in this case.

5 ASYMPTOTIC EXPANSIONS OF FEYNMAN

INTEGRALS

This section is mainly devoted to combinatorial problems appearing in studying asymp-
totic behavior of a generic Feynman integral in the case where some of its momenta
and/or masses go to infinity.

Suppose we are given a decomposition of external momenta and masses of a dimen-
sionally regularized FI < Γ > (q,m, µ, ǫ), with Γ being a connected graph and q being
q constrained by eqs.(4.16), namely

q = q2 ∪ q1 ∪ q0 , m = m2 ∪m1 ∪m0, (5.1)

qi = {ql|l ∈ E i}, mi = {ml|l ∈ Li}, E i ∩ E j = ∅ = Li ∩ Lj for i 6= j, i, j = 0, 1, 2,

where q2,q1, and q0 are right subsets of q. Let us denote also

qi↑ =
2⋃

i′=i

qi′ , qi↓ =
i′=i⋃

0

qi′, mi↑ =
2⋃

i′=i

mi′ , mi↓ =
i′=i⋃

0

mi′ , i = 0, 1, 2

Note that the sets qi↓, qi↑, i = 0, 1, 2 are obviously right subsets of q too. This
allows us to use freely the terminology introduced in subsection 4.3 with respect to the
partitions

q = qi ∪ qi′ , and q = mi ∪mi′ where (i, i′) = (2, 1) or (1↑, 0).
The problem we are interested in is to construct an explicitly finite asymptotic expansion
of the FI

t0
′< Γ > (q,m, µ, ǫ, ρ) ≡ t0 < Γ > (′q,′m, µ, ǫ)

as ρ → 0. Here, by definition, ′q =′q2∪q1∪q0,
′m =′m2∪m1 ∪m0

′q2 = {ql/ρ|ql ∈ q2},
and ′m2 = {ml/ρ|ml ∈ m2}. Without essential loss of generality we shall assume that if
a vertex v ∈ V is 2-soft, then the corresponding vertex polynomial does not depend on
the momenta from the collection q2.
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5.1 Dimensionally regularized Feynman integrals

Suppose for a moment that the FI < Γ > does not suffer on any IR divergences. The
general form of the ρ → 0 expansion of the R-normalized19 FI R ′< Γ > (q,m) considered
in a space-time with an integer dimension is [11, 63–69]

R ′< Γ > ===
ρ→0

∞∑

i=imin

ρi
N (Γ)∑

j=0

(ln ρ)jfij(q,m), (5.2)

where i runs over the rational values of an increasing arithmetic progression.
Now we describe how the expansion (5.2) is naturally generalized to hold for an

unrenormalized FI with all its divergences being regulated by dimensional regularization.
Theorem 7 For arbitrary dimensionally regularized Feynman integral t0

′< Γ > (q,m, µ, ǫ, ρ)
there holds the asymptotic expansion as ρ → 0 of the form

t0
′< Γ > ===

ρ→0

∞∑

i=imin

N (Γ)∑

j=0

ρi−2jǫ Fij(q,m, µ, ǫ) (5.3)

where the functions Fij’s are meromorphic in ǫ and homogeneous with respect to the
momenta and masses from the collections q2 and m2 respectively, to wit:

Fij(
′q,′m, µ, ǫ) = ρi−2jǫFij(q,m, µ, ǫ) (5.4)

The expansion (5.3) remains valid after its left and right parts are both subjected to the
Laurent expansion in ǫ.

The proof of the theorem generalizes and to some extent repeats the reasoning given
in refs. [29–31, 66, 67]. Since it is rather lengthy and not especially instructive, it will be
given elsewhere.

Our next task is to construct an explicit representation of the rhs of (5.3) in terms
of subgraphs of < Γ > and the respective reduced graphs. Let us define the glued20 FI
t0< Γ̂ > (q,m, ǫ, µ, δ) as a Mellin transform of θ(ρ−1)t0

′< Γ > (q, m, µ, ǫ, ρ) with respect
to ρ, that is

t0 < Γ̂ >=

∫ 1

0

t0
′< Γ > ρ−δ−1dρ (5.5)

Due to Theorem 7 the integral < Γ̂ > is a meromorphic function of δ with simple poles
located at δ = δi,j ≡ i−2jǫ; the respective residues are proportional to the functions Fij .

On the other hand, within the α representation technique the glued FI (5.5) is akin to
usual dimensionally and analytically regularized FI provided the parameter ρ is treated
as an extra α-parameter. This key observation allows one to employ the existing powerful
methods of studying analytical structure of such integrals [29, 55, 71, 72]. The result is
described by the following21.

19By a R-normalized FI we mean the result of subtracting UV divergences from the FI via an R-
operation; the similar convention will be also used for the R∗-operation.

20The term comes from works [51, 52, 70] that deal with a particular kinematical regime where only
one independent external momentum goes to ∞.

21An elaborated proof of the theorem has been found within the outlined approach by the present
author and will be published elsewhere.
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Theorem 8. The expansion (5.3) can be identically rearranged so that it takes the form

t0
′< Γ > ===

ρ→0

∑

S∈ uW2{Γ}

t1
′< S > ∗ < Γ/S >, (5.6)

where ′< S >≡
∏

γ∈S

′< γ >, with

′< γ >≡< γ > (′qγ , ′mγ) and ′qγ ≡ (q2/ρ) ∪ q
γ
1,

′mγ ≡ (mγ
2/ρ) ∪m

γ
1 .

There are several remarks we would like to make in connection with the theorem.

(i) All the dependence on ρ in the rhs of (5.6) is located in the first factor, with

t
(n)
1

′< γ >= ρ−ω(γ)+2ǫN (γ)+n < γ > . (5.7)

(ii) Theorem 7 ensures that the expansion (5.6) does commute with expanding in ǫ.
This fact will be of vital importance below in proving Theorem 5.

(iii) The sum in (5.6) would not change if it had gone over S ∈ uW
h
2 {Γ}. Indeed, if S

contains a 2-soft element γ, then the factor t < γ > vanishes since it is a linear
combination of the massless tadpoles.

Finally, as a direct consequence of the above theorem we find that the following statement
holds.

Theorem 9

(a) If γ is a 2-right subgraph of Γ, then the ρ → 0 asymptotic expansion of the respective
Feynman subintegral can be written as

t0
′< γ > ===

ρ→0

∑

S∈ uW2{γ}

t1
′< S > ∗ t0< γ/S > . (5.8)

(b) If Φ is an arbitrary spinney from W
U
{Γ}, then the asymptotic expansion of the FI

< Γ/Φ > as ρ → 0 assumes the form

t0
′< Γ/S > ===

ρ→0

S≥Φ∑

S∈ uW2{Γ}

t1
′< S/Φ > ∗ t0< Γ/S > . (5.9)

Proof.

(a) Obvious.

(b) There exists a one-to-one correspondence between two collections of spinneys

{S|S≥Φ, S ∈ uW2{Γ}

and
{S ′|S ′ ∈ uW2{Γ/S},

which is established by the mapping (cf. the proof of (3.4))

r : S r−→ S ′ = (S\Φ)/Φ. (5.10)

Relation (5.9) follows from this correspondence and the observation that

< (S\Φ)/Φ >=< S/Φ > .
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5.2 R∗-normalized Feynman integrals

We now turn to to finding the ρ → 0 asymptotic expansion of the R∗-normalized FI

R∗ t0
′< Γ >= R∗(Γ) t0 < Γ > (′q,′m, µ, ǫ) =
∑

Φ∈uW1↑{Γ}

R
U
t0

′< Φ > ∗∆
İ
< Γ/Φ > .

(5.11)

This is certainly a purely algebraic problem since the FI (5.11) is virtually nothing but a
linear combination of unrenormalized FI’s multiplied by some UV and IR renormalization
constants and its solution will hence rely upon the forest technique developed above.

To begin, we assume for a while that m0 = q0 = ∅ and, thus, the operator t0 in the
first line of (5.11) reduces to the unit one. This means in particular that the FI < Γ >
does not contain any IR divergences 22 and the R∗-operation may be safely replaced by
the R-one. Under the circumstances the asymptotic expansion we are looking for can be
directly read off from (5.9):

R < Γ > ===
ρ→0

∑

Sa∈ uWh
2
{Γ}

Sb∼Sa∑

Sb∈W
s
2
{Γ}

Φa≤Sa∑

Φa∈WUV {Γ}

Φb≤Sb∑

Φb∈WUV {Γ}

∆
U
< Φa > ∗ t1

′< Sa/Φa > ∗∆
U
< Φb > ∗t1 < Sb/Φb > ∗ < Γ/(Sa ∪ Sb >,

(5.12)

As explained after Theorem 8 the terms with Sb 6= Φb do not contribute to (5.12).
This allows us to rewrite (5.12) in the following compact form

R < Γ > ===
ρ→0

∑

S∈ uWh
2
{Γ}

R t1
′< S > ∗R(W∼{Γ, S},∆

U
) < Γ/S > . (5.13)

The asymptotic expansion is not explicitly finite: both factors R t1
′< S > and

R(W∼{Γ, S},∆
U
) < Γ/S > do in general suffer from the IR and UV divergences re-

spectively. On the other hand these divergences should cancel out owing to the finiteness
of the initial (renormalized!) FI R < Γ > at ǫ → 0. Hence, there should exist an explicitly
finite version of (5.13). The problem can be solved by simple adding the missing subtrac-
tions to the both factors in the rhs of (5.13) followed by a proof that the transformation
is in fact an identical rearrangement of terms of the expansion.

We begin with two identities (see eqs.(4.13 - 4.15)

RU(W
∼{Γ, S}) = RU(W

>̃{Γ, S})R−1
U (W≻{Γ, S}) (5.14a)

and
R−1

U (W≻{Γ, S}) = R(W≻(Γ, S),∆′
I), (5.14b)

where we have denoted

∆′
I(γ) = −∆

U
(γ)

F<γ∑

F∈F≻{Γ,S}

(−)|F |∆U(F ), (5.14c)

and RU(W
∼{Γ, S}) ≡ R(W∼{Γ, S},∆

U
) and so on. Note also that due to Theorem 1 for

any spinney S ′ ≻ S one has

R
U
(W >̃{Γ, S}) < Γ/(S ′ ∪ S)max >= R

U
< Γ/(S ′ ∪ S)max > . (5.15)

22Recall that as in our conventions all massless lines are supposed to be assigned to L0.
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We now use (5.14,5.15) in order to transform the rhs of (5.13) into

∑

S∈ uWh
2
{Γ}

S′≻S∑

S′∈ W{Γ}

R
U
t1

′< S > ∗∆′
I
< S ′/S > ∗R

U
< Γ/S ′′ >, (5.16)

where S ′′ = (S ′∪S)max. If S
′ includes a 2-reducible graph γ′, then the corresponding term

in (5.16) can be safely dropped due to appearance of the vanishing factor ∆′
I
< γ′/S >.

Hence only spinneys S ′ ∈ W h
2 {Γ} do contribute to (5.16). Next, after going to the

summation over S ′′ and employing the identity

∆′
I
< S ′/S >= ∆′

İ
< S ′′/S >

we have

R
U
< Γ > ===

ρ→0

S≤S′′∑

S,S′′∈ uWh
2
{Γ}

R
U
t1

′< S > ∗∆′

İ
< S ′′/S > ∗R

U
< Γ/S ′′ > (5.17)

or, due to the relation (4.44),

R
U
< Γ > ===

ρ→0

∑

S′′∈ uWh
2
{Γ}

R∗ t1
′< S ′′ > ∗R

U
< Γ/S ′′ >, (5.18)

which is the desired explicitly finite writing of (5.13).
In order to cover the general case of the expansion of the R∗-normalized FI (5.11) one

should learn to expand products like

R
U
t0

′< Φ >=
∏

γ∈Φ

R
U
t0

′< γ >, (5.19)

with Φ ∈ uW1{Γ}. Fortunately, the result of expanding in ρ every factor in the rhs
of (5.19) may be directly obtained with the help of (5.18) since its derivation has used
neither IR finiteness of < Γ > nor the absence of the operator t0. As a result, we get

R∗t0
′< Γ > ===

ρ→0

∑

Φ∈uW1↑{Γ}

S≤Φ∑

S∈ uWh
2
{Γ}

R∗ t1
′< S > ∗R

U
t0 < Φ/S > ∗∆

İ
< Γ/Φ >,

(5.20)

which, in turn, can be considered as an alternative form of the following remarkable
asymptotic expansion

R∗t0
′< Γ > ===

ρ→0

∑

S∈ uWh
2
{Γ}

R∗ t1
′< S > ∗R∗t0 < Γ/S > . (5.21)

Indeed, to derive (5.21) from (5.20) it suffices to observe, first, the existence of a natural
one-to-one correspondence between two woods

{Φ|Φ ∈ uW1↑{Γ},Φ ≥ S} and {Φ′|Φ ∈ uW1↑{Γ/S}}

with Φ′ = (Φ\S)/S and, second, to note that < (Φ\S)/S >=< Φ/S >.
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We conclude this subsection by presenting a simple proof of the fact that the R∗-
operation does subtracts all kinds of divergences from a generic FI t1 < Γ > (Theorem
5).

Let us introduce an auxiliary positive mass µ0 into all the propagators from L1 and
assume that µ0 is not subjected to the Taylor expansion under the action of the opera-
tor t1. Evidently, the presence of the auxiliary mass prevents any IR divergences from
appearing and thus FI R

U
t
(n)
1

′< G > is finite at ǫ → 0 for every integer n ≥ 0. It follows
from (5.21) that

R
U
t
(n)
1

′< G > ===
ρ→0

k+k′≤K∑

k,k′≥0

S 6=Γ∑

S∈uWh
2
{Γ}

R∗ t
(k)
1 T (k′)

µ0

′< S > ∗R
U
tn1 < Γ/S >

+

k+k′≤K∑

k,k′≥0

R∗t
(k)
1 T (k′)

µ0

′< Γ > +δ(ρ), (5.22)

where, due to Theorems 7 and 8, the reminder23 δ(ρ) = o(ρ−N+K+2N (Γ)ǫ) with at ρ → 0 is
an analytical function of ǫ in the vicinity of the point ǫ = 0. Now, reasoning by recurrence
with reference to the number of internal lines of Γ one can easily convince oneself that
the sum

k+k′≤K∑

k,k′≥0

R∗t
(k)
1 T (k′)

µ0

′< Γ >

is finite as ǫ → 0, because of the finiteness of the left side of (5.22). This, in turn, means
that every term in this sum is finite for the values of ρ and µ0 can be chosen at will.

Finally, choosing ρ = 1, k = n and k′ = 0 we conclude that the FI R∗
[
t
(n)
1 < Γ > |µ0=0

]

is also finite as ǫ → 0, which was the thing to be proved.

6 RELATED WORKS: A COMPARATIVE

DISCUSSION OF RESULTS

R−1-operation. There exists a deep similarity between the R−1-operation technique and
the counterterm formalism [22–25]. To some extent, the former may be considered as
another variant of the latter adopted to be able to deals with with separate FI’s with the
same ease as the counterterm formalism treats the perturbation series as a whole.

Infrared rearrangement and R∗-operation. After the pioneering work by Vladimi-
rov [37], the trick of infrared rearrangement has been repeatedly rediscovering by many
authors (see e.g. refs. [73,74]). The authors of the second work even claim that they have
proved a statement analogous to Theorem but their proof makes no allowance for the IR
divergences. Certainly in the absence of any IR subtractions such a statement may be
true provided that the FI obtained after the IRR has no IR divergences. This, in turn,
means that the procedure suggested in ref. [74] is completely equivalent to the IRR trick
as it was described in ref. [37].

23Here N = max
S∈uW

h
2
{Γ}


∑

γ∈S

ω(γ)


 and ǫ is understood to be sufficiently small and negative.
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A subtraction procedure to remove the IR divergences which appear if one tries to
expand a convergent FI with non-exceptional external momenta when all its masses go to
zero, has been discussed in ref. [75]. The procedure is, in fact, a very particular version of
the R∗-operation: the assumed UV finiteness of the integral to be expanded makes things
much easier and, simultaneously, restricts severely the possible applications. Indeed, both
of the most useful applications of the R∗-operation — calculation of the renormalization
constants and construction of explicitly finite asymptotic expansions of generic FI’s —
seem to be lost.

The natural normalization condition (4.33) for the R∗-operation was first suggested
in [47] with essentially the same motivation as the one put forward in the present work.

The accurate proof of Theorem 5 — the main statement of the R∗-operation theory
— has been presented in [61] for the particular case of a FI with nonexceptional external
momenta. The proof is based on the heavy use of the α-parametric representation and
technical tools developed early in refs. [29, 71, 72] ( for an up-to-date review see a book
[55]).

Asymptotic expansions. There are a few series of studies devoted to the problem
of constructing a complete asymptotic expansion of a generic dimensionally regularized
euclidean FI when some of its external momenta and/or masses go to infinity. The
authors of refs. [56,57,76–78] have investigated the problem within a so-called ”extension
principle” (EP) which, in fact, was inspired by the ideas of the R∗-operation as formulated
in ref. [42]. In particular, in ref. [78] an expansion equivalent to the one (5.13) has been
suggested as a natural generalization of the results obtained by applying the EP to a few
particular one-loop FI’s. As far as we know, no proof of this expansion or of the EP itself
has been published yet. Moreover it has been explicitly stated in [78] that the EP is not
applicable to FI’s with IR divergences. This means that the approach fails to expand a
generic R∗-normalized FI.

In his two works [79], the late Doctor S.G. Gorishny suggested a method of construct-
ing asymptotic expansions of FI’s at large momenta and/or masses. His method is based
on a heuristic generalization of the Zimmermann approach [7, 9]. Its starting point is an
asymptotic expansion analogous to (5.13) in which, however, the operator t0 expands in
momenta from q0 around some fixed non-zero point in momentum space. This modifica-
tion is introduced to avoid the IR divergences. After developing a combinatorial technique
similar to ours, the author of ref. [79] found an expansion which should presumably be
equivalent (modulo the different definition of the t0 - operator) to eq.(5.18). He also gave
the heuristic argument that within the MS - scheme the choice of the zero momentum
expansion point should not lead to IR divergences. Note also work [80] similar in its
spirit and results, which, however, deals with a very particular case of the problem un-
der discussion, namely with the short distance expansion of a product of two composite
operators.

The fact that it is the R∗-operation which naturally appears when one treats asymp-
totic expansions of minimally renormalized FI’s was first realized in refs. [47, 48]. The
expansions (5.13) and (5.18) were derived for the case where only one external momentum
is considered to be large in refs. [47, 51, 52]. Here the Wilson short distance expansion
of a product of two composite operators was studied in the framework of the gluing
method [70].

A heuristic argument in favor of the existence of the expansion (5.18) was suggested
in ref. [50].

A practically convenient algorithm to compute the coefficient functions of various
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operator expansions in the MS-scheme was presented in refs. [50, 81]. At the level of
individual Feynman graphs the algorithm amounts, in fact, to the expansion (5.13),
which is taken as granted.

Recently a rigorous proof of the expansion (5.18) has been obtained in [53, 54] along
the lines of refs. [7, 9, 25, 82], by constructing a suitable oversubtraction operator which

makes use of the R̃-operation. In addition, in these works the counterterm formalism
was effectively employed to derive explicitly finite asymptotic expansions of minimally
renormalized Green functions for a variety of physically interesting asymptotic regimes.
Note that the generalization of the approach to generic R∗-normalized FI’s seems to be
nontrivial (see in this connection ref. [49]).

7 CONCLUSIONS

In this work we have elaborated a technique which has allowed us to perform a uniform,
self contained and essentially complete study of a variety combinatorial issues involved
in the R−, R−1 − and R∗-operations and their applications. We find it nice that all
the three ”renormalization” operations are tightly interconnected each other, with the
interplay showing up not only in the MS - scheme (what is more-or-less natural, since the
inverted and the starred R-operations first appeared in the context of just this scheme)
but also in a different renormalization prescription — the momentum subtraction scheme.

There remain few interesting problems that can be solved within the approach. Below
we list some of them.

R−1-operation. To construct practically convenient conversion formulas which are to
connect the standard MS - scheme with its close relative based on so-called dimensional
reduction. By finding a suitable conversion formula to clarify the relationship between
different definitions of the γ5-matrix in DR .

R−1- and R∗-operations. It would be interesting to find a generalization of the re-
lations (3.39) between momentum subtractions and the R−1-operation in the case of
renormalization with the soft mass. In doing the problem a kind of R∗-operation should
presumably appear in a natural way.

The R∗-operation is a natural tool to investigate the IR finiteness of the given theory
including massless particles. With its help it is possible e.g. to give a simple and purely
combinatorial proof of the IR finiteness of quantum chromodynamics along the way out-
lined in refs. [29–31]. This has been done by the present author and will be published
elsewhere.

Asymptotic expansions. It would be of interest to construct an explicit and purely
combinatorial proof the renormalization group equation to which the R∗ - normalized
FI’s should satisfy.
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Rules and Crewther Relation of Order O(α4

s): the Singlet Case, Phys. Lett. B 714

(2012) 62, arXiv:1206.1288.

[90] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Quark Mass and Field Anomalous
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8 Comments

The work has never been submitted for publication for purely personal reasons. Now,
a quarter of century later, I want to make it more accessible as it is the improved and
extended formulation of the R∗-operation presented here has been one of the crucial tool
(along with the algebraic manipulation language FORM [83,84] and other advances in our
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understanding of multiloop Feynman diagrams (see, e.g. [85]) for many record-breaking
multiloop calculations in gauge theories performed during last years [86-92].
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