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Top-bottom interference effects in Higgs plus jet production at the LHC
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We compute next-to-leading order QCD corrections to the top-bottom interference contribution
to H + j production at the LHC. To achieve this, we combine the recent computation of the
two-loop amplitudes for gg → Hg and qg → Hq, performed in the approximation of a small b-
quark mass, and the numerical calculation of the squared one-loop amplitudes for gg → Hgg and
qg → Hqg performed within OpenLoops. We find that QCD corrections to the interference are large
and similar to the QCD corrections to the top-mediated Higgs production cross section. We also
observe a significant reduction in the mass-renormalization scheme uncertainty, once the NLO QCD
prediction for the interference is employed.

Detailed exploration of the Higgs boson properties is a
major part of the physics program at the Large Hadron
Collider (LHC). It is hoped that studies of the Higgs cou-
plings will reveal possible physics beyond the Standard
Model, especially if it mostly manifests itself through in-
teractions with the Higgs bosons. The goal, therefore,
is to precisely measure Higgs boson couplings to vari-
ous particles in the Standard Model and to search for
small deviations. For example, assuming that the energy
scale of New Physics is close to 1 TeV, generic modifica-
tions of the Higgs couplings are expected at the level of
v2/(1 TeV)2 ∼ 5× 10−2, where we used v = 246 GeV for
the Higgs field vacuum expectation value. A variety of
explicit BSM scenarios conforms with these expectations
[1], suggesting that achieving a few percent precision in
studies of the Higgs couplings may indeed provide inter-
esting information about physics beyond the Standard
Model.

Compared to these theoretical goals, existing measure-
ments of the Higgs couplings leave much to be desired [2].
Currently, Higgs couplings to electroweak gauge bosons
are known to a precision between ten and twenty per-
cent and Higgs couplings to third generation fermions
to about hundred percent. The Higgs boson couplings
to first and second generation fermions are practically
unconstrained. It is expected that the situation will dra-
matically improve with the continued operation of the
LHC. For example, it is estimated [3] that, by the end of
the high-luminosity phase, the Higgs couplings, that can
be extracted from its major production and decay chan-
nels, will be determined with a few percent precision.
There are several unknowns that may affect the validity
of these projections, including progress in reducing the
uncertainties in theoretical predictions and the ability of
experimentalists to come up with new ideas but, barring
revolutionary breakthroughs, these estimates give us a
ballpark of what can be expected.

Determination of Higgs couplings at the LHC requires
theoretical predictions for relevant processes, including
both signal and background. A case in point is the Higgs
boson transverse momentum distribution, whose theoret-
ical understanding is important to properly describe the

kinematics of the Higgs decay products, but may also
give us access to physics beyond the Standard Model [4].

Higgs bosons at the LHC are mostly produced in gluon
collisions. If additional gluons are radiated, a Higgs bo-
son recoils against them; this mechanisms leads to a non-
trivial Higgs p⊥-spectrum whose theoretical description
requires good understanding of QCD dynamics. In the
case of a point-like coupling of the Higgs to gluons, per-
turbative QCD (pQCD) provides an established frame-
work to describe the Higgs p⊥-spectrum, including fixed
order QCD computations recently extended to next-to-
next-to-leading order (NNLO) [6] and the resummation
computations known in the next-to-next-to-leading loga-
rithmic (NNLL) approximation [8].1 However, the Higgs
coupling to gluons in the Standard Model is the result of
a quantum process where gluons fluctuate into a quark-
antiquark pair that annihilates into a Higgs boson. Be-
cause of the differences in fermion Yukawa couplings, the
largest contribution to the ggH coupling in the Stan-
dard Model comes from top quark loops, followed by
contributions of bottom and charm quarks. For values
of the Higgs transverse momentum p⊥ � mt, the top
loop contribution to the ggH coupling can be consid-
ered point-like to a very good approximation and we can
apply the full power of pQCD to describe it with high
precision. However, the bottom and charm loops are not
point-like for moderate values of the transverse momen-
tum and both the perturbative behavior and the possi-
bility to perform resummations are much less understood
for these contributions to the effective ggH coupling.

Moreover, it is known that the bottom and charm
quark contributions to gg → Hg amplitudes develop
a peculiar, Sudakov-like dependence on the Higgs bo-
son transverse momentum [10, 11]. Taking the bottom
quark contribution as an example, we find Ab

gg→Hg ∼
m2

b/m
2
H log2(p2⊥/m

2
b) [12]. These double logarithms are

not accounted for in the standard resummation frame-

1 A related topic of jet-veto resummation in Higgs production is
discussed in Refs. [9]
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work2 [14] and they significantly enhance the contribu-
tion of bottom loops to the Higgs production cross sec-
tion in gluon fusion, compared to naive expectations. In
fact, the bottom loop contribution to Higgs production
in the Standard Model is estimated to be close to minus
five percent [15] and, therefore, significant on the scale of
O(1%) precision goal discussed earlier.

It is interesting to remark that the “substructure”
of the ggH coupling is precisely what makes the Higgs
transverse momentum distribution an interesting observ-
able from the point of view of physics beyond the Stan-
dard Model. For example, current constraints on the
charm Yukawa coupling are weak but, if the charm
Yukawa coupling deviates significantly from its Stan-
dard Model value, the charm contribution to gg → H
increases, and the relevance of the cc̄ → H annihila-
tion channel for Higgs production grows. These mod-
ifications may result in observable effects in the Higgs
transverse momentum distribution. It was pointed out
in Ref. [5] that studies of the Higgs boson transverse
momentum distribution lead to very competitive con-
straints on the charm Yukawa coupling; for example, it
is expected [5] that at high-luminosity LHC, the charm
Yukawa coupling can be constrained to lie in the interval
yc/y

SM
c ∈ [−2.9, 4.2] at the 95% confidence level. Al-

though not quite relevant for this paper, we also note
that at very high values of the transverse momentum
p⊥ � mt, the contribution of top quark loops can be
resolved; this allows to probe for a point-like component
of the ggH coupling that may originate from physics be-
yond the Standard Model.

This discussion suggests that the shape of the Higgs
boson transverse momentum distribution, from moder-
ate to high p⊥-values, is important for a proper descrip-
tion of the kinematic features of Higgs bosons produced
at the LHC and, also, may provide important informa-
tion about physics beyond the Standard Model. Accu-
rate Standard Model predictions for this observable are
key for achieving these goals. As we already mentioned,
the pQCD description of the Higgs boson transverse mo-
mentum distribution, in the approximation of the point-
like ggH coupling, is rather advanced, see Refs. [6, 7], but
there is very little understanding of how its not-point-like
component is affected by QCD radiative corrections. To
clarify this issue, we report on the computation of QCD
radiative corrections to top-bottom interference contri-
bution to Higgs boson production at the LHC in this
Letter.

The calculation of the NLO QCD corrections to the
top-bottom interference is non-trivial and we briefly sum-
marize its salient details. The leading order production

2 See Refs.[13] for recent attempts to understand the origin of these
logarithms and the possibility to resum them.

of the Higgs boson with non-vanishing transverse mo-
mentum occurs in different partonic channels, namely
gg → Hg, qg → Hq, q̄g → Hq̄ and qq̄ → Hg. At lead-
ing order these processes are mediated by top or bottom
loops (the charm contribution in the SM is negligible).
The one-loop amplitudes are known exactly as functions
of external kinematic variables and the quark masses [10].

At NLO, the production cross section receives contri-
butions from real and virtual corrections. Since the lead-
ing order process only occurs at one-loop, the virtual cor-
rections require two-loop computations that include pla-
nar and non-planar box diagrams with internal masses.
The computation of such Feynman diagrams is a mat-
ter of active current research that includes attempts to
develop efficient numerical methods that can be used in
physical kinematics [17] and to extend existing analytic
methods to make them applicable to two-loop Feynman
diagrams with internal masses [18].

However, if we focus on the top-bottom interference
and its impact on Higgs production at the LHC, we can
simplify the calculation by using the fact that the mass of
the b-quark, mb ∼ 4.7 GeV, is numerically small. Indeed,
since mb � mH , p

typ
⊥ , where ptyp⊥ ∼ 30 GeV is a typical

Higgs boson transverse momentum, Feynman diagrams
that describe Higgs production can be expanded in se-
ries in mb for the purposes of LHC phenomenology. We
have checked at leading order that the use of scattering
amplitudes either exact or expanded in mb leads to at
most few percent differences in the interference contribu-
tion to the Higgs p⊥ distribution, down to p⊥ ∼ 10 GeV.
Since the interference contribution changes the Higgs bo-
son transverse momentum spectrum by O(5%) at leading
order, the percent difference between expanded and not
expanded results is irrelevant for phenomenology.

Unfortunately, the expansion in mb is non-trivial since
the Higgs boson production cross section depends log-
arithmically on the b-quark mass. Therefore, we need
to devise a procedure to expand scattering amplitudes
in mb and extract the non-analytic terms. This can be
done by deriving differential equations for master inte-
grals that are needed to describe the two-loop correc-
tions to pp → H + j and then solving them in the limit
mb → 0 [19]. Indeed, since we can derive differential
equations to describe the dependence of the master in-
tegrals on the mass parameter mb and on the Mandel-
stam kinematic variables, and since all the information
about singular points of a particular Feynman integral is
contained in the differential equations that this Feynman
integral satisfies, we can systematically solve the differen-
tial equation in series of mb and extract the non-analytic
behavior. We note that a similar method was used to
compute the top-bottom interference contribution to the
inclusive Higgs production cross section in Ref. [20].

We have used this method to calculate all the relevant
two-loop scattering amplitudes to describe the produc-
tion of a Higgs boson in association with a jet [19, 21]. In
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our computation, all quarks in the initial and final states
are massless, so that b-initiated processes are not in-
cluded. The two-loop amplitudes mediated by top quark
loops, required to describe the interference, are computed
in the approximation of an infinitely heavy top quark [22].

To produce physical results for H + j production, we
need to combine the virtual corrections discussed above
with the real corrections that describe inelastic processes,
e.g. gg → H+gg, qg → Hq+g etc. Computation of one-
loop scattering amplitudes for these inelastic processes is
non-trivial; it requires the evaluation of five-point Feyn-
man integrals with massive internal particles. Neverthe-
less, such amplitudes are known analytically since long
ago [23] and were recently re-evaluated in Ref. [24].

In this Letter we follow a different approach, based on
the automated numerical computation of one-loop scat-
tering amplitudes developed in recent years. One such
approach, known as OpenLoops [25], employs a hybrid
tree-loop recursion. Its implementation is publicly avail-
able [26] and has been applied to compute one-loop QCD
and electroweak corrections to multi-leg scattering ampli-
tudes for a variety of complicated processes (see e.g. Refs.
[27, 28]) and as an input for the real-virtual contributions
in NNLO computations (see e.g. Ref. [29]).

For applications in NNLO calculations the correspond-
ing real-virtual one-loop contributions need to be com-
puted in kinematic regions where one of the external par-
tons becomes soft or collinear to other partons. We face
a similar situation for the loop-induced process discussed
in this Letter. Indeed, the loop-squared real contribu-
tion has to be evaluated in phase-space regions where
a final-state parton becomes unresolved. Although the
singular contribution of the real emission graphs is easily
identified and subtracted, it is important to control the
approach of the singular region of the squared one-loop
amplitudes. A reliable computation in such kinematic
regions is non-trivial, but the OpenLoops approach ap-
pears to be perfectly capable of coping with this chal-
lenge thanks to the numerical stability of the employed
algorithms. An important element of this stability is the
program COLLIER [30] that is used to perform the tensor
integral reduction in a clever way via expansions in small
Gram determinants.

We have implemented all virtual and real amplitudes
in the POWHEG-BOX [31], where infra-red singularities are
regularized via FKS subtraction [32]. All OpenLoops am-
plitudes are accessible via a process-independent inter-
face developed in Ref. [28]. The implementation within
the POWHEG-BOX will allow for an easy matching of the
fixed-order results presented here with parton showers at
NLO. At leading order this has been done in Ref. [16].

Using the methods described above, we calculated the
NLO QCD corrections to the top-bottom interference
contribution to H+j production in hadron collisions. We
identify the interference contribution through its depen-
dence on top-bottom Yukawa couplings. For the Higgs

production cross section, we write

dσ = dσtt + dσtb + dσbb, (1)

where individual contributions to the differential cross
section scale as dσtt ∼ O(y2t ), dσtb ∼ O(ytyb), dσbb ∼
O(y2b ). Given the hierarchy of the Yukawa couplings,
yt ∼ 1 � yb ∼ 10−2, the last term in Eq.(3) can be
safely neglected. Note, however, that if one focuses on
Higgs-related observables that are inclusive with respect
to the QCD radiation, dσbb receives contributions from
Higgs boson production in association with b-quarks, e.g.
gg → Hbb. These processes change inclusive Higgs boson
observables at below a permille level which makes them
irrelevant unless b-jets in the final state are tagged.

Our main focus is the top-bottom interference contri-
bution dσtb. Considering the virtual corrections, we write

dσvirt
tb ∼ Re

[
ALO

t ALO∗
b +

αs

2π
(ANLO

t ALO∗
b +ALO

t ANLO∗
b )

]
.

(2)
The leading order (one-loop) term in this formula is
known, including full mass dependence. The NLO (two-
loop) amplitudes with the top quark ANLO

t are only
known in the limit mt →∞ and we use ANLO

t (mt →∞)
as an approximation for ANLO

t (mt). In principle, one
can improve on this by computing 1/mt corrections to
ANLO

t (mt →∞), see Ref. [33], but it is not expected that
such power corrections will have significant impact on the
results for the interference at moderate, p⊥ < mt, values
of the Higgs transverse momentum. The real emission
contributions are computed with exact top- and bottom-
mass dependence throughout the paper.

In what follows, we present the QCD corrections to the
top-bottom interference contribution to the Higgs boson
transverse momentum distribution and to the Higgs ra-
pidity distribution in H + j production. We consider
proton collisions at the 13 TeV LHC and take the mass
of the Higgs boson to be mH = 125 GeV.

We work within a fixed flavor-number scheme and do
not consider bottom quarks as partons in the proton.
We use the NNPDF30 set of parton distribution func-
tions [34]. We also use the strong coupling constant
αs(MZ) that is provided with this PDF set. We renor-
malize the b-quark mass in the on-shell scheme and use
mb = 4.75 GeV as its numerical value. We choose renor-
malization and factorization scales to be equal and take,
as the central value µ = HT /2, HT =

√
m2

H + p2⊥ +∑
j p⊥,j , where the sum runs over all partons in the final

state.
To quantify the impact of the top-bottom interference

on an observable O, it is convenient to define the follow-
ing quantity

Rint [O] =

∫
dσtb δ(O −O(~x))∫
dσtt δ(O −O(~x))

, (3)

where ~x is a set of phase-space variables. Note that we
do not expand the σtt cross section in the denominator in
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Figure 1: Relative top-bottom interference contribution to
the transverse momentum distribution of the Higgs boson at
leading (blue) and next-to-leading (red) order in perturbative
QCD. At next-to-leading order the interference contribution
is shown with respect to the point-like Higgs Effective Field
Theory prediction rescaled with exact leading-order top mass
dependence. Filled bands, hardly visible at leading order,
show the change in Rint caused by a variation of the renormal-
ization and factorization scales, correlated between numerator
and denominator. The hashed bands indicate the uncertainty
due to mass-renormalization scheme variation. See text for
details.

Eq.(3) in powers of αs. Therefore, any change in Rint in
consecutive orders in perturbation theory would reflect
differences in QCD corrections to the tb interference and
the point-like contribution to H + j production. In what
follows we present Rint as a function of the Higgs boson
transverse momentum p⊥ and the (pseudo-)rapidity ηH .

The impact of the top-bottom interference on the Higgs
boson transverse momentum distribution is shown in
Fig. 1. We observe that the leading order interference
changes the Higgs boson transverse momentum distribu-
tion by −8% at p⊥ ∼ 20 GeV and +2% at p⊥ ∼ 100 GeV.
Since the QCD corrections to color-singlet production in
gluon annihilation are large and since it is not clear a
priori if the QCD corrections to the interference are sim-
ilar to the QCD corrections to the point-like cross sec-
tion, large modifications of these LO results can not be
excluded. The NLO computation, illustrated in Fig. 1,
clarifies this point. There, filled bands in blue for the
leading and red for the next-to-leading order predictions
show the result for Rint(p⊥) computed in the pole mass
renormalization scheme. The widths of the bands in-
dicate changes in the predictions caused by variations
of renormalization and factorization scales by a factor
of two around the central value µ = HT /2. In fact,
we observe that differences between leading and next-
to-leading order are very small. For example, RNLO

int (p⊥)
appears to be smaller than RLO

int (p⊥) by less than a per-
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Figure 2: Relative top-bottom interference contribution to
the pseudo-rapidity distribution of the Higgs boson at leading
and next-to-leading order in perturbative QCD. Bands and
colors as in Fig.1.

cent at p⊥ < 60 GeV and, practically, coincides with it
at higher values of p⊥. We emphasise that these small
changes in Rint imply sizable, O(40 − 50%), corrections
to the tb interference proper that, however, appear to be
very similar to NLO QCD corrections to the point-like
cross section σtt. The scale variation bands are very nar-
row (at leading-order hardly visible) due to a cancellation
of large scale variation changes between numerator and
denominator in Eq.(3). Similar results for the Higgs bo-
son rapidity distribution for events with p⊥ > 30 GeV
are shown in Fig. 2.

The above result for the scale variation suggests that
the uncertainties in predicting the size of top-bottom in-
terference effects in H+j production are small since both
the size of corrections and the scale variation bands are
similar to the corrections to the point-like pp → H + j
cross section. Such a conclusion, nevertheless, misses
an important source of uncertainties related to a pos-
sible choice of a different mass-renormalization scheme.
Indeed, since the leading order interference contribu-
tion is proportional to the square of the bottom mass
Rint ∼ m2

b and since at leading order a change in the
mass renormalization scheme simply amounts to the use
of different numerical values for mb in calculating Rint,
it is easy to see that this ambiguity is very signifi-
cant. Indeed, suppose that we choose to renormalize
the bottom mass in the MS scheme and we take mb =
mMS

b (100 GeV) = 3.07 GeV as input parameter.3 Since

3 We calculated this value using the program RunDec [35] with

the input value mMS
b (mMS

b ) = 4.2 GeV.
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(mMS
b (100 GeV)/mpole

b )2 ≈ 0.4, this implies that RLO
int

is reduced by more than a factor of two, practically in-
dependent of the p⊥ value. This large leading order vari-
ation is shown as a hashed blue band in Figs. 1,2, where

we have taken mb = mpole
b and mb = mMS

b (100 GeV) as
the two boundary values.

This large ambiguity in the leading order value of Rint

is somewhat reduced at next-to-leading order where the
effect of the mass renormalization scheme change is less
dramatic but, nevertheless significant. The scheme de-
pendence at NLO, for the setup explained in the previous
paragraph, is shown as a hashed red band. We observe
that for p⊥ < 60 GeV, the mass renormalization scheme
uncertainty is reduced by almost a factor of two, whereas
the reduction of uncertainty is only marginal at higher
p⊥. This happens because in the final result for the in-
terference at high transverse momenta there is a signif-
icant cancellation between ANLO

t ALO∗
b and ALO

t ANLO∗
b ,

c.f. Eq.(2). Since the first term involves leading order b-
quark contributions, it experiences large variations when
the b-quark mass renormalization scheme is changed and
this causes large variations in Rint at high p⊥. The inter-
ference contribution to the Higgs rapidity distribution in
Fig. 2 shows similar features. The mass variation band at
NLO is smaller than the LO variation band at large ab-
solute values of the pseudo-rapidity (dominated by small
p⊥) and practically indistinguishable from it at the cen-
tral rapidity values (dominated by large p⊥).

In summary, we computed the NLO QCD corrections
to the top-bottom interference contribution to Higgs bo-
son production in association with a jet at the LHC.
This is the first computation of QCD radiative correc-
tions to Higgs production at this order in perturbation
theory that goes beyond the point-like approximation for
the ggH coupling. Our results show that corrections to
the interference are large yet they appear to track very
well corrections to the point-like component of the cross
section. The strong dependence of the LO interference
on the mass-renormalization scheme is reduced at NLO
but at high values of the Higgs transverse momentum or
at central rapidity, the remaining ambiguities are signifi-
cant. It is not clear how the situation at high p⊥ and/or
small absolute ηH can be further improved. However, we
want to emphasize that in these kinematic regions the
interference is numerically small compared to the O(y2t )
contribution. Nevertheless, with this result at hand, one
can try to provide the best possible theoretical predic-
tions for the Higgs transverse momentum distribution
that combine the known results for the p⊥-resummation,
NNLO corrections to H + j in the point-like approxima-
tion with the top-bottom interference. All the ingredients
are now available. We plan to return to this problem be-
fore long.
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