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Abstract

We compute four-loop corrections to the hadronic decay of the Standard Model
Higgs boson which are induced by effective couplings to bottom quarks and gluons,
mediated by the top quark. Our numerical results are comparable in size to the
purely massless contributions which have been known for a few years. The results
presented in this paper complete the order a? corrections to the hadronic Higgs
boson decay.
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1 Introduction

In particle physics, one of the most important tasks in the coming years is the precise
measurement of the couplings of the Higgs boson to fermions and bosons. An important
ingredient in this context is the decay rate of the Higgs boson into bottom quarks, which
has the by far largest branching ratio. Together with the decay rate into gluons it con-
stitutes almost 70% of the hadronic decay width and it thus has a major influence on all
Higgs boson branching ratios.

One—loopEl QCD corrections to I'(H — bb) have been known for a long time, including
the full bottom quark—mass dependence [I]. The massless approximationﬁ at order a?
has been computed in Ref. [2] and the full bottom quark-mass dependence is known from
Ref. [3H5]. Three- and four-loop corrections, of order o and a?, have been computed in
the massless limit in Refs. [6H8]. A summary of further corrections, including top quark—
mass-suppressed terms and electroweak effects can be found in recent review articles [9/10]
(see also the program HDECAY [IT]).

The main aim of this paper is to complete the corrections of order a? to the total decay
rate of the Higgs boson into hadrons. In Ref. [§] only the contribution involving the
bottom quark Yukawa coupling was considered. We compute the contributions induced
by effective Higgs—bottom quark and Higgs—gluon couplings. The corresponding three-
loop calculation, which was performed in Ref. [7], produces a similarly-sized contribution
to the a? coefficient as that of the purely massless contribution. It is therefore necessary
also to evaluate the top quark—induced contributions at order a?.

For the calculation performed in this paper the relevant part the Standard Model (SM)
Lagrange density is given by the Yukawa terms supplemented by the strong interaction
terms. For the production and decay of the SM Higgs boson it turns out that the effective
theory in which the top quark is integrated out provides a good approximation to the full
theory. This leads to the following effective Lagrangian [12HI4]

0

Lo = 5 (CUON + COU) + Lo 1)
where the primed quantities are defined in the five-flavour theory. H° and v° are the
bare Higgs boson field and vacuum expectation value which can be identified with their
renormalized counterparts if, as in this paper, electroweak effects are neglected. In Eq. ()
all dependence on the top quark is contained in the coefficient functions (or effective
couplings) C; and Cy. [Of] and [O}] are renormalized effective operators constructed
from the light degrees of freedom. Their bare versions read

o, = (GY.,)°,

a,puv

'In the following we count the number of loops needed for the virtual corrections
2Here “massless” refers to the bottom quark mass in the propagators; the bottom quark Yukawa coupling
remains non-zero.

3We follow the notation of Ref. [1].
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Figure 1: Sample Feynman diagrams contributing to II;;, ITj5 and Ils,. The curly and
straight lines represent gluons and quarks, respectively. The blobs stand for the effective
operators O] and Oj.

0, = MV, (2)
where G¥ is the bare gluon field strength tensor and b” is the bare bottom quark field.

a,pv

Further corrections to L.g are suppressed by the inverse top quark mass, contributing
terms of order M,?/M,? to the decay rate. These terms are available to order a2 [I5HI7]
and are known to be small. For example, at order o the M2Z/M,* term changes the
coefficient by less than 1% and thus induces a correction which is of the same order of
magnitude as non-suppressed contributions of order a?. We also restrict ourselves to
the leading m;? term and neglect higher powers in the bottom quark mass which are
numerically even smaller than the 1/M; terms.

On the basis of the Lagrange density of Eq. () we define correlators formed by the
operators O] and Oj,

M) = i [ dee™(0[10 O})0)
3

Sample Feynman diagrams contributing to Il;1, IT;5 and Ily; are shown in Fig. [l

Using the optical theorem, the total decay rate can be obtained from the imaginary part
of II;;. In this context it is convenient to introduce the quantities

Ay = Kilm I:HZZ(M[—%)] )
Ap = Kplm [le(Mﬁ)+H21(M1§)} ) (4)



with 1/K11 = 327TMI_411 and 1/K12 = 1/K22 = 67TMI§mb2. Note that H12(MI§> = Hgl(MI%)
The total decay width is then given by

['(H — hadrons) = Ay [(C9)? (1 + Ag) + C1C2AL] + Agy (C1)? Arr, (5)
where
A, — BGFMHmbz(u)’
47/2
Agg = 4GFM§)' (6)

™2

Note that for clarity, we restrict ourselves in Eq. (@) to the QCD corrections that we
compute in this paper; we neglect both electroweak effects and power corrections sup-
pressed by M?/M,*. Furthermore, we concentrate on the decay of the Higgs boson only
to bottom quarks and to gluons. The results can easily be extended to include the decay
to additional light quark flavours, if necessary. A more complete formula can be found
in Eq. (10) of Ref. [7]. Note that in Eq. (@), ms(u) refers to the MS bottom quark mass
evaluated at the renormalization scale .

In Ref. [§] Iy has been computed to five-loop order, yielding order a corrections to the
Higgs boson decay. For these corrections we have that C'y = 1 and therefore refer to them
in the following as “massless contributions”, despite the fact that there is an overall factor
of m;? from the bottom quark Yukawa coupling.

The leading-order term of 11;; describes the decay of the Higgs boson into gluons. Starting
from next-to-leading order (two loops) the gluonic and fermionic decay cannot be sepa-
rated in the approach based on the optical theorem, since there are diagrams containing
both purely gluonic cuts and cuts involving both gluons and quark—antiquark pairs.

The main result of this paper is the extension of [7]. We compute the four-loop correction
to Iy, which contributes to the hadronic Higgs boson decay at order al, along with the
five-loop calculation of Ref. [§]. This is because the leading term of C contains a factor
Q.

Note that IIs; has an overall prefactor mbz, which comes from the two operators 0. Il
is also proportional to m;?; one factor arises from O} the other from the trace of the
bottom quark loop. In the limit m; — 0 the correlator Il;; has a non-zero contribution.
Terms proportional to m,? appear for the first time at two-loop order, due to the presence
of closed bottom quark loops. We compute such terms up to three loops, which give
rise to order a? corrections to the Higgs boson decay. We want to remark that the my-
independent terms of II;; have been computed to four-loop order in Ref. [I§] leading to
corrections of order a? to the hadronic Higgs boson decay.

In the next section we provide several technical details of our calculation. In particular,
we discuss the computation of the four-loop integrals and explain the operator mixing and
renormalization. We additionally provide explicit expressions for the effective couplings
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C1 and C5. We present analytic results in Section [l and discuss the numerical impact of
our new corrections. Our conclusions are given in Section @l

2 Calculation

For the calculation of the Feynman diagrams we use a well-tested automated setup which
uses qgraf [19] for the generation of the Feynman amplitudes, and q2e and exp [20-22] for
the mapping to one of eleven pre-defined four-loop integral families. The Dirac algebra
is performed with FORM [23], which also re-writes the amplitude of each diagram as a
linear combination of scalar integrals. Next we generate, using FIRE 5.1 [24/25], tables
for the reduction of the integrals of all eleven families to master integrals. We then apply
tsort [26], in the form of the FIRE command FindRules, to minimize the number of
master integrals among all eleven families and end up with 28 four-loop master integrals,
which have been computed in Refs. [27H29].

We have re-computed the one-, two- and three-loop corrections to all correlators using
both the setup described above and, as a cross check of our approach, MINCER [30]. Both
calculations produce identical results, which agree with the literature. As a further check
we have performed our calculations using a generic gauge parameter £. Our four-loop
expressions have been expanded to linear order in £ which drops out after reducing the
master integrals to a minimal set.

We have used this method to compute the four-loop corrections to Il and the three-loop
corrections to ITj; which, after taking the imaginary part, lead to the bare quantities AY,
and AY;. At this point we perform the renormalization of the strong coupling constant
and the quark mass in the MS scheme where the renormalization constants are introduced
via

o, = Zg. 0y,

m = meb . (7)

SO nw o

Zo, and Z, are required to third order in «, and can be found in, e.g., Ref. [31].

Afterwards, we have to take into account that the operators O] and O mix under renor-
malization according to [7,32]

O] = Z10) + 71,05,
0] = O;. (8)

The renormalization constants Z; and Z5 are obtained from Z,, and Z,, as follows,

Z11 = 1 —+ gsa log Zas y
g0
VA = —4 log Z,, .
12 D, 0g (9)

5



In terms of these renormalization constants, the renormalized correlators A;; are given by

An - (le) A(l]l + 2211Z12A12 + (Z12> A22 5
A = ZnAl+ ZinAy,,
AQQ - A(2)2 . (10)

Note that the contributions of Ay, and A3, are proportional to m,? whereas A? contains
both m,? and mj-independent terms. Since Z;5 o a; only the (n — 1)-loop terms of AY,
and the (n — 2)-loop terms of AJ, enter the n-loop renormalization of A;;. Similarly, the
n-loop renormalization of Ay requires the (n — 1)-loop terms of AJ,.

For completeness we also provide explicit expressions for the effective couplings C and
Cy, which are available in the literature up to fifth order [33H35]. It is convenient to
parametrize the perturbative expansion in terms of

as = , (11)

where the superscript indicates the number of active quark flavours used for the running,
and the on-shell top quark mass. To obtain corrections of order a? to the decay rate, C;
is needed to third order and Cs to fourth order. In the following we present C; to order a?
since we include a® corrections when evaluating the decay rate numerically. The analytic
results read

S WS L Y s N U 67 1
Gi=-aq-agg- [3456 +103 Lo (1153~ 39 Lt)}

{2761331 897943 2417 209 L2

107664 110592 % ~ 3456 Lt ~ 768
(58723 10779 0L, 23 )

918832 ~ 165888 %3 1 6ag L+ 384

6365 77 1
+W<Ww% 20736  * 216 © >]+O() (12)

—0.08333a, — 0.2202a — [0 7391 — 0.07624 nl}

Q

pe [3.8715 —0.6328 my — 0.02277 0 ] +0(af). (13)

.5 1 ;[ 841 79 1 53 1
609215 374797 . 4123, 575, 62.. (1\ 4
[186624 3G+ 73591 8~ Taq ¢4 36 &+ g Ll (2) —gn2G

31 4645 91 121
— 15 n2)* & + 73 1()8 (n2)" - [144 1 53} Li— gL' = 33

11557 221 163 4 1 1
+nl<_ 15552+§C2 538 63 + 75 Ca — g Lia (2) §(1n2) G

L3



1 9535 . 109 11
— 512"+ 9500 L+ 77 L/ +36L>
0L 7. 31, 1 :
7 (Sa38 ~ 51 % ~ 331 L~ ToR )} +0 (a), (14)

~ 1+ 0.494759 a2 + a® [2 3946 + 0.2689 nl}

! [6.0125 411543, — 0.05480 nﬁ} +0(a?), (15)

where ¢, is the Riemann Zeta function, Li,(z) is the Polylogarithm function and we have
defined L; = log(u?/M,*). The numerical expressions are given at the renormalization
scale pu? = M2, for n; = 5 massless flavours running in fermion loops, and for My =
125.09 GeV and M; = 173.21 GeV [36]. Since p is of the order of the Higgs boson mass
one generates potentially large logarithms which should be resummed [I4]. In practice,
however, the numerical effect is small and we have decided to consider only the fixed-order
result here.

3 Results

We use this section to present our results. The new ingredients of Eq. (Bl) required to
complete the order o corrections to I'(H — hadrons) are the four-loop corrections to Aj,
and the bottom mass—dependent three-loop corrections to Aq;. For convenience we also
present the lower-order contributions. The general expressions in terms of the Casimir
invariant colour factors can be found in Appendix[Al For the SU(3) case, for which C'y = 3
and Cr = 4/3, we obtain

73 7 1
A11=1+%{4+2L l(6+§LH>]
37631 363 495 2817 363
a?{w— 8 (g Gt g Lut g Ln
7189 5 263 11
e (= gp + 2+z<3—ﬁLH—ZL5)

127 1. 71
(108 6t let1 LH)}

2
my 697 169 15

+0 (a?) (16)
~1+a [18.2500 11667 nl] +a? [242.9734 — 39.3739 1 + 0.9018 nf}
m 5
+ (M 2) {6a, + a2 [220.6761 - 7.5000m| } + O (a?) (17)
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and

A1y =+ ay {— 932 — 8LH]
+a? { ~ T | 76, 4156 ¢ — 128 L,y — 381
(B -Se-1 g3+MLH+§LH)}
+a? [ — 892;;153 + 4150 & + 131g89 G5 —815¢s
- [65(2567 — 855Gy — 1755 Gy Ly — 2075 L] - s
i (271964251 1008 g+ 106+ 100,
+ [%9873 _68¢, — 118C3] Lu+ %LH 3 )
nl2<_%+%@ 26 - [407 3(2 3C3}LH
—%Lﬁ—%Lf})} +0 (a) (18)
~ — 30.6667 a, + a2 [ — 524.8530 + 20.6470 nl]
+ad [  5979.1838 + 684.320 1, — 8.1164 nf} +0(a), (19)

where Ly = log(u?/M;?). As above, n; counts the number of light quarks running in
fermion loops. For the numerical evaluation we have set y?> = M, and n; = 5. For
both Ay, and A we observe a rapid growth of the coefficients, however, we postpone
discussion of the convergence properties to the decay rate, since Ay; and Ay do not
themselves represent physical quantities.

For the numerical evaluation of the decay rate it is convenient to cast Eq. () in the form
['(H — hadrons) = A (1 + Atight + Atop + Agt™ 0) ; (20)

where we have chosen A; as a common prefactor so that we can easily compare the relative
sizes of the individual contributions. Ajgne contains all corrections obtained for C) = 0
and Cy = 1. They have already been presented and discussed in Ref. [§]. Ay, contains
the top quark-induced corrections obtained from the contributions proportional to C}
and (Cy —1). For completeness we also list the corrections from Ay; which have no factor
m,2. They are collected in A;’";’FO. Note that these terms have already been computed in
Ref. [37]. For convenience we provide the formulae which relate the quantities in Eq. (20)
to the ones in Eq. ([{):

Alight = A22a



16 M 2 m2
Atop = [(02)2 — 1] (]_ + AQQ) + 01C2A12 —+ Bmf (C1)2 Allb ’
b
S IGME% 2 x =0

For the numerical evaluation we use a§5)(MZ) = 0.1181 [36] and my(my) = 4.163 GeV [3§]

which leads to my(Mpy) = 2.773 GeV and ags)(MH) = 0.1127 using RunDec [39,40] with
four-loop accuracy. Numerical values for My and M, are already given at the end of
Section 21 We expand the expressions of Eq. (2]]) in as and obtain

Ajgne =~ 5.6667a, + 29.1467a2 + 41.7576a> — 825.7466a;

s

~ 0.2033 + 0.03752 + 0.001929 — 0.001368, (22)

Awop = a2 [2.555615 + 0.9895)]

+ a2 0.2222; + 42.1626,5 + 13.08554,)]

+ a?[8.3399; + 338.9021 5 + 50.63464)]

0.00329015 + 0.0012745,

+0.000010264; 4 0.00194715 + 0.00060435,

+0.000013824; + 0.0005616,5 + 0.0000839052, (23)

Q

2

M
AT=0 (a2 + 17.9167a? + 153.0921a; + 392.6176a) ,
99 27my

~ 0.09699 + 0.06235 + 0.01911 + 0.001759 , (24)

mp=0

where the subscripts in the expression for Ay, indicate the origin of each term. For A7

we have included the corrections of order a? from Ref. [18].

From Egs. 22), @23) and @24) we observe that the a? term of A7»=% amounts to almost
50% of the ay term in Aygy. Furthermore, the a? term of A»=C has the same order of
magnitude as the a! term of Ajighe. Note that the latter is only about twice as large as

the a! contribution to Atop, obtained from the sum of the three numbers in the last line
of Eq. (23); this amounts to 0.0006593.

It is a disturbing feature of Ajgy, that the a? and a? terms deviate by less than 30%.
Furthermore they have opposite signs. Therefore, it is interesting to add Ajigne and A
which leads to

1+ Ajight + Aop =~ 14 0.2033 + 0.04208 4 0.004490 — 0.0007090, (25)

where the different loop orders are kept separate. We observe a reduction by a factor of
about six between the three- and four-loop contributions; the convergence of the sum is
significantly better than that of the individual expressions.

Finally we show, in Fig. Pl the dependence of I'(H — hadrons) on the renormalization
scale p. We plot I'(H — hadrons)/A; (1 = Mpy), which means that for the leading order
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Figure 2: I'(H — hadrons)/A;;(u = Mpy) as a function of the renormalization scale p.

(short-dashed) curve we have I'(H — hadrons)/Ay;(n = My) = 1 for p = Mpy. The six
curves represent (from bottom to top, i.e. from the short-dashed to the solid curve) the
predictions of order a2, ..., %, where a® terms are only included for A;’}Jbzo. p is varied
between 10 GeV and 500 GeV which is significantly larger than the usual range spanned
between My /2 and 2My. Nevertheless, one observes a steady flattening of the curves
when including higher order corrections; the result represented by solid line is almost

p-independent.

4 Conclusions

We complete the corrections of order a? to the hadronic decay rate of the Standard Model
Higgs boson by computing the top quark-induced contributions in an effective field-theory
framework. This requires the calculation of four-loop propagator-type integrals. Our
new corrections are numerically of the same order of magnitude as the purely massless
contribution [§], however they have an opposite sign. We provide all analytic results
presented in this paper in a computer-readable format [41], making it straightforward
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to implement the corrections in existing computer codes which evaluate decay rates of
the Higgs boson. Finally, we want to mention that I'(H — hadrons) is one of very few
physical quantities for which five terms of the perturbative expansion are known and the
perturbative expansion can be studied, see Eq. (23]).
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A Ay and Ay in terms of Casimir colour factors

In terms of the Casimir invariants of SU(N), Ay, is given by

73 11 7 1
Allzl—l—a |:CA( FLH)—nl<6+§LH):|
9 9 (37631 121 313 121
{CA(864 G- FG+ T Lu+ 5 Li)
131 1
‘l‘nlCF(_ 48 2<3 LH)

6665 85 11
‘l‘nlCA(_ 432 “'F@ 4(3 LH 12LH>

(%(2); 6<2+172LH+112L )}
+(E—§) {6a5+a [C’A (55+6C3+323LH>
+CF<101—gg 9§3+125LH+ZL) 1(12—5+3LH)]}+0(a§),
(26)
where C'y = N and Cp = (N? — 1)/(2N). Ay reads
A12:+a8[CF<—23—6LH)]
+a§{cg( 2 418G+ 18¢ — 122 Ly — 9% )
+CaCr (- 3§i5+11c2+31c3—@LH—121L§1)
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283 28
29545 663 135
+a; [Oﬁl(——m +1350+ 7 G — 52 Gs
8631 81 . 81 135 .5 27,3
_[32_2C2_2C3}LH_2LH_4LH>

108241 = 657 3189 435
+CACI‘%<_T+TC2+TC3_TC5

L CF(— 58581689449 N 10639 Gt % G- 2745C5
— _%—%@—%@_ LH—%LEI_%L;})
+n, CF (%_%@_%743_%@7%0%

1067 27 225 9
[7—742—27@] LH+?LEI+ZL§)

209815 703 131 9
+nzCACF( 613 — 19 62— 5 Gt 50—5G

11705 35 703 11
+ [T—HQ—?@] LH+ﬂLf1+ELf}>
25627 | 14
407 7 1
_[%—gQ—QQg,}LH—gLé—gLf})}+O(ai‘). (27)
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