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Abstract

We compute four-loop corrections to the hadronic decay of the Standard Model
Higgs boson which are induced by effective couplings to bottom quarks and gluons,
mediated by the top quark. Our numerical results are comparable in size to the
purely massless contributions which have been known for a few years. The results
presented in this paper complete the order α

4
s corrections to the hadronic Higgs

boson decay.
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1 Introduction

In particle physics, one of the most important tasks in the coming years is the precise
measurement of the couplings of the Higgs boson to fermions and bosons. An important
ingredient in this context is the decay rate of the Higgs boson into bottom quarks, which
has the by far largest branching ratio. Together with the decay rate into gluons it con-
stitutes almost 70% of the hadronic decay width and it thus has a major influence on all
Higgs boson branching ratios.

One-loop1 QCD corrections to Γ(H → bb̄) have been known for a long time, including
the full bottom quark–mass dependence [1]. The massless approximation2 at order α2

s

has been computed in Ref. [2] and the full bottom quark–mass dependence is known from
Ref. [3–5]. Three- and four-loop corrections, of order α3

s and α4
s, have been computed in

the massless limit in Refs. [6–8]. A summary of further corrections, including top quark–
mass-suppressed terms and electroweak effects can be found in recent review articles [9,10]
(see also the program HDECAY [11]).

The main aim of this paper is to complete the corrections of order α4
s to the total decay

rate of the Higgs boson into hadrons. In Ref. [8] only the contribution involving the
bottom quark Yukawa coupling was considered. We compute the contributions induced
by effective Higgs–bottom quark and Higgs–gluon couplings. The corresponding three-
loop calculation, which was performed in Ref. [7], produces a similarly-sized contribution
to the α3

s coefficient as that of the purely massless contribution. It is therefore necessary
also to evaluate the top quark–induced contributions at order α4

s.

For the calculation performed in this paper the relevant part the Standard Model (SM)
Lagrange density is given by the Yukawa terms supplemented by the strong interaction
terms. For the production and decay of the SM Higgs boson it turns out that the effective
theory in which the top quark is integrated out provides a good approximation to the full
theory. This leads to the following effective Lagrangian [12–14]3

Leff = −H0

v0
(C1[O′

1] + C2[O′

2]) + L′

QCD , (1)

where the primed quantities are defined in the five-flavour theory. H0 and v0 are the
bare Higgs boson field and vacuum expectation value which can be identified with their
renormalized counterparts if, as in this paper, electroweak effects are neglected. In Eq. (1)
all dependence on the top quark is contained in the coefficient functions (or effective
couplings) C1 and C2. [O′

1] and [O′

2] are renormalized effective operators constructed
from the light degrees of freedom. Their bare versions read

O′

1 =
(

G0′
a,µν

)2
,

1In the following we count the number of loops needed for the virtual corrections
2Here “massless” refers to the bottom quark mass in the propagators; the bottom quark Yukawa coupling
remains non-zero.

3We follow the notation of Ref. [7].
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Figure 1: Sample Feynman diagrams contributing to Π11, Π12 and Π22. The curly and
straight lines represent gluons and quarks, respectively. The blobs stand for the effective
operators O′

1 and O′

2.

O′

2 = m0′
b b̄

0′b0′ , (2)

where G0′
a,µν is the bare gluon field strength tensor and b̄0′ is the bare bottom quark field.

Further corrections to Leff are suppressed by the inverse top quark mass, contributing
terms of order M 2

H/M
2
t to the decay rate. These terms are available to order α3

s [15–17]
and are known to be small. For example, at order α2

s the M 2
H/M

2
t term changes the

coefficient by less than 1% and thus induces a correction which is of the same order of
magnitude as non-suppressed contributions of order α4

s. We also restrict ourselves to
the leading m 2

b term and neglect higher powers in the bottom quark mass which are
numerically even smaller than the 1/Mt terms.

On the basis of the Lagrange density of Eq. (1) we define correlators formed by the
operators O′

1 and O′

2,

Πij(q
2) = i

∫

dxeiqx〈0|T [O′

i,O′

j]|0〉.

(3)

Sample Feynman diagrams contributing to Π11, Π12 and Π22 are shown in Fig. 1.

Using the optical theorem, the total decay rate can be obtained from the imaginary part
of Πij . In this context it is convenient to introduce the quantities

∆ii = Kii Im
[

Πii(M
2
H )

]

,

∆12 = K12 Im
[

Π12(M
2
H) + Π21(M

2
H )

]

, (4)
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with 1/K11 = 32πM 4
H and 1/K12 = 1/K22 = 6πM 2

Hm
2
b . Note that Π12(M

2
H ) = Π21(M

2
H).

The total decay width is then given by

Γ(H → hadrons) = Abb̄

[

(C2)
2 (1 + ∆22) + C1C2∆12

]

+ Agg (C1)
2∆11 , (5)

where

Abb̄ =
3GFMHm

2
b (µ)

4π
√
2

,

Agg =
4GFM

3
H

π
√
2

. (6)

Note that for clarity, we restrict ourselves in Eq. (5) to the QCD corrections that we
compute in this paper; we neglect both electroweak effects and power corrections sup-
pressed by M 2

H/M
2
t . Furthermore, we concentrate on the decay of the Higgs boson only

to bottom quarks and to gluons. The results can easily be extended to include the decay
to additional light quark flavours, if necessary. A more complete formula can be found
in Eq. (10) of Ref. [7]. Note that in Eq. (6), mb(µ) refers to the MS bottom quark mass
evaluated at the renormalization scale µ.

In Ref. [8] Π22 has been computed to five-loop order, yielding order α4
s corrections to the

Higgs boson decay. For these corrections we have that C2 = 1 and therefore refer to them
in the following as “massless contributions”, despite the fact that there is an overall factor
of m 2

b from the bottom quark Yukawa coupling.

The leading-order term of Π11 describes the decay of the Higgs boson into gluons. Starting
from next-to-leading order (two loops) the gluonic and fermionic decay cannot be sepa-
rated in the approach based on the optical theorem, since there are diagrams containing
both purely gluonic cuts and cuts involving both gluons and quark–antiquark pairs.

The main result of this paper is the extension of [7]. We compute the four-loop correction
to Π12 which contributes to the hadronic Higgs boson decay at order α4

s, along with the
five-loop calculation of Ref. [8]. This is because the leading term of C1 contains a factor
αs.

Note that Π22 has an overall prefactor m 2
b , which comes from the two operators O′

2. Π12

is also proportional to m 2
b ; one factor arises from O′

2 the other from the trace of the
bottom quark loop. In the limit mb → 0 the correlator Π11 has a non-zero contribution.
Terms proportional to m 2

b appear for the first time at two-loop order, due to the presence
of closed bottom quark loops. We compute such terms up to three loops, which give
rise to order α4

s corrections to the Higgs boson decay. We want to remark that the mb-
independent terms of Π11 have been computed to four-loop order in Ref. [18] leading to
corrections of order α5

s to the hadronic Higgs boson decay.

In the next section we provide several technical details of our calculation. In particular,
we discuss the computation of the four-loop integrals and explain the operator mixing and
renormalization. We additionally provide explicit expressions for the effective couplings
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C1 and C2. We present analytic results in Section 3 and discuss the numerical impact of
our new corrections. Our conclusions are given in Section 4.

2 Calculation

For the calculation of the Feynman diagrams we use a well-tested automated setup which
uses qgraf [19] for the generation of the Feynman amplitudes, and q2e and exp [20–22] for
the mapping to one of eleven pre-defined four-loop integral families. The Dirac algebra
is performed with FORM [23], which also re-writes the amplitude of each diagram as a
linear combination of scalar integrals. Next we generate, using FIRE 5.1 [24, 25], tables
for the reduction of the integrals of all eleven families to master integrals. We then apply
tsort [26], in the form of the FIRE command FindRules, to minimize the number of
master integrals among all eleven families and end up with 28 four-loop master integrals,
which have been computed in Refs. [27–29].

We have re-computed the one-, two- and three-loop corrections to all correlators using
both the setup described above and, as a cross check of our approach, MINCER [30]. Both
calculations produce identical results, which agree with the literature. As a further check
we have performed our calculations using a generic gauge parameter ξ. Our four-loop
expressions have been expanded to linear order in ξ which drops out after reducing the
master integrals to a minimal set.

We have used this method to compute the four-loop corrections to Π12 and the three-loop
corrections to Π11 which, after taking the imaginary part, lead to the bare quantities ∆0

12

and ∆0
11. At this point we perform the renormalization of the strong coupling constant

and the quark mass in the MS scheme where the renormalization constants are introduced
via

α0
s = Zαs

αs ,

m0
b = Zmmb . (7)

Zαs
and Zm are required to third order in αs and can be found in, e.g., Ref. [31].

Afterwards, we have to take into account that the operators O′

1 and O′

2 mix under renor-
malization according to [7, 32]

[O′

1] = Z11O′

1 + Z12O′

2 ,

[O′

2] = O′

2 . (8)

The renormalization constants Z11 and Z12 are obtained from Zαs
and Zm as follows,

Z11 = 1 +
αs∂

∂αs

logZαs
,

Z12 = −4
αs∂

∂αs

logZm . (9)
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In terms of these renormalization constants, the renormalized correlators ∆ij are given by

∆11 = (Z11)
2∆0

11 + 2Z11Z12∆
0
12 + (Z12)

2∆0
22 ,

∆12 = Z11∆
0
12 + Z12∆

0
22 ,

∆22 = ∆0
22 . (10)

Note that the contributions of ∆0
12 and ∆0

22 are proportional to m 2
b whereas ∆0

11 contains
both m 2

b and mb-independent terms. Since Z12 ∝ αs only the (n − 1)-loop terms of ∆0
12

and the (n− 2)-loop terms of ∆0
22 enter the n-loop renormalization of ∆11. Similarly, the

n-loop renormalization of ∆12 requires the (n− 1)-loop terms of ∆0
22.

For completeness we also provide explicit expressions for the effective couplings C1 and
C2, which are available in the literature up to fifth order [33–35]. It is convenient to
parametrize the perturbative expansion in terms of

as ≡ α
(5)
s (µ)

π
, (11)

where the superscript indicates the number of active quark flavours used for the running,
and the on-shell top quark mass. To obtain corrections of order a4s to the decay rate, C1

is needed to third order and C2 to fourth order. In the following we present C1 to order a4s
since we include a5s corrections when evaluating the decay rate numerically. The analytic
results read

C1 = − as
1
12 − a2s

11
48 − a3s

[

2777
3456 +

19
192 Lt − nl

(

67
1152 − 1

36 Lt

)

]

+ a4s

[

2761331
497664

− 897943
110592

ζ3 − 2417
3456

Lt − 209
768

L 2
t

− nl

(

58723
248832 − 110779

165888 ζ3 +
91
648 Lt +

23
384 L 2

t

)

+ n 2
l

(

6865
373248

− 77
20736

Lt +
1
216

L 2
t

)

]

+O
(

a5s
)

, (12)

≈ − 0.08333 as − 0.2292 a2s − a3s

[

0.7391− 0.07624nl

]

− a4s

[

3.8715− 0.6328nl − 0.02277n 2
l

]

+O
(

a5s
)

, (13)

C2 = 1 + a2s

[

5
18

− 1
3
Lt

]

+ a3s

[

− 841
1296

+
5
3
ζ3 − 79

36
Lt − 11

12
L 2
t + nl

(

53
216

+
1
18

L 2
t

)

]

+ a4s

[

609215
186624

− 4
3
ζ2 +

374797
13824

ζ3 − 4123
144

ζ4 − 575
36

ζ5 +
62
9

Li4

(

1
2

)

− 4
9
ln 2 ζ2

− 31
18

(ln 2)2 ζ2 +
31
108

(ln 2)4 −
[

4645
144

− 55
4
ζ3

]

Lt − 91
8

L 2
t − 121

48
L 3
t

+ nl

(

− 11557
15552 +

2
9 ζ2 − 221

288 ζ3 +
163
72 ζ4 − 4

9 Li4

(

1
2

)

+
1
9 (ln 2)2 ζ2
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− 1
54

(ln 2)4 +
9535
2592

Lt +
109
144

L 2
t +

11
36

L 3
t

)

+ n 2
l

(

3401
23328

− 7
54

ζ3 − 31
324

Lt − 1
108

L3
t

)

]

+O
(

a5s
)

, (14)

≈ 1 + 0.494759 a2s + a3s

[

2.3946 + 0.2689nl

]

− a4s

[

6.0125 + 1.1543nl − 0.05480n 2
l

]

+O
(

a5s
)

, (15)

where ζn is the Riemann Zeta function, Lin(z) is the Polylogarithm function and we have
defined Lt = log(µ2/M 2

t ). The numerical expressions are given at the renormalization
scale µ2 = M 2

H , for nl = 5 massless flavours running in fermion loops, and for MH =
125.09 GeV and Mt = 173.21 GeV [36]. Since µ is of the order of the Higgs boson mass
one generates potentially large logarithms which should be resummed [14]. In practice,
however, the numerical effect is small and we have decided to consider only the fixed-order
result here.

3 Results

We use this section to present our results. The new ingredients of Eq. (5) required to
complete the order α4

s corrections to Γ(H → hadrons) are the four-loop corrections to ∆12

and the bottom mass–dependent three-loop corrections to ∆11. For convenience we also
present the lower-order contributions. The general expressions in terms of the Casimir
invariant colour factors can be found in Appendix A. For the SU(3) case, for which CA = 3
and CF = 4/3, we obtain

∆11 = 1 + as

[

73
4

+
11
2
LH − nl

(

7
6
+

1
3
LH

)

]

+ a2s

[

37631
96

− 363
8

ζ2 − 495
8

ζ3 +
2817
16

LH +
363
16

L 2
H

+ nl

(

− 7189
144

+
11
2
ζ2 +

5
4
ζ3 − 263

12
LH − 11

4
L 2
H

)

+ n 2
l

(

127
108 − 1

6 ζ2 +
7
12 LH +

1
12 L 2

H

)

]

+

(

m 2
b

M 2
H

)

{

6 as + a2s

[

697
3 − 6 ζ2 + 6 ζ3 +

169
2 LH + 3L 2

H − nl

(

15
2 + 3LH

)

]

}

+O
(

a3s
)

(16)

≈ 1 + as

[

18.2500− 1.1667nl

]

+ a2s

[

242.9734− 39.3739nl + 0.9018n 2
l

]

+

(

m 2
b

M 2
H

)

{

6 as + a2s

[

229.6761− 7.5000nl

]}

+O
(

a3s
)

(17)
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and

∆12 =+ as

[

− 92
3 − 8LH

]

+ a2s

[

− 15073
18 + 76 ζ2 + 156 ζ3 − 1028

3 LH − 38L 2
H

+ nl

(

283
9

− 8
3
ζ2 − 16

3
ζ3 +

112
9

LH +
4
3
L 2
H

)

]

+ a3s

[

− 8957453
432 + 4150 ζ2 +

131389
18 ζ3 − 815 ζ5

−
[

65267
6

− 855 ζ2 − 1755 ζ3

]

LH − 2075L 2
H − 285

2
L 3
H

+ nl

(

279451
162

− 1003
3

ζ2 − 446 ζ3 + 10 ζ4 +
100
3

ζ5

+
[

15973
18 − 68 ζ2 − 118 ζ3

]

LH +
1003
6 L 2

H +
34
3 L 3

H

)

+ n 2
l

(

− 25627
972 +

56
9 ζ2 +

20
3 ζ3 −

[

407
27 − 4

3 ζ2 − 8
3 ζ3

]

LH

− 28
9
L 2
H − 2

9
L 3
H

)

]

+O
(

a4s
)

(18)

≈ − 30.6667 as + a2s

[

− 524.8530 + 20.6470nl

]

+ a3s

[

− 5979.1838 + 684.320nl − 8.1164n 2
l

]

+O
(

a4s
)

, (19)

where LH = log(µ2/M 2
H). As above, nl counts the number of light quarks running in

fermion loops. For the numerical evaluation we have set µ2 = M 2
H and nl = 5. For

both ∆11 and ∆12 we observe a rapid growth of the coefficients, however, we postpone
discussion of the convergence properties to the decay rate, since ∆11 and ∆12 do not
themselves represent physical quantities.

For the numerical evaluation of the decay rate it is convenient to cast Eq. (5) in the form

Γ(H → hadrons) = Abb̄

(

1 + ∆light +∆top +∆mb=0
gg

)

, (20)

where we have chosen Abb̄ as a common prefactor so that we can easily compare the relative
sizes of the individual contributions. ∆light contains all corrections obtained for C1 = 0
and C2 = 1. They have already been presented and discussed in Ref. [8]. ∆top contains
the top quark–induced corrections obtained from the contributions proportional to C1

and (C2−1). For completeness we also list the corrections from ∆11 which have no factor
m 2

b . They are collected in ∆mb=0
gg . Note that these terms have already been computed in

Ref. [37]. For convenience we provide the formulae which relate the quantities in Eq. (20)
to the ones in Eq. (5):

∆light = ∆22 ,
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∆top =
[

(C2)
2 − 1

]

(1 + ∆22) + C1C2∆12 +
16M 2

H

3m 2
b

(C1)
2∆

m 2

b

11 ,

∆mb=0
gg =

16M 2
H

3m 2
b

(C1)
2∆mb=0

11 . (21)

For the numerical evaluation we use α
(5)
s (MZ) = 0.1181 [36] and mb(mb) = 4.163 GeV [38]

which leads to mb(MH) = 2.773 GeV and α
(5)
s (MH) = 0.1127 using RunDec [39, 40] with

four-loop accuracy. Numerical values for MH and Mt are already given at the end of
Section 2. We expand the expressions of Eq. (21) in as and obtain

∆light ≈ 5.6667as + 29.1467a2s + 41.7576a3s − 825.7466a4s
≈ 0.2033 + 0.03752 + 0.001929− 0.001368, (22)

∆top ≈ a2s [2.555612 + 0.989522]

+ a3s [0.222211 + 42.162612 + 13.085522]

+ a4s [8.339911 + 338.902112 + 50.634622]

≈ 0.00329012 + 0.00127422

+ 0.0000102611 + 0.00194712 + 0.000604322

+ 0.0000138211 + 0.000561612 + 0.0000839022, (23)

∆mb=0
gg ≈ M 2

H

27m 2
b

(

a2s + 17.9167a3s + 153.0921a4s + 392.6176a5s
)

,

≈ 0.09699 + 0.06235 + 0.01911 + 0.001759 , (24)

where the subscripts in the expression for ∆top indicate the origin of each term. For ∆mb=0
gg

we have included the corrections of order a5s from Ref. [18].

From Eqs. (22), (23) and (24) we observe that the a2s term of ∆mb=0
gg amounts to almost

50% of the as term in ∆light. Furthermore, the a5s term of ∆mb=0
gg has the same order of

magnitude as the a4s term of ∆light. Note that the latter is only about twice as large as
the a4s contribution to ∆top, obtained from the sum of the three numbers in the last line
of Eq. (23); this amounts to 0.0006593.

It is a disturbing feature of ∆light that the a3s and a4s terms deviate by less than 30%.
Furthermore they have opposite signs. Therefore, it is interesting to add ∆light and ∆top

which leads to

1 + ∆light +∆top ≈ 1 + 0.2033 + 0.04208 + 0.004490− 0.0007090 , (25)

where the different loop orders are kept separate. We observe a reduction by a factor of
about six between the three- and four-loop contributions; the convergence of the sum is
significantly better than that of the individual expressions.

Finally we show, in Fig. 2, the dependence of Γ(H → hadrons) on the renormalization
scale µ. We plot Γ(H → hadrons)/Abb̄(µ = MH), which means that for the leading order
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Figure 2: Γ(H → hadrons)/Abb̄(µ = MH) as a function of the renormalization scale µ.

(short-dashed) curve we have Γ(H → hadrons)/Abb̄(µ = MH) = 1 for µ = MH . The six
curves represent (from bottom to top, i.e. from the short-dashed to the solid curve) the
predictions of order α0

s, . . . , α
5
s, where α5

s terms are only included for ∆mb=0
gg . µ is varied

between 10 GeV and 500 GeV which is significantly larger than the usual range spanned
between MH/2 and 2MH . Nevertheless, one observes a steady flattening of the curves
when including higher order corrections; the result represented by solid line is almost
µ-independent.

4 Conclusions

We complete the corrections of order α4
s to the hadronic decay rate of the Standard Model

Higgs boson by computing the top quark–induced contributions in an effective field-theory
framework. This requires the calculation of four-loop propagator-type integrals. Our
new corrections are numerically of the same order of magnitude as the purely massless
contribution [8], however they have an opposite sign. We provide all analytic results
presented in this paper in a computer-readable format [41], making it straightforward

10



to implement the corrections in existing computer codes which evaluate decay rates of
the Higgs boson. Finally, we want to mention that Γ(H → hadrons) is one of very few
physical quantities for which five terms of the perturbative expansion are known and the
perturbative expansion can be studied, see Eq. (25).
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A ∆11 and ∆12 in terms of Casimir colour factors

In terms of the Casimir invariants of SU(N), ∆11 is given by

∆11 = 1 + as

[

CA

(

73
12 +

11
6 LH

)

− nl

(

7
6 +

1
3 LH

)

]

+ a2s

[

C 2
A

(

37631
864 − 121

24 ζ2 − 55
8 ζ3 +

313
16 LH +

121
48 L 2

H

)

+ nl CF

(

− 131
48 +

3
2 ζ3 − 1

2 LH

)

+ nl CA

(

− 6665
432 +

11
6 ζ2 − 1

4 ζ3 − 85
12 LH − 11

12 L 2
H

)

+ n 2
l

(

127
108 − 1

6 ζ2 +
7
12 LH +

1
12 L 2

H

)

]

+

(

m 2
b

M 2
H

)

{

6 as + a2s

[

CA

(

55 + 6 ζ3 +
33
2

LH

)

+ CF

(

101
2

− 9
2
ζ2 − 9 ζ3 +

105
4

LH +
9
4
L 2
H

)

− nl

(

15
2

+ 3LH

)

]

}

+O
(

a3s
)

,

(26)

where CA = N and CF = (N2 − 1)/(2N). ∆12 reads

∆12 =+ as

[

CF

(

− 23− 6LH

)

]

+ a2s

[

C 2
F

(

− 907
8

+ 18 ζ2 + 18 ζ3 − 123
2

LH − 9L2
H

)

+ CACF

(

− 3815
24

+ 11 ζ2 + 31 ζ3 − 175
3

LH − 11
2

L2
H

)
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+ nl CF

(

283
12 − 2 ζ2 − 4 ζ3 +

28
3 LH + L2

H

)

]

+ a3s

[

C 3
F

(

− 29545
64 + 135 ζ2 +

663
4 ζ3 − 135

2 ζ5

−
[

8631
32 − 81

2 ζ2 − 81
2 ζ3

]

LH − 135
2 L 2

H − 27
4 L 3

H

)

+ CAC 2
F

(

− 108241
96

+
657
2

ζ2 +
3189
8

ζ3 − 435
4

ζ5

−
[

23585
32

− 297
4

ζ2 − 477
4

ζ3

]

LH − 657
4

L 2
H − 99

8
L 3
H

)

+ C 2
A CF

(

− 5886949
5184

+
1039
6

ζ2 +
3187
8

ζ3 − 25
4

ζ5

−
[

18923
36 − 121

4 ζ2 − 341
4 ζ3

]

LH − 1039
12 L 2

H − 121
24 L 3

H

)

+ nl C
2
F

(

5803
24 − 225

4 ζ2 − 207
2 ζ3 − 9

2 ζ4 + 30 ζ5

+
[

1067
8 − 27

2 ζ2 − 27 ζ3

]

LH +
225
8 L 2

H +
9
4 L 3

H

)

+ nl CACF

(

209815
648

− 703
12

ζ2 − 131
2

ζ3 +
9
2
ζ4 − 5 ζ5

+
[

11705
72

− 11 ζ2 − 35
2
ζ3

]

LH +
703
24

L 2
H +

11
6
L 3
H

)

+ n 2
l CF

(

− 25627
1296

+
14
3

ζ2 + 5 ζ3

−
[

407
36

− ζ2 − 2 ζ3

]

LH − 7
3
L 2
H − 1

6
L 3
H

)

]

+O
(

a4s
)

. (27)
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