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Abstract

New physics contributions to the Z penguin are revisited in the light of
the recently-reported discrepancy of the direct CP violation in K → ππ. In-
terference effects between the standard model and new physics contributions
to ∆S = 2 observables are taken into account. Although the effects are over-
looked in the literature, they make experimental bounds significantly severer.
It is shown that the new physics contributions must be tuned to enhance
B(KL → π0νν̄), if the discrepancy of the direct CP violation is explained with
satisfying the experimental constraints. The branching ratio can be as large as
9× 10−10 when the contributions are tuned at the 10 % level.
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1 Introduction

A deviation of the standard model (SM) prediction from the experimental result is
recently reported in the direct CP violation of the K → ππ decays, which is called
ε′. The latest lattice calculations of the hadron matrix elements significantly reduced
the theoretical uncertainty [1–4] and yield [5, 6](

ε′

ε

)
SM

=


(1.38± 6.90)× 10−4, [RBC-UKQCD]
(1.9± 4.5)× 10−4, [Buras et al.]
(1.06± 5.07)× 10−4. [Kitahara et al.]

(1.1)

They are lower than the experimental result [7–10],(
ε′

ε

)
exp

= (16.6± 2.3)× 10−4. (1.2)

The deviations correspond to the 2.8–2.9σ level.
Several new physics (NP) models have been explored to explain the discrep-

ancy [11–21]. In the literature, electroweak penguin contributions to ε′/ε have been
studied.#1 In particular, the Z penguin contributions have been studied in de-
tail [11, 13, 15, 22]. The decay, s → dqq̄ (q = u, d), proceeds by intermediating the Z
boson, and its flavor-changing (s–d) interaction is enhanced by NP. Then, the branch-
ing ratios of K → πνν̄ are likely to be deviated from the SM predictions once the
ε′/ε discrepancy is explained. This is because the Z boson couples to the neutrinos
as well as the up and down quarks. They could be a signal to test the scenario.

Such a signal is constrained by the indirect CP violation of the K mesons. The
flavor-changing Z couplings affect the indirect CP violation via so-called the double
penguin diagrams; the Z boson intermediates the transition, both of whose couplings
are provided by the flavor-changing Z couplings. Such a contribution is enhanced
when there are both the left- and right-handed couplings because of the chiral en-
hancement of the hadron matrix elements. This is stressed by Ref. [15] in the context
of the Z ′-exchange scenario. In the Z-boson case, since the left-handed coupling is
installed by the SM, the right-handed coupling must be constrained even without
NP contributions to the left-handed one. Such interference contributions between
the NP and the SM are overlooked in Refs. [11, 13, 15, 22]. Therefore, the parameter
regions allowed by the indirect CP violation will change significantly. In this letter,
we revisit the Z-boson scenario.#2 It will be shown that the NP contributions to the
right-handed s–d coupling are tightly constrained due to the interference, and thus,
the branching ratio of KL → π0νν̄ is likely to be smaller than the SM predictions if
the ε′/ε discrepancy is explained. We will discuss that NP parameters are necessarily
tuned to enhance the ratio. A degree of the parameter tuning will be investigated to
estimate how large B(KL → π0νν̄) and B(K+ → π+νν̄) can become.

#1 QCD penguin contributions, e.g., through Kaluza-Klein gluons, have also been considered [11].
#2 In this letter, we focus on the s–d transitions. The ∆F = 2 transitions such as ∆mB generally

involve the interference contributions.
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2 Z-penguin observables

In this section, we briefly review the Z-penguin contributions to ∆S = 2 and ∆S = 1
processes in the general Z scenario. It is assumed that the left- and/or right-handed
flavor-changing (s–d) Z couplings are involved. The effective interaction is defined as

LZeff =
[(

∆SM
L + ∆NP

L

)
(s̄γµPLd) + ∆NP

R (s̄γµPRd)
]
Zµ + H.c., (2.1)

where ∆L and ∆R are dimensionless complex parameters at the Z-boson mass scale.
The SM contribution is generated by radiative corrections. At the one-loop level, it
is calculated as (c.f., Ref. [22])

∆SM
L =

g3λt
8π2cW

C

(
m2
t

m2
W

)
, ∆SM

R = 0, (2.2)

where cW = cos θW and λi ≡ V ∗isVid with the CKM matrix Vij. In this letter, the
CKMfitter result [23] is used for the CKM elements, unless otherwise mentioned.
The loop function is

C(x) =
x

8

[
x− 6

x− 1
+

3x+ 2

(x− 1)2
lnx

]
. (2.3)

In the following, we omit the subscript “NP” in ∆NP
L and ∆NP

R .

2.1 εK and ∆mK

The ∆S = 2 observables involve the indirect CP violation εK and the mass difference
∆mK in the K0–K0 mixing. In particular, since εK has been measured precisely, and
the SM prediction has been estimated accurately, it provides a severe constraint. The
SM and NP contribute as

εK = eiϕε
(
εSM
K + εNP

K

)
, (2.4)

where ϕε = (43.51 ± 0.05)◦. The NP contribution is given by the double penguin
diagrams with the Z boson exchange,

εNP
K =

8∑
i=1

(εK)Zi , (2.5)

where the right-hand side is

(εK)Z1 = −4.26× 107 Im ∆L Re ∆L, (εK)Z2 = −4.26× 107 Im ∆R Re ∆R,

(εK)Z3 = 2.07× 109 Im ∆L Re ∆R, (εK)Z4 = 2.07× 109 Im ∆R Re ∆L. (2.6)

2



In addition, the interference terms between the SM and NP contributions are

(εK)Z5 = −4.26× 107 Im ∆SM
L Re ∆L, (εK)Z6 = −4.26× 107 Im ∆L Re ∆SM

L ,

(εK)Z7 = 2.07× 109 Im ∆SM
L Re ∆R, (εK)Z8 = 2.07× 109 Im ∆R Re ∆SM

L . (2.7)

The numerical factors are found in Ref. [15], where renormalization group corrections
and long-distance contributions are included [24]. These interference terms between
the SM and NP contributions have been overlooked in Refs. [11,13,15,22]. They will
be shown to be significant in the next section.#3

The latest estimation of the SM value is [25]

εSM
K = (2.24± 0.19)× 10−3. (2.8)

On the other hand, the experimental result is [10]

|εexp
K | = (2.228± 0.011)× 10−3. (2.9)

They are well consistent with each other, and εNP
K must satisfy

−0.39× 10−3 < εNP
K < 0.37× 10−3, (2.10)

at the 2σ level.#4

The kaon mass difference ∆mK consists of the SM and NP contributions:

∆mK = ∆mSM
K + ∆mNP

K . (2.11)

If we parameterize the NP contribution as

∆mNP
K

∆mexp
K

=
8∑
i=1

RZ
i , (2.12)

the right-hand side is estimated as

RZ
1 = 6.43× 107

[
(Re ∆L)2 − (Im ∆L)2] ,

RZ
2 = 6.43× 107

[
(Re ∆R)2 − (Im ∆R)2] ,

RZ
3 = −6.21× 109 Re ∆L Re ∆R,

RZ
4 = 6.21× 109 Im ∆L Im ∆R. (2.13)

#3 Charm-quark loops also contribute to ∆SM
L in Eq. (2.7). In reliable estimations, long-distance

effects and dimension-eight operators need to be taken into account [24]. However, such a work is
beyond the scope of this letter. Instead, if we estimate the charm-quark loop at the Z-boson mass
scale, the real component of ∆SM

L is suppressed by about 10%.
#4The SM estimation εSMK is sensitive to the CKM elements. If one uses Vcb that is determined

by the exclusive B → D(∗)`ν decays [26], εSMK = (1.73 ± 0.18) · 10−3 is obtained [27]. Then, εNP
K =

(0.50± 0.18) · 10−3 are required at the 1σ level.
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The interference terms between the SM and NP contributions are

RZ
5 = 12.9× 107 Re ∆SM

L Re ∆L, RZ
6 = −12.9× 107 Im ∆SM

L Im ∆L,

RZ
7 = −6.21× 109 Re ∆SM

L Re ∆R, RZ
8 = 6.21× 109 Im ∆SM

L Im ∆R. (2.14)

The numerical factors are found in Ref. [15]. The interference terms have been over-
looked in the literature.

The experimental result is [10]

∆mexp
K = (3.484± 0.006)× 10−15 GeV. (2.15)

The SM prediction involves a sizable contribution from long-distance effects, and the
uncertainty is large.#5 Hence, we simply require that the NP contribution does not
exceed the experimental value with allowing the 2σ uncertainty:

|∆mNP
K | < 3.496× 10−15 GeV. (2.16)

This constraint will turn out to be much weaker than εNP
K .

2.2 ε′/ε

The flavor-changing Z interaction also contributes to ∆S = 1 observables. The direct
CP violation ε′/ε is shown as

ε′

ε
=

(
ε′

ε

)
SM

+

(
ε′

ε

)
NP

. (2.17)

The NP contribution is estimated as(
ε′

ε

)
NP

= −2.64× 103B
(3/2)
8

(
Im ∆L +

c2
W

s2
W

Im ∆R

)
. (2.18)

The lattice calculation yields B
(3/2)
8 = 0.76±0.05. This formula is provided in Ref. [15],

where the terms which are not proportional to B
(3/2)
8 are omitted. This approximate

result is valid at the 10 % accuracy. The coefficient in the parenthesis is c2
W/s

2
W ' 3.33.

Thus, ε′/ε can be enhanced easily by ∆NP
R .

As mentioned in Sec. 1, the SM prediction deviates from the experimental result at
the 2.8–2.9σ level. In this letter, we require that the discrepancy of ε′/ε is explained
at the 1σ level, and thus, (ε′/ε)NP is required to satisfy

10.0× 10−4 <

(
ε′

ε

)
NP

< 21.1× 10−4, (2.19)

where Ref. [6] is used for the SM prediction.

#5 The latest lattice simulation, which includes the long-distance contributions, provides ∆mSM
K =

(3.19 ± 1.04) · 10−15 GeV [28]. However, it is performed on masses of unphysical pion, kaon and
charmed quark.
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2.3 K+ → π+νν̄ and KL → π0νν̄

The (ultra-)rare kaon decay channels, K+ → π+νν̄ and KL → π0νν̄, are correlated
with ε′/ε as well as εK and ∆mK in the general Z scenario.#6 They are represented
as [15,30]

B(K+ → π+νν̄) = κ+

[(
ImXeff

λ5

)2

+

(
Reλc
λ

Pc(X) +
ReXeff

λ5

)2
]
, (2.20)

B(KL → π0νν̄) = κL

(
ImXeff

λ5

)2

. (2.21)

Here, Xeff satisfies

Xeff = λt (1.48± 0.01) + 2.51× 102 (∆L + ∆R) , (2.22)

where the first term in the right-hand side is the SM contribution. Also, λ = |Vus|,
κ+ = (5.157 ± 0.025) · 10−11(λ/0.225)8, and κL = (2.231 ± 0.013) · 10−10(λ/0.225)8.
The charm-quark contribution is Pc(X) = (9.39±0.31) ·10−4/λ4 +(0.04±0.02). Using
the CKMfitter result for the CKM elements, we obtain

ReXeff = −4.83× 10−4 + 2.51× 102 (Re ∆L + Re ∆R) , (2.23)

ImXeff = 2.12× 10−4 + 2.51× 102 (Im ∆L + Im ∆R) . (2.24)

Also, the SM predictions are

B(K+ → π+νν̄)SM = (8.5± 0.5)× 10−11, (2.25)

B(KL → π0νν̄)SM = (3.0± 0.2)× 10−11. (2.26)

On the other hand, the experimental results are [31, 32]

B(K+ → π+νν̄)exp = (17.3+11.5
−10.5)× 10−11, (2.27)

B(KL → π0νν̄)exp ≤ 2.6× 10−8. [90% C.L.] (2.28)

Although the current constraints on the NP contributions are very weak, their mea-
surements will be improved significantly in the near future. The NA62 experiment at
CERN, which already started the physics run at low beam intensity in 2015, has a
potential to measure B(K+ → π+νν̄) at the 10 % precision by 2018 [33]. The KOTO
experiment at J-PARC is designed to improve the sensitivity for B(KL → π0νν̄),
which enables us to measure it at the 10 % level of the SM value [34,35]. As one can
see from Eqs. (2.18) and (2.22), the NP contributions to B(K → πνν̄) are correlated
with those to ε′/ε in the general Z scenario. Thus, if the ε′/ε discrepancy is a signal
of the scenario, these experiments would detect NP effects.

#6 The branching ratios of K → π`+`− (` = e, µ) are also affected in the general Z scenario.
However, K+ → π+`+`− and KS → π0`+`− are dominated by a long-distance contribution through
K → πγ∗ → π`+`− [29]. On the other hand, such a contribution to KL → π0`+`− is forbidden by the
CP symmetry, but is dominated by an indirect CP-violating contribution, KL → KS → π0`+`− [29].
Therefore, it is challenging to discuss shot-distance NP contributions in these channels.
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2.4 KL → µ+µ−

The branching ratio of KL → µ+µ− is also sensitive to the NP contributions to the
flavor-changing Z couplings. Theoretically, only the short-distance (SD) contributions
can be calculated reliably. They are shown as [15,36,37]

B(KL → µ+µ−)SD = κµ

(
Reλc
λ

Pc(Y ) +
ReYeff

λ5

)2

, (2.29)

where κµ = (2.01± 0.02) · 10−9(λ/0.225)8. The charm-quark contribution is Pc(Y ) =
(0.115± 0.018) · (0.225/λ)4. Using the CKMfitter result, we obtain

ReYeff = −3.07× 10−4 + 2.51× 102 (Re ∆L − Re ∆R) , (2.30)

where the first term in the right-hand side is the SM contribution, and the minus sign
between ∆L and ∆R is due to the axial-vector current. The SM value is obtained as

B(KL → µ+µ−)SD, SM = (0.83± 0.10)× 10−9. (2.31)

On the other hand, it is challenging to extract a short-distance part in the experimen-
tal data B(KL → µ+µ−)exp = (6.84± 0.11) · 10−9 [10], because of huge long-distance
contributions through KL → γ∗γ∗ → µ+µ− [38]. An upper bound on the short-
distance contribution is [38]

B(KL → µ+µ−)SD < 2.5× 10−9. (2.32)

Since the constraint is much weaker than the SM uncertainties, we ignore them for
simplicity and impose a bound on the Z couplings,

−1.08× 10−6 < Re ∆L − Re ∆R < 4.05× 10−6. (2.33)

The real parts of the NP contributions are constrained by B(KL → µ+µ−).

3 Analysis

In this section, we examine the general Z scenario quantitatively. Although the dis-
crepancy of ε′/ε could be explained by the scenario, the parameter regions would be
constrained by εK , ∆mK and KL → µ+µ−. In particular, the interference between
the SM and NP contributions, Eq. (2.7), enhances εK significantly. Consequently,
wide parameter regions will be excluded. Therefore, the discrepancy of ε′/ε will be
explained by tuning the model parameters such that the limit of εK is satisfied. Let
us introduce a quantity which parameterizes the tuning:

ξ = max
(
ξ1, ξ2, . . . , ξ8

)
, with ξi =

∣∣∣∣∣(εK)Zi
εNP
K

∣∣∣∣∣ . (3.1)
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(a) Left-handed scenario (LHS)

-4×10-6

-2×10-6

2×10-6

4×10-6

-4 ×10-6 -2 ×10-6 0 2 ×10-6 4 ×10-6

0

Im
∆

R

Re∆R

� 1

1

5

5

0.1
0.1

1

5

0.1

(b) Right-handed scenario (RHS)

Figure 1. The Z-penguin observables are displayed in LHS (left panel) and RHS (right). In
the green (light green) regions, the ε′/ε discrepancy is explained at 1 (2)σ. The blue and
the orange shaded regions are excluded by εK and B(KL → µ+µ−), respectively. The ratios
of B(KL → π0νν̄)/B(KL → π0νν̄)SM and B(K+ → π+νν̄)/B(K+ → π+νν̄)SM are shown by
the red and black dashed contours, respectively.

For instance, if εNP
K is dominated by a single term, one obtains ξ ' 1 and there is no

tuning in the model parameters. If the maximal value of (εK)Zi is about ten times
larger than εNP

K , ξ ∼ 10 is obtained; the model parameters are tuned such that there
is a cancellation among (εK)Zi at the 10% level.

3.1 Simplified scenarios

First, we consider the following simplified scenarios (c.f., Ref. [39]),

• left-handed scenario (LHS): ∆R = 0,#7

• right-handed scenario (RHS): ∆L = 0,#8

• pure imaginary scenario (ImZS): Re ∆L = Re ∆R = 0,

• left-right symmetric scenario (LRS): ∆L = ∆R.#9

#7 This scenario is realized by chargino contributions to the Z penguin in the supersymmetric
model [17,19,40–42].
#8 Such a setup is provided by Randall-Sundrum models with custodial protection [43].
#9 In axial-symmetric scenarios, ∆L = −∆R, there are no NP contributions to K → πνν̄.
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Figure 2. The Z-penguin observables are displayed in ImZS. Notations of the lines and
shaded regions are the same as in Fig. 1.

As shown below, these scenarios do not require large parameter tuning in εNP
K . How-

ever, B(K → πνν̄) will turn out to be small.
In Fig. 1, the Z-penguin observables are shown as functions of ∆L,R for LHS and

RHS. In the green (light green) regions, the ε′/ε discrepancy is explained at 1 (2) σ.
They depend only on the imaginary component of ∆L,R. One can see that ε′/ε is
enhanced by the right-handed Z coupling, ∆R, more than ∆L.

The blue regions are excluded by the εK , and the orange regions by the B(KL →
µ+µ−). It is clear that the constraint from εK is much severer in RHS than LHS due
to the interference contributions, Eq. (2.7). There is no constraint from ∆mK in the
parameter regions of the plots.

The red and black dashed contours represent B(KL → π0νν̄)/B(KL → π0νν̄)SM

and B(K+ → π+νν̄)/B(K+ → π+νν̄)SM, respectively. Here and hereafter, B(KL →
π0νν̄)SM and B(K+ → π+νν̄)SM denote the central values of the SM predictions,
Eqs. (2.25) and (2.26). It is found that B(KL → π0νν̄) cannot be as large as the
SM value as long as ε′/ε is explained in LHS or RHS. On the other hand, if the ε′/ε
discrepancy is explained by LHS, the NP contribution to B(K+ → π+νν̄) is limited
by B(KL → µ+µ−). In contrast, εK constrains RHS.

Next, we consider ImZS. The situation is often considered to amplify (ε′/ε)NP but
suppress εNP

K . In Fig. 2, the Z-penguin observables are shown as functions of Im ∆L,R.
The most severe constraint is from εK due to the interference between the SM and NP
contributions, while the other bounds are weak and absent in the plot. Since there
are no real components of ∆L,R, B(K+ → π+νν̄) is correlated with B(KL → π0νν̄).
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Figure 3. The Z-penguin observables are displayed in LRS. Notations of the lines and
shaded regions are the same as in Fig. 1.

Finally, LRS is shown in Fig. 3. Similarly to the cases of RHS and ImZS, most
of the parameter regions are excluded by εK . It is noticed that both ε′/ε and εK are
(accidentally) consistent with the experimental results even when Re ∆L,R is large.
The NP contributions to B(KL → µ+µ−) vanish because the process is the axial-
vector current. Then, B(K+ → π+νν̄) can be as large as the experimental limit.

In Fig. 4, contours of the tuning parameter ξ are shown for LHS, RHS and ImZS
on the plane of the branching ratios of K → πνν̄. We scanned the whole parameter
space of ∆L,R in each scenario and selected the parameters where ε′/ε is explained
at the 1σ level, and the experimental bounds from εK , ∆mK , and B(KL → µ+µ−)
are satisfied (see the previous section for the experimental constraints). Then, ξ was
estimated at each point. Several parameter sets predict the same B(K+ → π+νν̄)
and B(KL → π0νν̄). Among them, the smallest ξ is chosen in Fig. 4 for given
B(K+ → π+νν̄) and B(KL → π0νν̄). Hence, one can read at least how large tuning
is required. In the allowed parameter space, ξ = O(1). Thus, there is no tight tuning
in these scenarios.

From the figure, one finds that B(KL → π0νν̄) is smaller than the SM value by
more than 10%. Hence, the scenarios could be tested by the KOTO experiment.
On the other hand, B(K+ → π+νν̄) depends on the scenarios. In LHS, we obtain
0 < B(K+ → π+νν̄)/B(K+ → π+νν̄)SM < 2, and tighter tunings are required for
smaller branching ratios. In RHS, B(K+ → π+νν̄) is comparable to or larger than
the SM value, but cannot be twice as large. In ImZS, the branching ratios are perfectly
correlated and displayed by a line in Fig. 4. Then, B(K+ → π+νν̄) is not far away
from the SM one.
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Figure 4. Contours of the tuning parameter ξ are shown in LHS, RHS and ImZS. Here, “SM”
in the axis labels denotes the central values of B(KL → π0νν̄)SM and B(K+ → π+νν̄)SM,
Eqs. (2.25) and (2.26). In the colored regions, ε′/ε is explained at 1σ, and the experimental
bounds of εK , ∆mK , and B(KL → µ+µ−) are satisfied. The right region of the blue dashed
line is allowed by the measurement of B(K+ → π+νν̄) at 1σ.

Fig. 5 is a result of the tuning parameter ξ in LRS. The whole parameter region
of the model is scanned in a similar way as Fig. 4. It is found that B(KL → π0νν̄)
does not exceed about a half of the SM value, while B(K+ → π+νν̄) can be large
without introducing a tight tuning. Thus, the scenario could be tested by the NA62
experiment easily.

3.2 General scenario

Let us consider the full parameter space in the general Z scenario. Both ∆L and ∆R

are turned on. Then, B(K+ → π+νν̄) and/or B(KL → π0νν̄) can be enhanced by
allowing the tuning for εNP

K .
In Fig. 6, the branching ratios of K → πνν̄ and the tuning parameter are shown

for (ε′/ε)NP = 15.5 · 10−4 and εNP
K = 0.37 · 10−3. It is found that B(KL → µ+µ−)

and the tuning parameter restrict the flavor-changing Z couplings, and thus, the NP
contributions to K → πνν̄.

In Fig. 7, contours of the tuning parameter ξ are shown. The whole parameter
space of the general Z scenario is scanned. In the colored regions, ε′/ε is explained
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blue dashed lines is allowed by B(K+ → π+νν̄) at 1σ. See Fig. 4 for detail.

at the 1σ level, and the experimental bounds of εK , ∆mK , and B(KL → µ+µ−)
are satisfied (see the previous section for the experimental constraints). For given
B(K+ → π+νν̄) and B(KL → π0νν̄), the smallest ξ is chosen among the parameter
sets which predict the same branching ratios.

It is found that the regions with ξ & 10 are almost disfavored by the current mea-
surement of B(K+ → π+νν̄) except for those close to the Grossman-Nir bound [44].
Compared to the simplified cases in Fig. 4, B(KL → π0νν̄) can be enhanced. It can
be as large as B(KL → π0νν̄) ' 6×10−11 and 9×10−10 for ξ ' 2 and 10, respectively.
In other words, O(10)% tunings are required to enhance B(KL → π0νν̄) by an order
of magnitudes compared the SM prediction, as long as ε′/ε is explained and the bound
of εK is satisfied in the general Z scenario. The KOTO experiment can probe such
large branching ratios in the near future.

4 Conclusion

The recent discrepancy of ε′/ε may be a sign of the NP contribution to the flavor-
changing Z coupling. In this letter, we revisited the scenario with appropriately
taking account of the interference effects between the SM and NP contributions to
the ∆S = 2 observables. It was shown that the effects tend to enhance εK when the
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Figure 6. B(K+ → π+νν̄)/B(K+ → π+νν̄)SM (left panel) and B(KL → π0νν̄)/B(KL →
π0νν̄)SM (right) are shown by the red contours. The blue contours represent the tuning
parameter ξ. The orange and purple shaded regions are excluded by B(KL → µ+µ−) and
∆mK , respectively. Here, (ε′/ε)NP = 15.5 · 10−4 and εNP

K = 0.37 · 10−3 as a reference.

right-handed coupling is turned on. Consequently, B(KL → π0νν̄) is smaller than the
SM prediction in the simplified scenarios as long as ε′/ε is explained.

In the general Z scenario, B(KL → π0νν̄) can be larger by allowing parameter
tunings. It is found that we require tunings at the O(10)% level to enhance the
branching ratio by an order of magnitudes compared to the SM prediction. In fact, it
can be as large as 6× 10−11 and 9× 10−10 for ξ ' 2 and 10, respectively. This implies
that the NP contributions to εK are tuned at the 50 % and 10 % levels, respectively.
The KOTO experiment could probe such large branching ratios in the near future.
Then, the signal would provide fruitful information for the UV completion.
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