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Abstract: In the context of OPE and using the large-β0 approximation, we propose

a method to define Wilson coefficients free from uncertainties due to IR renormalons.

We first introduce a general observable X(Q2) with an explicit IR cutoff, and then we

extract a genuine UV contribution XUV as a cutoff-independent part. XUV includes

power corrections ∼ (Λ2
QCD/Q

2)n which are independent of renormalons. Using the

integration-by-regions method, we observe that XUV coincides with the leading Wil-

son coefficient in OPE and also clarify that the power corrections originate from UV

region. We examine scheme dependence of XUV and single out a specific scheme fa-

vorable in terms of analytical properties. Our method would be optimal with respect

to systematicity, analyticity and stability. We test our formulation with the examples

of the Adler function, QCD force between QQ̄, and R-ratio in e+e− collision.
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1 Introduction

In perturbative quantum field theory, perturbative series are considered to be asymp-

totic and divergent. It suggests that we have to truncate the series at finite order,

and thus perturbative calculation cannot reach arbitrary precision. The idea of

renormalon is a powerful tool to discuss an inevitable uncertainty of perturbative

calculation [1]. It is related to divergent behaviors of perturbative series, and it pro-

vides an estimate of the size of uncertainty in an optimal prediction. In perturbative

QCD, infrared (IR) renormalons give essential uncertainties of order (ΛQCD/Q)n in

the prediction, where Q is a typical energy scale of an observable X . IR renormalons

stem from low-energy region of loop momenta in Feynman integrals. Such uncertain-

ties cannot be removed even by a resummation or Borel summation. This indicates

that another framework is needed to overcome perturbative uncertainties induced by

IR renormalons.

Operator product expansion (OPE) is a framework, in which the perturbative

uncertainties can be eliminated systematically. An OPE of an observable X(Q2) con-

sists of two components: Wilson coefficients and non-perturbative matrix elements.

In the Wilsonian picture, Wilson coefficients are calculated from ultraviolet (UV)

modes, which are higher than a factorization scale µf , whereas non-perturbative ma-

trix elements are described by a low-energy effective theory valid below the scale

µf . As a result, Wilson coefficients are free from uncertainties induced by IR renor-

malons and can be calculated unambiguously in perturbation theory (in principle).

Non-perturbative matrix elements are determined from IR dynamics and show the

same power dependence on ΛQCD/Q as the uncertainties due to IR renormalons in

the original perturbative series of X . Note, however, that each non-perturbative ma-

trix element is no longer an uncertainty but a definite quantity, at least conceptually.

Therefore, one can go beyond perturbation theory in the OPE framework.

In OPE an observable X(Q2) is evaluated by expansion in 1/Q2. To realize the

concept of the Wilsonian picture, it is natural to introduce a hard cutoff (µf) in

momentum space for factorizing UV and IR dynamics.1 Then the IR renormalons

are clearly eliminated from perturbative calculation of Wilson coefficients, and the

1/Q2-expansion (derivative expansion) in the low-energy effective theory is well justi-

fied since the active modes satisfy k/Q ≤ µf/Q≪ 1. It is, however, disadvantageous

in practical computations to introduce a hard cutoff due to the following reasons:

(1) One should include an additional scale µf in computations, which complicates

the computations considerably. (2) Generally it generates apparent power-like strong

dependences on µf of Wilson coefficients. Although they should eventually cancel in

physical predictions, they can be sources of strong instability of the predictions in

1 In conventional analyses of renormalons, a UV scale is assumed to be much larger than any

scale involved in the calculation. In this paper, however, we use the terminology “UV” for scales

above the factorization scale µf in the context of OPE. In particular Q is regarded as a UV scale.
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practice [2]. (3) If we adopt a too naive cutoff regularization scheme, it may violate

gauge invariance. For these reasons today it is customary to compute perturbative

series of Wilson coefficients in dimensional regularization. This regularization cir-

cumvents the above difficulties. Nevertheless, as a trade-off, the perturbative series

contain IR renormalon uncertainties since each integral region extends from k ∼ 0

to infinity. Hence, several ways to subtract the contributions of IR renormalons have

been explored [3–7].

In this paper we investigate the Wilson coefficient of the leading operator in

OPE (equals to the identity operator in our explicit examples) and aim at removing

a factorization scale dependent part, which destabilizes the prediction. Our basic tool

is perturbation theory in the so-called large-β0 approximation [8–10]. We proceed

in the following steps: (i) We consider an observable X(Q2) with an IR cutoff µf .

(ii) We extract a µf -independent part XUV systematically, which can be regarded

as a genuine UV contribution. (iii) We examine the scheme dependence of XUV.

(iv) We single out a favorable scheme in terms of analyticity of XUV.

It turns out that XUV includes power corrections ∼ (Λ2
QCD/Q

2)n which stem

from UV physics. We will see that (1) the power corrections are consistent with the

framework of OPE, and (2) the power corrections are crucial for understanding the

short-distance behavior of X(Q2). This is one of the main focuses of our discussion.

Our method would also be useful in extracting non-perturbative matrix elements

numerically, since the leading Wilson coefficient which we construct does not contain

intrinsic uncertainties of the order of the matrix elements.

An analytical evaluation of a resummed perturbative series in the large-β0 ap-

proximation was first performed in Ref. [11]. In fact many building blocks in our

method are taken from their analysis. Their analysis starts from a regularized Borel

integral, which removes IR renormalons by contour deformation. In their method a

physical quantity can be separated into the real part and imaginary part. The real

part is predicted reliably within perturbation theory, whereas the imaginary part is

regarded as a perturbative uncertainty. The real part in their method and the cutoff

independent part in our method have the same expanded form in 1/Q. We also

use an idea in their analysis related with the pseudo gluon mass to extract a cutoff

independent part in our method.

Characteristic features of our method can be stated as follows. By starting

from a well-defined integral with an explicit cutoff, we give a solid basis to our

method, thereby the relation to OPE in the Wilsonian picture is made clear. We

also reinforce our argument using the integration-by-regions (expansion-by-regions)

method or comparison with the perturbative series up to large orders. Furthermore,

we compare the perturbative series in the large-β0 approximation with the known

exact perturbative series and confirm consistency or validity of the approximation

we use. These analyses utilize theoretical developments which took place after the

analysis [11], and it is worthwhile to examine their impact.
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p +2× p

Figure 1. Leading-order diagrams which contribute to the reduced Adler function. The

spiral line represents a gluon (with momentum p), and the solid line represents a massless

quark. The external wavy line represents an insertion of the electromagnetic current.

Related subjects have also been studied in [8, 9, 12] (see also [13, 14]). In

particular, existence of power corrections in the UV contribution to observables has

been discussed, e.g., using a resummation of the perturbative series [11], and in

certain model calculations [13, 14]. Our work can be regarded as an extension of the

analyses in refs. [8, 9, 11] and more directly of the formulation used in the analysis

of the static QCD potential [15–17]. Part of the analysis presented in this paper,

in particular its application to the Adler function, have been reported in the letter

article [18].

The outline of this paper is as follows. In Sec. 2, we explain our method to extract

a cutoff independent part from a general observable defined with an IR cutoff. We

also test our method with the Adler function and the force between QQ̄. In Sec. 3, we

investigate the relation between our method and OPE using the method of integration

by regions and also clarify which region gives each power correction. In Sec. 4, we

show that the power corrections in XUV is included in the large-order perturbative

series. We also compare our results with known exact perturbative series. Through

Secs. 2–4 only Euclidean quantities are examined. In Sec. 5, we study the R-ratio

in e+e− collision as an example of a timelike quantity, and how our method can be

applied. Conclusions and discussion are given in Sec. 6. Details of our analyses are

collected in Appendixes.

2 Extraction of cutoff-independent part from UV contribu-

tions

In this section we present a method to extract a cutoff-independent part from UV

contributions to physical quantities. In Sec. 2.1, basic notions are reviewed. In

Sec. 2.2, the method to extract a cutoff-independent part is explained. As examples,

we investigate the Adler function in Sec. 2.3 and the force between static quark and

antiquark in Sec. 2.4. In Sec. 2.5, we examine a scheme dependence inherent in

our method. In Sec. 2.6, we show that a specific scheme is favored from analytical

properties of the extracted UV part. In Sec. 2.7, some detailed features of this specific

scheme are analyzed.
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2.1 Definitions and basics (review)

We consider a dimensionless spacelike observable X(Q2) whose leading order contri-

bution is given by one-gluon-exchange diagrams, such as the ones shown in Fig. 1.

For simplicity we focus on a quantity which depends on a single scale Q2 > 0 in per-

turbative QCD. All the external and loop momenta are taken to be in the Euclidean

region and we use the Euclidean metric through Secs. 2–4, except where stated oth-

erwise. Explicitly we consider the case where the leading order (LO) contribution to

X(Q2) in perturbation theory can be written in the form

XLO(Q
2) = αs(µ)

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

. (2.1)

τ represents the modulus-squared of the Euclidean gluon momentum p (τ = p2), and

integrations over all the other loop momentum variables are included in wX . We call

wX as “weight function,” or simply “weight.” In this form wX reduces to a function

of the single variable τ/Q2. We assume that the integral is finite both in IR (τ → 0)

and UV (τ →∞) regions. The strong coupling constant αs(µ) is factored out, where

µ is the renormalization scale. We adopt the modified minimal-subtraction (MS)

renormalization scheme, in which αs(µ) at the one-loop level is given by

αs(µ) =
4π

β0

1

log (µ2/Λ2
QCD)

. (2.2)

β0 = 11 − 2nf/3 denotes the leading-order coefficient of the beta function for nf

active quark flavors.

We evaluate X(Q2) in the large-β0 approximation, which can be obtained as fol-

lows. We consider insertions of a chain of fermion bubbles into the gluon propagator

ofXLO. Each bubble diagram produces a factor proportional to αs(µ)nf log(µ
2e−C/p2),

where C is a scheme dependent constant and C = −5/3 in the MS scheme. Taking

the infinite sum of the chains and replacing nf → nf − 33/2 = −3β0/2, we obtain

the all-order perturbative series in the large-β0 approximation [8, 9]

Xβ0
(Q2) = αs(µ)

∞
∑

n=0

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)[

β0αs(µ)

4π
log

(

µ2e5/3

τ

)]n

. (2.3)

After resummation of the infinite series in Eq. (2.3), the expression reduces to the

same form as Eq. (2.1) with the strong coupling replaced by an effective coupling

αβ0
(τ):

Xresum
β0

(Q2) =

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αβ0
(τ) , (2.4)

where

αβ0
(τ) =

4π

β0

1

log(τe−5/3/Λ2
QCD)

. (2.5)
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The effective coupling αβ0
(τ) has a pole at τ = e5/3Λ2

QCD, and the existence of this

pole on the integral path makes the integral ill-defined. The uncertainty which arises

from this pole in this approach is attributed to IR renormalons.

We can make use of the Borel transformation to understand properties of the

series in Eq. (2.3). The Borel transform of Xβ0
(Q2) is defined as

B̂X(u) ≡
∞
∑

n=0

un

n!

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)[

log

(

µ2e5/3

τ

)]n

=

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)(

µ2e5/3

τ

)u

. (2.6)

B̂X(u) plays the role of a generating function for the coefficients of the original series

dn after accelerating convergence by 1/n!:

B̂X(u) =
∞
∑

n=0

dn
n!

un , (2.7)

Xβ0
(Q2) = αs(µ)

∞
∑

n=0

dn

[

β0αs(µ)

4π

]n

. (2.8)

In general, singularities of B̂X(u) characterize diverging behaviors of the original se-

ries. Singularities of B̂X(u) located on the positive real axis are called IR renormalons

and those on the negative real axis are called UV renormalons. Due to assumed finite-

ness of the integral Eq. (2.1), B̂X(u) is regular at u = 0 [since Eq. (2.6) reduces to

Eq. (2.1)]. The first IR renormalon at u = uIR > 0, closest to the origin, is known

to give an inevitable uncertainty of O((Λ2
QCD/Q

2)uIR) in perturbative prediction.

Since the renormalization scale dependence of B̂X(u) is factorized in Eq. (2.6),

we further define

BX(u) ≡
(

Q2e−5/3

µ2

)u

B̂X(u) . (2.9)

The weight wX(x) and the Borel transform BX(u) are related by [9]

BX(u) =

∫ ∞

0

dx

2π
wX(x) x

−u−1 , (2.10)

wX(x) =
1

i

∫ u0+i∞

u0−i∞
duBX(u) x

u , (2.11)

where u0 is located between the first IR renormalon and the first UV renormalon. In

particular, the small-x behavior of the weight wX(x) is detected from the singularities

of BX(u) explicitly as2

wX(x) =
∑

n∈UIR

bnx
n = −2π

∑

n∈UIR

Resu=n[BX(u)x
u] , (2.12)

2 In the case thatBX(u) has a multiple pole in u, the corresponding residue includes a polynomial

of log x. For simplicity we neglect such terms in the small-x expansion of wX .
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where UIR denotes the set of IR renormalons (UIR = {uIR, . . . }).
As mentioned below Eq. (2.5), the expression Eq. (2.4) has an ambiguity because

of the pole of αβ0
(τ). In order to avoid this ambiguity we introduce an IR cutoff scale

µf to the gluon momentum and eliminate contributions whose momentum scales are

smaller than µf [9]:

Xβ0
(Q2;µf) ≡

∫ ∞

µ2
f

dτ

2πτ
wX

(

τ

Q2

)

αβ0
(τ) . (2.13)

The factorization scale is chosen to satisfy e5/3Λ2
QCD ≪ µ2

f ≪ Q2. Now that the

integral path does not contain the pole, the integral is well defined. We choose

this well-defined quantity as the starting point of our discussion. We will see in ex-

plicit examples that Xβ0
(Q2;µf) corresponds to the Wilson coefficient of the leading

operator in OPE (see Sec. 3).

The subtraction of IR contributions also removes the IR renormalons of Xβ0
(Q2)

since they stem from the divergence of the integral (2.10) around x = 0 for some

positive u. One can verify this by restarting from Eq. (2.3) with the IR cutoff µf

and tracing the above discussion.

2.2 Extraction of cutoff-independent part: General case

The IR-subtracted quantity (2.13) is free from the ambiguity caused by IR renor-

malons. However, it has a cutoff dependence. This dependence makes the prediction

of Eq. (2.13) unstable under the change of the artificial cutoff scale µf (which should

eventually be canceled in a physical prediction). In this subsection we explain a

method to extract a cutoff-independent part from this quantity.

Our method consists of two steps: (i) Rewrite the weight wX(x) by a new function

WX(z) which is analytic in the upper half-plane and is related to wX(x) by

2 ImWX(x) = wX(x) (x ∈ R and x > 0) . (2.14)

We call WX as “pre-weight.” (We will shortly present a construction of WX .) (ii) De-

form the integral path in the complex τ -plane. The original integral path is decom-

posed as follows:

τ

×
e5/3Λ2

QCD

µ2
f

=
×

Ca

−
×

Cb

Then Eq. (2.13) is rewritten as

Xβ0
(Q2;µf) =Im

∫ ∞

µ2
f

dτ

πτ
WX

(

τ

Q2

)

αβ0
(τ) (2.15)

=Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αβ0
(τ)− Im

∫

Cb

dτ

πτ
WX

(

τ

Q2

)

αβ0
(τ) . (2.16)
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The first term of Eq. (2.16) (integral along Ca) is clearly independent of µf . Although

the second term (integral along Cb) is apparently µf -dependent, we can show that it

also includes µf -independent part.

Since µ2
f ≪ Q2 it would be justified to expand WX(τ/Q

2) about τ = 0 along Cb.

In this way the second term of Eq. (2.16) is expressed in the large-Q2 expansion:

Im

∫

Cb

dτ

πτ
WX

(

τ

Q2

)

αβ0
(τ) = Im

∑

n≥0

cn

∫

Cb

dτ

πτ

(

τ

Q2

)n

αβ0
(τ) , (2.17)

with3

WX(z) =
∑

n≥0

cnz
n . (2.18)

The µf -dependence of the integral of each term of Eq. (2.17) can be classified into

two cases.

Case (I): If the coefficient cn is real, the complex conjugate of the integral along Cb

becomes the integral along C∗
b since the integrand satisfies the relation {f(z)}∗ =

f(z∗). Hence, we obtain

Im

∫

Cb

dτ

πτ
cn

(

τ

Q2

)n

αβ0
(τ) =

1

2i

(

∫

Cb

−
∫

C∗

b

)

dτ

πτ
cn

(

τ

Q2

)n

αβ0
(τ)

=
1

2πi

∫

CΛQCD

dτ

τ
cn

(

τ

Q2

)n

αβ0
(τ)

= −4πcn
β0

(

e5/3Λ2
QCD

Q2

)n

, (2.19)

where the integration contours C∗
b and CΛQCD

are defined as below.

×

Cb

−
×

C∗
b

=
×

µ2
f

CΛQCD

Here we use the fact that Cb−C∗
b becomes a closed contour surrounding the pole at

e5/3Λ2
QCD. Therefore the result is µf -independent and can be calculated analytically

by the Cauchy theorem. We see that positive powers of ΛQCD appear.

Case (II): If the coefficient cn has a non-zero imaginary part, the above argument

3 We assume that the small-z expansion of WX(z) exists, where the expansion can include half-

integer powers of z or powers of log z. For simplicity we explain in the case where WX is expanded

as Taylor series in z. In other cases, it only matters whether the integrand satisfies the relation

{f(z)}∗ = f(z∗) or not in classifying the Cases (I) and (II) in the following discussion.
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does not hold since the integrand does not satisfy the relation {f(z)}∗ = f(z∗). In

this case µf -dependence remains in the result:

Im

∫

Cb

dτ

πτ
cn

(

τ

Q2

)n

αβ0
(τ) = O((µ2

f/Q
2)n) . (2.20)

Thus, µf -independent part appears not only from the integral along Ca but also from

the integral along Cb depending on whether the expansion coefficient cn is real or

complex.

We can find whether the coefficient cn in Eq. (2.18) is real or complex without

knowing the concrete form of WX . The insight is obtained using the expansions of

wX [Eq. (2.12)] and WX [Eq. (2.18)] and the relation between them [Eq. (2.14)].

Schematically the relation can be understood as follows:

n /∈ UIR ←→ 2 Im cn = bn = 0 ←→ cn ∈ R ←→ case (I)

n ∈ UIR ←→ 2 Im cn = bn 6= 0 ←→ cn /∈ R ←→ case (II)
(2.21)

Namely, the knowledge on the IR renormalons of Xβ0
(Q2) is sufficient to judge µf -

independence of each term of Eq. (2.17).

From the above discussion, by taking the terms for 0 ≤ n < uIR of Eq. (2.17)

and the first term of Eq. (2.16), we obtain the general result for Xβ0
(Q2;µf), where

µf -independent part is separated:

Xβ0
(Q2;µf) = XUV(Q

2) +O
((

µ2
f/Q

2
)uIR

)

. (2.22)

We have extracted the µf -independent part XUV given by

XUV(Q
2) = Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αβ0
(τ) +

∑

0≤n<uIR

4πcn
β0

(

e5/3Λ2
QCD

Q2

)n

. (2.23)

This is one of the main results in this paper. XUV(Q
2) is insensitive to IR physics

and can be regarded as a genuine UV contribution.

We rewrite XUV as

XUV(Q
2) = X0(Q

2) +
∑

0<n<uIR

4πcn
β0

(

e5/3Λ2
QCD

Q2

)n

, (2.24)

with

X0(Q
2) = Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αβ0
(τ) +

4πc0
β0

. (2.25)

The asymptotic form of X0 as Q2 →∞ is given by

X0(Q
2)→ d0αs(Q) =

4πd0
β0

1

log(Q2/Λ2
QCD)

. (2.26)
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This is the leading term of the asymptotic expansion of X0 that will be derived

in Eq. (2.70) below; it is also a consequence of the renormalization-group (RG)

equation.4 This gives a more dominant contribution than power behaviors for large

Q2. Therefore XUV(Q
2) indeed gives a leading behavior of Xβ0

(Q2;µf) for large Q
2.

In explicit examples in Secs. 2.3 and 2.4, we will see that Eq. (2.24) represents a

separation of XUV(Q
2) into a logarithmic term5 (non-power correction term) X0 and

power correction terms ∼ (Λ2
QCD/Q

2)n.

Up to this point we have considered a general pre-weightWX(z), which is analytic

in the upper half-plane and satisfies the relation (2.14). A pre-weight which satisfies

these conditions can be constructed systematically as

WX(z) =

∫ ∞

0

dx

2π

wX(x)

x− z − i0
, (2.27)

due to the relation Im{(x − z − i0)−1} = πδ(x − z) for z ∈ R. The integral in

Eq. (2.27) always converges according to our assumption on the convergence of XLO.

Note that there are potentially an infinite number of candidates for the pre-weight

WX since Eq. (2.14) does not restrict its real part on the positive real axis. Thus,

WX defined by Eq. (2.27) represents just one possibility and we refer to the choice

Eq. (2.27) as “massive gluon scheme.” This is because this construction is equivalent

to replacing the gluon propagator to that with a tachyonic mass m2 = −τ in the

leading order contribution Eq. (2.1): 6

∫ ∞

0

d(p2)

2π

wX(p
2/Q2)

p2
→

∫ ∞

0

d(p2)

2π

wX(p
2/Q2)

p2 − τ − i0
= W

(m)
X (τ/Q2) , (2.28)

where W
(m)
X denotes the pre-weight in the massive gluon scheme.

We note that one does not have to start from wX to obtain WX in the massive

gluon scheme. It is sufficient to use the gluon propagator with a tachyonic mass in

the usual loop calculation, i.e., starting from the expression retaining all the loop

momentum integrals, since it coincides with the right-hand side of Eq. (2.28). If

we take this route, we rather obtain the weight wX via the relation (2.14) after

calculating the pre-weight WX .

4 Since the leading logarithmic terms are proportional to αs(µ)[β0αs(µ) log(Q/µ)]
n, they are

incorporated correctly by the large-β0 approximation. The modification of the perturbative series

by the IR cutoff is power-suppressed∼ (µ2
f/Q

2)k, hence the leading large-Q2 behavior is determined

by the one-loop RG equation.
5 By a “logarithmic term” we mean a term which is closest to (Q2/Λ2

QCD)
P with P = 0 in the

entire range 0 < Q2 < ∞, if it is compared with a single power dependence on Q2 (for an integer

P ); see Figs. 2, 3 and Sec. 2.7.
6 There exist many studies on low-energy QCD phenomena (especially chiral symmetry breaking

and confinement) in terms of massive gluons [19–21]. We stress, however, that we study perturbative

(UV) contributions using WX .
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For later convenience, we introduce WX+ from the pre-weight in the massive

gluon scheme as

W
(m)
X+ (z) ≡W

(m)
X (−z) =

∫ ∞

0

dx

2π

wX(x)

x+ z − i0
. (2.29)

This function is real for z > 0 since wX(x) is real and x+ z > 0. Using this function,

Eq. (2.25) can be expressed as7

X0(Q
2) =

∫ ∞

0

dτ

πτ
W

(m)
X+

(

τ

Q2

)

Imαβ0
(−τ + i0) +

4πc0
β0

, (2.30)

Imαβ0
(−τ + i0) =

4π

β0

−π
log2 (τe−5/3/Λ2

QCD) + π2
, (2.31)

in the case that it is justified to deform the integral path Ca to the straight line

connecting τ = 0 to −∞. This expression has a good analytical property as we will

see later (end of Sec. 2.3 and Sec. 2.6). In calculating the asymptotic form of X0(Q
2)

as Q2 → ∞ or Q2 → 0, the following expression, obtained by partial integration, is

useful:

X0(Q
2) =−

∫ ∞

0

dx

π
W

(m) ′
X+ (x)

4π

β0
Im log log (Q2/(e5/3Λ2

QCD))

−
∫ ∞

0

dx

π
W

(m) ′
X+ (x)

4π

β0
tan−1

[

π

log (Q2/(e5/3Λ2
QCD)) + log x

]

. (2.32)

2.3 Example 1: Adler function

As an application of the general framework presented in the previous subsection, we

examine large-Q2 behavior of the Adler function [18]. This observable is suited to

test our method, in particular since OPE can be performed. The first IR renormalon

is located at uIR = 2 [12], and thus the renormalon uncertainty is fairly suppressed.

We study the reduced Adler function D(Q2) with one massless quark, defined as

D(Q2) = 4π2Q2dΠ(Q
2)

dQ2
− 1 , (2.33)

where Π(Q2) is a correlator8 of the quark current Jµ(x) = q̄(x)γµq(x),

(qµqν − gµνq2)Π(Q2) = −i
∫

d4x e−iq·x 〈0|TJµ(x)Jν(x)|0〉 , Q2 = −q2 > 0 .

(2.34)

7 A quantity similar to XUV with this X0 is derived in Ref. [11] using a regularized Borel integral.

Our derivation is different from theirs in that our result does not contain renormalon uncertainties

since we subtract IR modes in Eq. (2.13).
8 Eq. (2.34) uses the Minkowski metric, where q denotes the four-momentum of the vacuum

polarization. In our letter [18] the sign of the corresponding equation [Eq. (2)] was incorrect and

should be reversed.
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We define the reduced Adler function in the large-β0 approximation with an IR

cutoff as

Dβ0
(Q2;µf) =

∫ ∞

µ2
f

dτ

2πτ
wD

(

τ

Q2

)

αβ0
(τ) . (2.35)

The weight wD(x) is given by [9]

wD(x) =
NCCF

3
×

{

(7− 4 log x)x2 + 4x(1 + x){Li2(−x) + log x log (1 + x)} ; x < 1

3 + 2 log x+ 4x(1 + log x) + 4x(1 + x){Li2(−x−1)− log x log (1 + x−1)} ; x > 1
,

(2.36)

where NC = 3 is the number of colors and CF = 4/3 is the Casimir operator of the

fundamental representation. The first IR renormalon is located at uIR = 2, as can

be seen from the expansion of wD(x) and Eq. (2.12):

wD(x) = NCCFx
2 + . . . . (2.37)

The pre-weight W
(m)
D and W

(m)
D+ in the massive gluon scheme, obtained via Eq. (2.27)

or by calculating the two-loop integral, are given by

W
(m)
D (z) =

NCCF

12π

[

3 + 16z(z + 1)H(z)− 14z2 log (−z)

+ 8z(z + 1){− log(−z)Li2(−z) + Li3(z) + Li3(−z)}
+ 4{2z2 + 2z + 1− 4z(z + 1) log (1 + z)}Li2(z)
+ 2(7z2 − 4z − 3) log (1− z)− 8ζ2z(z + 1) log (1 + z)

+ 4{z2 − z(z + 1) log(1 + z)} log2 (−z)

+ 2(4ζ2 − 7ζ3)z
2 + 2(11− 7ζ3)z

]

(2.38)

and

W
(m)
D+ (z) ≡W

(m)
D (−z) . (2.39)

Here, we define H(z) =
∫ 1

z
dx x−1 log (1 + x) log (1− x); Lin(z) =

∑∞
k=1

zk

kn
denotes

the polylogarithm; ζk = ζ(k) denotes the Riemann zeta function.9 We present an-

other expression of W
(m)
D in App. B, which is lengthier but exhibits the structure of

the singularities more clearly. The first few terms of the small-z expansion of W
(m)
D

is given by10

W
(m)
D (z) = NCCF

[

1

4π
+

2(4− 3ζ3)

3π
z +

10− 12ζ3 − 3 log z + 3iπ

6π
z2 + . . .

]

. (2.40)

9 H(z) can be expressed using the harmonic polylogarithms.
10 This series expansion was obtained in Ref.[11].
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Figure 2. [Left] DUV [Eq. (2.42)], D0 [Eq. (2.43)] and the Λ2
QCD/Q

2-term [Eq.(2.42)]

as functions of Λ2
QCD/Q

2. [Right] Derivatives of DUV, D0 and the Λ2
QCD/Q

2-term with

respect to Q̂−2 ≡ Λ2
QCD/Q

2.

Following the disucussion in the general case, we can extract the µf -independent

part DUV:

Dβ0
(Q2;µf) = DUV(Q

2) +O(µ4
f/Q

4) (2.41)

with

DUV(Q
2) = D0(Q

2) +
8(4− 3ζ3)e

5/3NCCF

3β0

Λ2
QCD

Q2
, (2.42)

D0(Q
2) =

∫ ∞

0

dτ

πτ
W

(m)
D+

(

τ

Q2

)

Imαβ0
(−τ + i0) +

NCCF

β0
. (2.43)

The Λ2
QCD/Q

2-term arises from the z1-term of the pre-weight WD(z); see Eq. (2.40).

The large-z behavior of WD(z) allows rotation of the integration contour and we

write D0 as in Eq. (2.30). The asymptotic behaviors of D0(Q
2) are obtained as

D0(Q
2)→







NCCF

β0

1
log (Q2/Λ2

QCD
)

as Q2 →∞
NCCF

β0
as Q2 → 0

, (2.44)

and these asymptotic forms are interpolated smoothly in the intermediate region.

Hence, qualitatively D0 behaves as a constant term with a logarithmic correction at

large Q2.

In Fig. 2, DUV, D0 and the Λ2
QCD/Q

2-term of Eq. (2.42) are plotted as functions

of Λ2
QCD/Q

2. The Λ2
QCD/Q

2-term naturally explains the power-like behavior of DUV,
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which looks linear in this figure. In fact, the derivative of DUV is given by the

Λ2
QCD/Q

2-term dominantly in the range Λ2
QCD/Q

2 & 0.01. In Sec. 4 we will compare

DUV with the large-order perturbative prediction in the large-β0 approximation as

well as with the known exact perturbative series, where we will find good agreement.

The µf -dependence of the 1/Q4-term in Eq. (2.41) shows a sensitivity to IR

dynamics and can be interpreted in the context of OPE. In OPE, the reduced Adler

function is expressed in terms of vacuum expectation values (VEVs) of operators

which are invariant under Lorentz and gauge symmetries:

D(Q2) = C1 + CGG

〈0|GaµνGa
µν |0〉

Q4
+ . . . , (2.45)

where C1 and CGG represent the Wilson coefficients of the operators 1 and GaµνGa
µν ,

respectively. The VEV of GaµνGa
µν , known as the local gluon condensate, has mass-

dimension four and hence it is accompanied by the factor 1/Q4. The gluon condensate

is determined by IR dynamics and it would have a dependence on the UV cutoff

scale µf of the low energy effective theory. We can interpret that the IR cutoff

dependence of Dβ0
(Q2;µf) at the order 1/Q4 in Eq. (2.41) is a counterpart of the

UV cutoff dependence of the gluon condensate. In other words, if we include the gluon

condensate as determined by IR dynamics, the leading µf -dependence of Dβ0
(Q2;µf)

would be canceled and the 1/Q4-term is expected to be reduced to order Λ4
QCD/Q

4.

In the OPE framework, DUV including the Λ2
QCD/Q

2-term is identified with C1

in Eq. (2.45) as we will clarify in Sec. 3. In this sense, the µf -independent Λ
2
QCD/Q

2-

term does not conflict with the structure of OPE, and what we have found in this

subsection is a non-trivial behavior of the Wilson coefficient C1 of the reduced Adler

function. Due to this power correction, we conclude that the Adler function has the

leading power dependence as Λ2
QCD/Q

2 rather than Λ4
QCD/Q

4 at large Q2 as long as

the large-β0 approximation is valid.

Finally we comment on the analytic structure of the Adler function. It is known

that the Adler function in perturbative QCD is an analytic function in the complex

Q2-plane, with a cut along the negative axis from Q2 = 0 corresponding to the

threshold of massless partons, and with the 1/(β0 logQ
2) singularity at Q2 = ∞

dictated by the RG equation. One can see that the expression of DUV of Eq. (2.42)

with Eq. (2.43) indeed satisfies these requirements. The cut arises from the property

ofW
(m)
D+ that it has an imaginary part when the argument becomes negative due to the

relation (2.14). However, if we represent D0 as in Eq. (2.25), it cannot be regarded as

an analytic function of Q2 since it is given by the imaginary part of a function. The

representation (2.25) is defined only for real positive Q2, whereas the representation

(2.30) is defined in the entire complex Q2 plane. They are equivalent only if we limit

Q2 to a real positive parameter. Thus, from the viewpoint of analyticity, the latter

representation turns out to be superior to the former.
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2.4 Example 2: Force between static quark-antiquark pair

As another application of the method presented in Sec. 2.2, we consider the short-

distance behavior of the force between a static quark-antiquark pair, which is ob-

tained from the derivative of the static QCD potential. The static QCD potential

has been studied extensively to understand the nature of the force between the quark

and antiquark. At short distances perturbative QCD prediction is accurate, whereas

at large distances lattice QCD predictions are accurate. There is a significant over-

lap region at intermediate distances, where both predictions agree well. Presently

the exact perturbative series are known up to NNNLO [22–24]. In addition, the low

energy effective theory “potential non-relativistic QCD (pNRQCD)” is known, in

which OPE can be performed, and there is a good theoretical understanding of the

connection between UV and IR contributions. Therefore the QCD potential (or the

force) is an optimal observable to examine our formulation.

The potential energy between the static quark Q and antiquark Q̄ (QCD poten-

tial) in the large-β0 approximation and with an IR cutoff is given by

Vβ0
(r;µf) = −

∫

p>µf

d3~p

(2π)3
ei~p·~r

4πCF

p2
αβ0

(p2) = −1
r

∫ ∞

µ2
f

dτ

2πτ
2CF sin(

√
τr)αβ0

(τ) .

(2.46)

Here, the typical (energy) scale is r−1, the inverse of the distance between QQ̄. Com-

paring Eq. (2.46) with Eq. (2.13), the weight of the (dimensionless) QCD potential

rVβ0
(r) is given by

wV (x) = −2CF sin(
√
x) . (2.47)

Comparing its expansion and Eq. (2.12) we find that the first IR renormalon of the

QCD potential is located at u = 1/2. However, this renormalon is not serious since

it only gives an uncertainty to the constant (r-independent) part of the potential.

Several prescriptions to eliminate the u = 1/2 renormalon are known. Here we adopt

the prescription to consider the force between QQ̄, Fβ0
(r2) = −dVβ0

(r)/dr [25].

The force between QQ̄ with an IR cutoff is obtained by differentiating Eq. (2.46)

with respect to r as

Fβ0
(r2;µf) = −CF

αF,β0
(1/r2;µf)

r2
= −CF

r2

∫ ∞

µ2
f

dτ

2πτ
wF (τr

2)αβ0
(τ) , (2.48)

where the weight wF (x) is given by

wF (x) = 2(sin
√
x−
√
x cos

√
x) . (2.49)

In the following we deal with the dimensionless force (or the F -scheme coupling)

αF,β0
, defined by Eq. (2.48). The expansion of the weight reads

wF (x) =
2

3
x3/2 − 1

15
x5/2 + · · · , (2.50)
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hence, the first IR renormalon of αF,β0
is indeed shifted to uIR = 3/2. The pre-weight

W
(m)
F and W

(m)
F+ in the massive gluon scheme can be obtained using Eq. (2.27) as

W
(m)
F (z) = ei

√
z(1− i

√
z) (2.51)

and

W
(m)
F+ (z) = e−

√
z(1 +

√
z) . (2.52)

The expansion of the pre-weight is given by

W
(m)
F (z) = 1 +

z

2
+

i

3
z3/2 + · · · . (2.53)

From the general discussion we can extract the µf -independent part αF,UV(1/r
2)

from αF,β0
(1/r2;µf) as

αF,β0
(1/r2;µf) = αF,UV(1/r

2) +O(µ3
fr

3) (2.54)

with

αF,UV(1/r
2) = αF,0(1/r

2) +
2π

β0
Λ2

QCDe
5/3r2 , (2.55)

αF,0(1/r
2) =

∫ ∞

0

dτ

πτ
W

(m)
F+

(

τr2
)

Imαβ0
(−τ + i0) +

4π

β0

. (2.56)

The Λ2
QCDr

2-term arises from the z1-term of the pre-weight W
(m)
F [Eq. (2.53)]. This

power behavior corresponds to a linear potential in the QCD potential. The asymp-

totic behaviors of αF,0 are obtained via Eq. (2.32) as

αF,0(1/r
2)→







4π
β0

1
| log (r2Λ2

QCD
)| as r2 → 0

4π
β0

as r2 →∞
. (2.57)

In Fig. 3, αF,UV, αF,0, and the Λ2
QCDr

2-term of Eq. (2.55) are plotted as functions

of Λ2
QCDr

2. Qualitatively they show similar behaviors to those of the reduced Adler

function (Fig. 2), and the derivative of αF,UV is dominated by the Λ2
QCDr

2-term

especially in the range Λ2
QCDr

2 & 0.02. Comparisons with the large-order predictions

in the large-β0 approximation and with the known exact perturbative series will be

presented in Sec. 4.

In Eq. (2.54), the µf -dependent term starts from order r3. Let us discuss this µf -

dependence in the context of OPE. The relevant low-energy effective theory is known

as pNRQCD, in which the QCD potential is expressed in expansion in ~r (multipole

expansion) as [26]

VQCD(r) ≈ VS(r)−
2πiαs

NC

∫ ∞

0

e−it∆V (r) 〈~r · ~Ea(t)~r · ~Ea(0)〉+O(r3) . (2.58)
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Figure 3. [Left] αF,UV [Eq. (2.55)], αF,0 [Eq. (2.56)], and the Λ2
QCDr

2-term [Eq. (2.55)] as

functions of Λ2
QCDr

2. The number of flavors is set to nf = 1. [Right] Derivatives of αF,UV,

αF,0 and the r2Λ2
QCD-term with respect to ρ2 ≡ Λ2

QCDr
2.

Here, VS(r) represents the Wilson coefficient for the (leading) identity operator and

has the meaning of the energy of the QQ̄ singlet state; ∆V denotes the energy dif-

ference between the octet and singlet states; ~Ea denotes the color electric field. If

we compute VS(r) in the large-β0 approximation and with an explicit cutoff in the

gluon momentum, it is identified with Vβ0
(r;µf).

11 It has been confirmed that the

µf -dependence of Vβ0
(r;µf) at order µ

3
fr

2, originating from the u = 3/2 renormalon,

is canceled against the µf -dependence of the non-perturbative matrix element in

the second term of Eq. (2.58) [17, 26]. Differentiating with respect to r, the lead-

ing µf -dependence of αF,β0
(1/r2;µf) at order µ3

fr
3 is also canceled by that of the

non-perturbative matrix element. We expect that a similar cancellation between

Dβ0
(Q2;µf) and the local gluon condensate would hold for the Adler function, al-

though the relevant low energy effective theory is as yet unknown.

2.5 Scheme dependence by choice of pre-weight WX

As we already pointed out, the pre-weight WX introduced in Sec. 2.2 is not unique,

and we clarify its effect in this subsection. We first show that the dependences of

X0 and the power corrections in XUV on the choice of WX almost cancel in the sum

(XUV). We then discuss its relevance in determination of a non-perturbative matrix

element in OPE. Finally we discuss why the power corrections in XUV can vary from

11 See also the discussion at the end of Sec. 3.3.
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the viewpoint of the asymptotic property of the perturbative series and how it is

related to variation of WX .

The pre-weight WX which satisfies Eq. (2.14) is not unique since its real part on

the positive real axis is not restricted. Although the original µf -dependent integral

(2.15) is independent of the choice of WX , the µf -independent part XUV generally

depends on the choice of WX . Namely, XUV is a functional of WX . We can regard

that XUV determined by different WX correspond to different scheme choices. We

first discuss the scheme dependence of XUV.

Consider two different pre-weights W
(i)
X (i=1,2) both satisfying the relation

(2.14). Correspondingly we obtain XUV in different schemes via Eqs. (2.24) and

(2.25):

X
(i)
UV = X

(i)
0 (Q2) +

∑

0<n<uIR

4πc
(i)
n

β0

(

e5/3Λ2
QCD

Q2

)n

(2.59)

with

X
(i)
0 (Q2) = Im

∫

Ca

dτ

πτ
W

(i)
X

(

τ

Q2

)

αβ0
(τ) +

4πc
(i)
0

β0

, (2.60)

where W
(i)
X (z) =

∑

n≥0 c
(i)
n zn. The difference between X

(1)
0 and X

(2)
0 is given by

X
(2)
0 −X

(1)
0 =Im

∫

Ca

dτ

πτ

{

W
(2)
X

(

τ

Q2

)

−W
(1)
X

(

τ

Q2

)}

αβ0
(τ) +

4π(c
(2)
0 − c

(1)
0 )

β0
.

(2.61)

In the integral along Cb we assumed that it is justified to expand WX(z) for suffi-

ciently small |z|. Accordingly, we assume that δW (z) ≡W
(2)
X (z)−W

(1)
X (z) is regular

at any point z0 ∈ R and 0 < z0 < ǫ for ∃ǫ > 0 (sufficiently close to the origin).12

Namely, δW (z) can be expanded in Taylor series about z = z0 with a non-zero radius

of convergence:

δW (z) =
∑

n≥0

An(z0) (z − z0)
n , z0 ∈ R and 0 < z0 < ǫ . (2.62)

Since Im δW = 0 on the positive real axis, (i) the integral along Ca in Eq. (2.61)

is equal to that along Cb, and (ii) An(z0) ∈ R, hence {δW (z)}∗ = δW (z∗) is satis-

fied along the path Cb if Q2 ≫ µ2
f . Then, by exploiting the same procedure as in

12 The reason to exclude z0 = 0 is to cope with possible existence of log z or
√
z. (See footnote 3.)

Note that even if the small-z expansion ofWX(z) includes log z or
√
z we expect that the expansion

has a domain of convergence close to the origin; see the examples in Secs. 2.3 and 2.4.
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Eq. (2.19), the first term of Eq. (2.61) can be reduced to

Im

∫

Ca

dτ

πτ
δW

(

τ

Q2

)

αβ0
(τ) = Im

∫

Cb

dτ

πτ
δW

(

τ

Q2

)

αβ0
(τ)

= −4π
β0

δW

(

e5/3Λ2
QCD

Q2

)

= −4π
β0

∑

n≥0

(c(2)n − c(1)n )

(

e5/3Λ2
QCD

Q2

)n

. (2.63)

It means that the difference of X
(i)
0 (Q2) is given by13

X
(2)
0 (Q2)−X

(1)
0 (Q2) = −4π

β0

∑

n>0

(c(2)n − c(1)n )

(

e5/3Λ2
QCD

Q2

)n

. (2.64)

Furthermore, according to Eq. (2.59) we obtain the difference of X
(i)
UV as

X
(2)
UV(Q

2)−X
(1)
UV(Q

2) = −
∑

n≥uIR

4π(c
(2)
n − c

(1)
n )

β0

(

e5/3Λ2
QCD

Q2

)n

= O
((

Λ2
QCD/Q

2
)uIR

)

. (2.65)

Thus, the differences of the power corrections (1/Q2)n with 0 < n < uIR in Eq. (2.59)

are canceled by the change of X0(Q
2). As a result, the difference of XUV in different

schemes is smaller than the last included term of the (Λ2
QCD/Q

2)n-terms in XUV(Q
2).

Namely, the µf -independent part XUV has a minor dependence on the scheme, which

is the same order as an uncertainty induced by the first IR renormalon, and we

confirm validity of our result of XUV taking into account the scheme dependence.

It is worth emphasizing that the scheme dependence discussed above is not a

renormalon uncertainty. In fact the scheme dependence can be removed by including

higher orders of the 1/Q2 expansion. Let us clarify this point. Suppose we consider

Xβ0
(Q2;µf) up to 1/(Q2)n in different schemes:

X
(i)
β0
(Q2;µf)

∣

∣

∣

1/(Q2)n
= X

(i)
0 (Q2)−

n
∑

k=1

Im

∫

Cb

dτ

πτ
c
(i)
k

(

τ

Q2

)k

αβ0
(τ) . (i = 1, 2)

(2.66)

We show that X
(2)
β0
− X

(1)
β0

∣

∣

∣

1/(Q2)n
is order (Λ2

QCD/Q
2)n+1. (The previous argument

already proves this for the case n = uIR − 1.)

Note that since Im c
(i)
k is fixed by Eq. (2.14), there is no scheme dependence,

hence c
(2)
k − c

(1)
k ∈ R. This enables reducing the difference of the second term of

Eq. (2.66) as

n
∑

k=1

Im

∫

Cb

dτ

πτ
(c

(2)
k −c

(1)
k )

(

τ

Q2

)k

αβ0
(τ) =

4π

β0

n
∑

k=1

(c
(2)
k −c

(1)
k )

(

e5/3Λ2
QCD

Q2

)k

. (2.67)

13Note that the right-hand side of Eq. (2.64) is O(Λ2
QCD/Q

2) and the asymptotic form of X0(Q
2)

at Q2 →∞ shown in Eq. (2.26) is not modified.
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Combining with Eq. (2.64), we see that X
(2)
β0
− X

(1)
β0

∣

∣

∣

1/(Q2)n
= O((Λ2

QCD/Q
2)n+1).

Such a property follows from the fact that the original µf -dependent integral (2.15)

is independent of the choice of WX . Therefore the scheme dependence is gradually

eliminated by including higher order terms in 1/Q2.

In the case of the Adler function, this fact is important if we want to determine

the local gluon condensate using our formulation, for instance, by comparing with

an evaluation of D(Q2) by a lattice calculation. The OPE up to the O(1/Q4) terms

(in the large-β0 approximation) is written as

D(Q2) = Dβ0
(Q2;µf)

∣

∣

∣

1/Q4
+ CGG(µf)

〈0|GaµνGa
µν |0〉 (µf)

Q4
+O(Λ6

QCD/Q
6) . (2.68)

We expect that µf -dependences up to 1/Q4-terms are canceled. According to the

above discussion, the variation due to the scheme difference (choice of WX) satisfies

∆scheme

(

CGG(µf)
〈0|GaµνGa

µν |0〉 (µf)

Q4

)

= O(Λ6
QCD/Q

6) . (2.69)

Thus, the error becomes higher order than the term which we want to determine.

[Note that CGG would also include power corrections ∼ (Λ2
QCD/Q

2)n.]

Although we have shown that δW changes XUV only at subleading order, it alters

X0 and the power corrections (Λ2
QCD/Q

2)n with n < uIR individually; see Eqs. (2.59)

and (2.64). In the rest of this subsection, we discuss the reason why the coefficients

of the (Λ2
QCD/Q

2)n-terms can be altered.

We can show that X0(Q
2) has the same asymptotic expansion in αs as the

perturbative series of Xβ0
(Q2):

X0(Q
2)−

n−1
∑

k=0

dk(µ = Q)

(

β0

4π

)k

αk+1
s (Q) = O(αs(Q)n+1) , (2.70)

as αs(Q)→ 0. (We sketch the proof in App. D.) This shows that, although X0(Q
2)

is expansible with respect to αs(Q), it is not expansible with respect to Λ2
QCD/Q

2

since αs(Q) ∼ 1/ log (Q2/Λ2
QCD). Reflecting this fact, Xβ0

(Q2;µf), which is related

to X0(Q
2) by Eqs. (2.22) and (2.24), is also not expansible with respect to 1/Q2.

This is a short answer to the question why the (Λ2
QCD/Q

2)n-terms in Xβ0
(Q2;µf) is

not uniquely determined.

Note that Xβ0
(Q2;µf) − X0(Q

2) is expansible in 1/Q2 and the (Λ2
QCD/Q

2)n-

terms are regarded as a part of this series expansion. In this respect Eq. (2.70)

is essential since it ensures that the singularities of Xβ0
(Q2;µf) caused by αs(Q)k

cancel with those of −X0(Q
2). Considering the fact that Xβ0

(Q2;µf) is a uniquely-

defined quantity, it is deduced that the non-uniqueness of the (Λ2
QCD/Q

2)n-terms in

Xβ0
(Q2;µf)−X0(Q

2) is caused by the non-uniqueness of X0(Q
2). In fact there are

potentially many candidates of X0(Q
2) satisfying the property (2.70). A new X0
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constructed by adding (Λ2
QCD/Q

2)n to the old one also satisfies Eq. (2.70), since all

the series coefficients of Λ2
QCD/Q

2 = e−4π/(β0αs(Q2)) in αs(Q
2) are zero.

The non-uniqueness of X0 stems from the non-uniqueness of WX in our method.

The variation ofWX indeed changes X0 by powers of Λ2
QCD/Q

2 as shown in Eq. (2.64)

while keeping the asymptotic expansion (2.70). This change of X0 is compensated

by the change of the (Λ2
QCD/Q

2)n-terms as shown below Eq. (2.67). Thus, the non-

uniqueness of the power corrections is also attributed to the non-uniqueness of WX .

At this stage, it suggests that it would be meaningless to focus on the power

corrections (Λ2
QCD/Q

2)n alone in XUV since it becomes definite only after we specify

X0, and only the sum of them (XUV) is a meaningful quantity. Nevertheless, it turns

out that if we limit schemes to a reasonable class, the separation of XUV into X0

and (Λ2
QCD/Q

2)n-terms becomes unique by a uniqueness of WX . We will elaborate

on this point in the next subsection.

2.6 Massive gluon scheme as the optimal scheme

We discuss which scheme is favored from the analytical properties of XUV(Q
2) when

we extend it to a function of the complex variable Λ2
QCD/Q

2. Since the power-

correction terms in XUV are obviously analytic in the whole Λ2
QCD/Q

2-plane, we

mainly focus on the analytic structure of X0(Q
2).

X0(Q
2) in the massive gluon scheme can be expressed as an analytic function of

Λ2
QCD/Q

2 by Eq. (2.30), provided that the integral path can be rotated.14 Using this

expression we can show that X0 has a cut along the negative real axis starting from

the origin and is regular everywhere else in the Λ2
QCD/Q

2-plane. It follows from the

fact that W
(m)
X+ (z) in this scheme can have cuts along the negative real axis starting

only from z = 0 and z = −1 and is regular everywhere else.15 Thus, X0(Q
2) in this

scheme (hence, XUV(Q
2)) satisfies the required analyticity in the complex plane in

terms of perturbative QCD, where the form of the singularity at Λ2
QCD/Q

2 = 0 is

dictated by the renormalization-group equation. We have already seen this favorable

feature of the massive gluon scheme for the Adler function in Sec. 2.3.

In a general scheme, i.e., for a general pre-weight, X0(Q
2) can be expressed as

an analytic function in the following manner. We rewrite the pre-weight as the sum

of W
(m)
X (z), which is the pre-weight in the massive gluon scheme, and the rest as

WX(z) = W
(m)
X (z) + δWX(z). We can follow the same steps which led to Eq. (2.63)

in the previous section, assuming regularity of δWX(z) close to the origin, and obtain,

14 We can show that the rotation of integral path is possible if |wX(z)| = O(|z|a) for ∃a < 0 for

sufficiently large |z| in the lower half-plane.
15 This can be shown using the property that W

(m)
X (z) can have singularities only at z = 0, 1,

∞, where z = τ/Q2 = (−τ)/q2 = 1 corresponds to the threshold of the massive gluon plus massless

partons. In passing, since 2 ImW
(m)
X (x) = wX(x) holds for x > 0, wX(x) can have singularities

only at x = 0, 1, ∞ along the integral path of Eq. (2.29); c.f., Eqs. (2.36) and (2.49).
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for sufficiently small |Λ2
QCD/Q

2|,

X0(Q
2) = X

(m)
0 (Q2) +

4π

β0

[

δWX(0)− δWX

(

e5/3Λ2
QCD

Q2

)]

, (2.71)

where X
(m)
0 (Q2) represents X0 in the massive gluon scheme. Then we can enlarge

the domain of this function by analytic continuation to the entire Λ2
QCD/Q

2-plane,

except at singular points of δWX(e
5/3Λ2

QCD/Q
2) and the origin.

In this construction we can regard that the essential part is determined by

W
(m)
X (z), which already gives the required analyticity of X0(Q

2). δWX(z) is sub-

sidiary in the sense that it is not necessary in an essential way and should not have

singularities (except at Λ2
QCD/Q

2 = ∞) in order not to violate the required ana-

lyticity of X0(Q
2) or XUV(Q

2). Thus, we may say that the massive gluon scheme

is an optimal (or minimal) scheme in terms of the analyticity, according to this

construction of X0(Q
2).

We would like to know how many pre-weights are allowed as a reference scheme

in the above construction of X0(Q
2), or in other words, how many minimal schemes

exist. The integral expression (2.30) is used to define the reference scheme, and this

expression is realized naturally by the following conditions on the pre-weight:16

(0) WX(z) is analytic in the upper half-plane, and

2 ImWX(x) = wX(x) for x ≥ 0 . (2.72)

(1) ImWX(x) = 0 for x ≤ 0 . (2.73)

(2)

∫

CR

dz

πz
WX(z) is absolutely convergent to 0 as R→∞,

where CR = {Reiθ|0 ≤ θ ≤ π}. (2.74)

The pre-weight in the massive gluon scheme W
(m)
X (z) satisfies the conditions (0)

and (1). If it also satisfies the condition (2) (see footnote 14), we can rotate the

integration path to the negative axis, and the expression (2.30) is obtained, namely,

XUV satisfies the required analyticity.

We now prove that the above conditions (0)–(2) are sufficient to determine the

pre-weight uniquely. Let us examine the difference of the pre-weights satisfying the

above conditions:

δWX(z) = W
(2)
X (z)−W

(1)
X (z). (2.75)

We can translate the conditions (0)− (2) into conditions for δWX as

Im δWX(x) = 0 for x ∈ R , (2.76)

16The condition (0) is already included in the definition of a general WX(z). Note also that

wX(0) = 0 due to our assumption that XLO is IR finite [see Eq. (2.1)], hence the conditions (0)

and (1) are mutually consistent at x = 0.
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∫

CR

dz

πz
δWX(z) is absolutely convergent to 0 as R→∞. (2.77)

Using Eq.(2.77), we can show

Pr.

∫ ∞

−∞

dx

π

δWX(x)

x− x′ = i δWX(x
′), (2.78)

where Pr. denotes the principal value integral and x′ is assumed to be a real param-

eter. Taking the imaginary part of this equation and using Eq.(2.76), we obtain

Re δWX(x) ≡ 0 for x ∈ R. (2.79)

One can see from Eq.(2.76) and Eq.(2.79) that δWX is identically zero in the upper

half-plane including the real axis (by the identity theorem). Since we do not expect

any physical singularity to disturb enlargement of this analyticity domain,17 we can

conclude that δWX = 0 in the entire complex plane:

δWX(z) ≡ 0 for z ∈ C. (2.80)

Hence, if W
(m)
X (z) in the massive gluon scheme satisfies the condition (2), the allowed

scheme is uniquely determined to this one. This is the case in the explicit examples

considered in Secs. 2.3 and 2.4.

This argument shows that, instead of requiring the analyticity of X0, through

the above conditions (0)–(2) we can satisfy the analyticity requirement and single out

the pre-weight uniquely simultaneously. Note that once the pre-weight is uniquely

fixed, the separation of XUV into X0 and power corrections ∼ (Λ2
QCD/Q

2)n becomes

unambiguous.

2.7 Behaviors of XUV in massive gluon scheme

In the previous subsection, we pointed out that the massive gluon scheme can be

regarded as special among all the schemes. We examine some details of the behaviors

of X0(Q
2) and the power corrections in XUV, respectively, in this scheme. 18

Behavior of X0(Q
2)

As discussed below Eq. (2.70), the behavior ofX0(Q
2) close to 1/Q2 = 0 is determined

by the fact that X0(Q
2) has the same asymptotic expansion as the perturbative

series of X(Q2); see Eq. (2.26). Namely the behavior of X0(Q
2) at large Q2 is

almost insensitive to the scheme of W
(m)
X . In contrast, the global behavior of X0(Q

2)

generally depends on the scheme of WX .

17 Note that a singularity in δWX(z) except for a cut along the negative real axis generates an

additional singularity in X
(2)
0 (Q2) compared with X

(1)
0 (Q2) as one can see from Eq.(2.71).

18In this subsection, we assume that W
(m)
X (z) has a good convergence for large |z| in the upper

half-plane including the real axis.
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Let us examine some details about the massive gluon scheme. The limit of X0

in this scheme at 1/Q2 →∞ is calculated from Eq. (2.32) as

X0(Q
2)→ 4π

β0

W
(m)
X+ (0) =

4π

β0

d0 . (2.81)

Namely X0(Q
2) approaches a constant for sufficiently large 1/Q2.

In addition, if we regard X0(Q
2) as a function of Q̂−2 = Λ2

QCD/Q
2, we can see

that X0 and its derivatives have definite signs at least for the two examples which

we studied:

X0 ≥ 0 ;
dX0

d(Q̂−2)
≥ 0 ;

d2X0

d(Q̂−2)2
≤ 0 for X = D,αF . (2.82)

This property follows from W ′
X+(x) ≤ 0, W ′′

X+(x) ≥ 0 for x ≥ 0, and

dnX0

d(Q̂−2)n
=

∫ ∞

0

dτ

πτ

(

τ

Λ2
QCD

)n
dnW

(m)
X+ (x)

dxn

∣

∣

∣

∣

∣

x= τ

Q2

4π

β0

−π
log2 (τe−5/3Λ2

QCD) + π2
. (2.83)

As a result, combined with the asymptotic forms at 1/Q2 = 0,∞, the behavior of

each X0 is determined globally and the form is simple (and similar), as seen from

Figs. 2 or 3.

Power corrections in XUV

We show that the power corrections in XUV can be detected generally from the Borel

transformation. Consider an integral

CX(v) ≡
∫ ∞

0

dz

2π
W

(m)
X (z) z−v−1 . (2.84)

The expansion of W
(m)
X (z) for small-z is determined by the singularities of CX(v) as

[c.f., Eqs. (2.10) and (2.12)]

W
(m)
X (z) = −2π

∑

n∈VIR

Resv=n[CX(v)z
v] =

∑

cnz
n , (2.85)

where VIR denotes a set of non-negative poles of CX(v). Using Eq. (2.27), CX(v) is

explicitly calculated in the massive gluon scheme as

CX(v) =

∫ ∞

0

dx

2π
wX(x)

∫ ∞

0

dz

2π

z−v−1

x− z − i0

= −1
2

e−iπv

sin(πv)

∫ ∞

0

dx

2π
wX(x)x

−u−1

= −1
2

e−iπv

sin (πv)
BX(v) = −

1

2

cos(πv)

sin (πv)
BX(v) +

i

2
BX(v) , (2.86)
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where we used Eq. (2.10). (The same equation was derived in Ref.[11] in a different

context.) By taking the imaginary part of CX(v), we can check that the usual Borel

transformation is obtained consistently with Eq. (2.14). The factor {sin (πv)}−1 in

the real part of Eq. (2.86) generates additional integer poles, that is, UIR ⊂ VIR. In

particular, the first few terms of the expansion of W
(m)
X (z) stem from this factor and

reduce to real coefficients:

W
(m)
X (z) =

∑

0≤n<uIR

BX(n)z
n + . . . , (2.87)

where we use Eq. (2.85). Therefore, from Eqs. (2.18), (2.23) and (2.87), the coefficient

of the (e5/3Λ2
QCD/Q

2)n-term of XUV is revealed to be 4πBX(n)/β0.

Incidentally, we have a similar relation for W
(m)
X+ in the massive gluon scheme as

CX+(u) ≡
∫ ∞

0

dz

2π
W

(m)
X+ (z)z−u−1

=

∫ ∞

0

dx

2π
wX(x)

∫ ∞

0

dz

2π

z−u−1

x+ z − i0

= −1
2

1

sin (πu)

∫ ∞

0

dx

2π
wX(x)x

−u−1

= −1
2

1

sin (πu)
BX(u), (2.88)

where we used Eqs. (2.29) and (2.10).

Note that Eq. (2.87) does not mean that the power corrections included in XUV

are related to perturbative ambiguity, but it is purely a mathematical relation. We

explore the origin of the expansion of W
(m)
X (z) and clarify the meaning in terms of

the method of expansion by regions in the next section.

3 Power corrections and OPE in light of expansion by re-

gions

In this section we investigate (i) the origin of the power corrections in XUV, and

(ii) the relation of XUV to Wilson coefficients in OPE, by means of the method of

expansion by regions, or asymptotic expansion in limits of large momentum [27–

29]. With this method, we can identify which momentum region contributes to

each power correction. We show that the power corrections in XUV for the Adler

function Eq. (2.42) and the interquark force Eq. (2.55), respectively, are genuine

UV contributions. We also provide an effective field theoretical point of view of our

framework presented in the previous section.

We first discuss some general aspects (Sec. 3.1) and subsequently clarify detailed

features explicitly in the examples of the Adler function (Sec. 3.2) and the interquark

force or QCD potential (Sec. 3.3).
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Figure 4. Deformed integral path introduced in Sec. 2.2 and different interpretations on

relevant kinematical regions. [Upper figure] The pole contribution is interpreted to be an

IR effect. [Bottom figure] The pole contribution is interpreted to be a UV effect, which is

shown to be legitimate for the Adler function and the force between QQ̄.

3.1 General aspects

We discuss two issues using the method of expansion by regions. First we answer the

question: “Which kinematical regions do the power corrections (Λ2
QCD/Q

2)n originate

from?” This question can be addressed accurately in the massive gluon scheme. The

motivation to ask this question is as follows. Since the power corrections stem from

the contour Cb in Eq. (2.16) close to the IR pole at τ = e5/3Λ2
QCD, one may suspect

that the power corrections originate from IR contributions, although we claim that

XUV consists of UV contributions. (See Figs. 4.)

We can use the method of expansion by regions in the following manner. The

1/Q2 expansion of Xβ0
(Q2;µf) is determined by the small-z expansion of W

(m)
X (z) in

the integral along Cb [Eq. (2.17)], and the (Λ2
QCD/Q

2)n-terms are included as a part

of it. Since the pre-weight in the massive gluon scheme W
(m)
X (τ/Q2) is expressed as a

usual Feynman integral with a massive gluon propagator, we can use the expansion-

by-regions technique to decompose the small-(τ/Q2) expansion of W
(m)
X (τ/Q2) into

contributions from different kinematical regions. In this computation Q2 plays the

role of a hard scale, whereas τ plays the role of a soft scale, since |τ | ≤ µ2
f ≪ Q2

along Cb.

If the first few terms of the power corrections are found to originate from UV

region, we can further deduce that the integral along Ca [= X0(Q
2)− 4πc0/β0] also

originates (dominantly) from UV region for large Q2. This is because, Xβ0
(Q2;µf)

consists of UV contributions (given by an integral over τ ≥ µ2
f), and the Ca-integral

is given by the difference of Xβ0
and the Cb-integral.

Secondly the correspondence between Xβ0
(Q2;µf) in our formulation and OPE

in a low-energy effective field theory can be examined using expansion-by-regions of

Feynman diagrams [27].19 Since an early stage of the development of the expansion-

19 This part of the analysis deals with Xβ0
at each order of perturbation and has only minor
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by-regions method, its relation to effective field theory and OPE has been explored

[27–29]. The hard contributions in the context of expansion by regions are inter-

preted as Wilson coefficients in the effective field theory, and the soft contributions

are interpreted as perturbative quantum corrections due to low-energy degrees of

freedom. In other words, the low-energy effective Lagrangian is constructed by in-

cluding hard contributions in terms of effective vertices whereas the soft contributions

are left to be evaluated. This procedure is what is usually called “integrating out

hard modes.” In OPE, the correspondence between hard contributions and Wilson

coefficients are unchanged, while quantum corrections due to low-energy degrees of

freedom are evaluated as non-perturbative matrix elements.

Xβ0
(Q2;µf) introduced in Eq. (2.13) can also be interpreted as a Wilson coeffi-

cient in OPE, as we will see in explicit examples below. However, the way to separate

UV and IR effects is different from that of expansion by regions in the following sense:

(i) The Wilson coefficient of our method is regularized by a cutoff, whereas the one

in the expansion-by-regions method is formulated in dimensional regularization. (ii)

We separate the UV contribution from the IR contribution by only one measure,

i.e., scale of the gluon momentum. On the other hand, the method of expansion by

regions distinguishes momentum regions with a finer resolution in general.

In the case that the relevant low-energy effective field theory is known, the

expansion-by-regions technique is a standard tool to systematically compute Wil-

son coefficients to high orders. Detailed connection between the full theory and the

effective field theory can be made, including correspondence of relevant kinematical

regions. Since Xβ0
(Q2;µf) in our formulation is well defined in the full theory, using

this information it is possible to establish a firm connection between Xβ0
(Q2;µf) and

Wilson coefficients, as we have briefly reviewed in Sec. 2.4.

On the other hand, in the case that the relevant effective field theory is un-

known, we can still infer its structure using the expansion by regions, as well as

factorize UV and IR contributions to the Wilson coefficients and non-perturbative

matrix elements, respectively, in dimensional regularization. Changing to a cutoff

regularization would be less founded, since consistent treatment is not guaranteed

by an effective field theory framework. Furthermore, since the analysis necessar-

ily becomes diagram-based, correspondence with operators, gauge symmetry, or the

equation of motion is not transparent.

We can clarify these two issues in explicit computations for the observables which

we studied already, the Adler function and the QCD force (or the QCD potential).

3.2 Example 1: Adler function

Using the expansion-by-region method we first compute the small-z expansion of the

pre-weight W
(m)
D (z) for the Adler function in the massive gluon scheme. In this way

connection with the separation ofXβ0
intoX0 and power corrections or with the scheme dependence.
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Figure 5. Different kinematical regions contributing to the Adler function in light of

expansion by regions. A blue (red) line represents that a hard (soft) momentum ∼ Q (∼√
τ) is flowing through the line.

we can identify which kinematical region the power correction in Eq. (2.42) originate

from.

The kinematical regions contributing to the expansion of W
(m)
D (z) are shown

in Fig. 5, in which blue (red) lines carry hard (soft) momenta. Note that, since the

external momentum is hard, a hard momentum should flow through between the two

external vertices. There is no contribution from the kinematical region, in which the

gluon is hard and some of the quark lines are soft.20 Hence, we divide the kinematical

regions into three regions, (H,H), (S,H) and (S,S), as shown in the figure:

W
(m)
D (z) = W

(H,H)
D (z) +W

(S,H)
D (z) +W

(S,S)
D (z) , (3.1)

where W
(H,H)
D = W

(H,H)A
D +W

(H,H)B
D , etc.

For instance, the “all-hard” contribution W
(H,H)
D is computed as follows. Recall

that W
(m)
D in the massive gluon scheme is given as [c.f., Eq. (2.28)]

W
(m)
D (τ/Q2) =

∫ ∞

0

d(p2)

2π

1

p2 − τ
wD(p

2/Q2) . (3.2)

W
(H,H)
D is obtained by expanding the gluon propagator in τ as

W
(H,H)
D (τ/Q2) =

∞
∑

n=0

∫ ∞

0

d(p2)

2π

τn

(p2)n+1
wD(p

2/Q2) , (3.3)

where it is understood that wD is regularized by dimensional regularization.21 Apart

from the gluon propagator, the integrand does not receive any modification since the

20 This is because in such a region the soft scale integral becomes scaleless, since the soft scale

τ is included only in the gluon propagator, and if gluon is hard, after expansion in τ no soft scale

remains in the denominator.
21 It means that one should not use Eq. (2.36) for wD. One expands the integrand before

performing any momentum integral while keeping ε 6= 0.
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soft-scale parameter τ is contained only in the factor 1/(p2 − τ). The result of the

computation reads

W
(H,H)
D (z) = NCCF

[

1

4π
+

8− 6ζ3
3π

z +

(

− [ǫ
−1]

2π
+

4− 12ζ3
6π

)

z2

+

(

− [ǫ
−2]

6π
+

5[ǫ−1]

12π
+

265

216π
+

π

36

)

z3 +O
(

z4
)

]

. (3.4)

Divergent terms are denoted as

[ǫ−1] =
1

ε
− γE + log

(

4πQ2

µ2

)

+O(ε) , (3.5)

[ǫ−2] =
1

ε2
− 2

ε

[

γE − log

(

4πQ2

µ2

)]

+ 2

[

γE − log

(

4πQ2

µ2

)]2

+O(ε), (3.6)

where the space-time dimension is denoted as d = 4−2ε; γE = 0.57721... is the Euler

constant and µ is the renormalization scale. If we neglect log(Q2/µ2), these terms

correspond to those which are subtracted in the usual MS renormalization.

The results of the other two contributions are given by

W
(S,H)
D (z) = NCCF

[(

[ǫ−1]

2π
+

6− 3 log z + 3iπ

6π

)

z2 +

(

[ǫ−2]

3π
− 1 + log(−z)

3π
[ǫ−1]

+
log2(−z)

6π
+

log(−z)
3π

− 91

54π

)

z3 +O
(

z4
)

]

, (3.7)

W
(S,S)
D (z) = NCCF

[(

− [ǫ
−2]

6π
+

4 log(−z)− 1

12π
[ǫ−1]

− log
2(−z)
3π

+
log(−z)

6π
− π

12
+

35

216π

)

z3 +O
(

z4
)

]

, (3.8)

where we use a short-hand notation log(−z) ≡ log z − iπ. Although W
(H,H)
D , W

(S,H)
D

andW
(S,S)
D individually contain the divergent terms (3.5), (3.6), which are µ-dependent,

these terms cancel altogether in the sum (3.1).22

The first two terms of the all-hard contribution [Eq. (3.4)] are exactly equal to

the first two terms (c0 and c1) of the expansion of W
(m)
D (z) [Eq. (2.40)], while the

order z0 and z1 terms are absent in W
(S,H)
D (z) and W

(S,S)
D (z). Therefore we conclude

that the µf -independent Λ2
QCD/Q

2-term of DUV(Q
2) belongs to the hard contribu-

tion. Consequently the dominant part of D0(Q
2) is also UV origin, according to the

argument in the previous subsection. Thus, the lower figure of Figs. 4 corresponds

to the proper interpretation up to order 1/Q2.

In Sec. 2.2 we found that the imaginary part of the expansion coefficients of

W
(m)
X (z) results in µf -dependent terms, and the µf -dependent terms are related to

22 Cancellation of divergent terms is a common feature in the method of expansion by regions

and signifies that the result is independent of the factorization scale separating the soft and hard

regions.
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c0 c1 c2 c3

W
(H,H)
D (z) R R R R

W
(S,H)
D (z) C C

W
(S,S)
D (z) C

Table 1. Expansion coefficients cn of the contribution from each kinematical region to

W
(m)
D (z) up to order z3 [Eqs. (3.4), (3.7), (3.8)]. The symbol “R” stands for a non-zero

real value, while “C” represents a complex value with non-zero imaginary part. A blank

represents that the coefficient is zero.

IR contributions. The expansion-by-regions analysis shows that the imaginary part

of the expansion coefficients stems only from the region where the gluon has a soft-

scale momentum. This is because the only source of imaginary part is the integral

of 1/(p2 − τ). Indeed W
(S,H)
D (z) and W

(S,S)
D (z) include imaginary part. Oppositely,

the all-hard contribution W
(H,H)
D (z) in Eq. (3.4) is explicitly real. In fact, Eq. (3.3)

shows that W
(H,H)
D (z) is Euclidean and real to all orders in 1/Q2 expansion.

In Ref. [11], using the method of massive gluon, terms which are non-analytic

in the gluon mass λ are identified as IR contributions, while terms which are power-

like in λ as UV contributions. Written in the form of Eq. (3.3), the source of the

imaginary part can be attributed to the same origin. For example, a non-analytic

term log λ2 generates an imaginary part when we substitute λ2 = −τ with τ > 0.

In Tab. 1 we summarize the contribution from each momentum region to the

expansion coefficients of W
(m)
D (z) up to O(z3) [Eqs. (3.4), (3.7), (3.8)]. The first two

coefficients of W
(m)
D (z) originate only from the all-hard region [(H,H) region], and

there is no divergence up to this order. From the order z2, the contribution from

each region diverges and only the sum is finite. In the case that each contribution

is divergent, it is µ-dependent and the separation between different regions becomes

somewhat vague. The contribution from the soft-gluon and hard-quark region [(S,H)

region] starts at order z2, and the region where the gluon is soft and some of the

quarks are soft [(S,S) region] contributes from order z3. As already mentioned above,

(S,H) and (S,S) contributions have non-zero imaginary part. Notably these regions

also contribute to the real part, although the values are divergent and become definite

only after they are added to the (H,H) contributions. Namely, from the order z2,

the real part of the expansion coefficients receive mixed contributions from the hard

and soft momentum regions of the gluon. This is in contrast to the imaginary part,

to which only the soft-gluon-momentum regions can contribute.

It is worth emphasizing that the soft contributions are not always pure imaginary,

i.e., not all of the real part of the expansion coefficients originate from the hard-gluon
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∼ ∼ ∼ 〈1〉

∼ ∼ ∼ 〈G2〉
Q4

∼ ∼ 〈ψ̄D/ψ〉
Q4

∼ ∼ 〈ψ̄D/ψ〉
Q4

∼ ∼ 〈ψ̄∂µ∂νψGµν〉
Q6

Figure 6. Relations between contributions to the Adler function evaluated with the

expansion-by-regions method (colored graphs; c.f. Fig. 5) and those with a (would-be)

low-energy effective field theory (black graphs). The corresponding terms in OPE are also

shown.

region. Thus, the method of expansion by regions has a finer resolution than our

analysis given in Sec. 2.2 and detects soft contributions even in the real part of

cn for n ≥ uIR. From this detailed examination, we confirm consistency23 of our

treatment of XUV in Sec. 2.2, where we classify as the genuine UV contribution the

(Λ2
QCD/Q

2)n-terms for 0 ≤ n < uIR.

Let us turn to examine OPE of the Adler function using the method of expansion

by regions. The relevant low-energy effective field theory is not known. Applying the

expansion-by-regions method to the diagrams for the reduced Adler function, they are

decomposed into contributions from different kinematical regions as shown in Fig. 6.

For instance, the all-hard region can be identified with the Wilson coefficient for

the identity operator, as illustrated in the figure. Similarly, a contribution involving

soft gluons/quarks can be identified with the matrix element of a higher-dimensional

local operator times its Wilson coefficient. This includes the local gluon condensate

at order 1/Q4.

23 There may occur a contradiction to the result of Sec. 2.2 in exceptional cases where the leading

soft-gluon contribution happens to be pure real. This may happen if the leading IR renormalon

vanishes accidentally.
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Using this correspondence, we argue that DUV(Q
2) is almost identified with the

Wilson coefficient of the identity operator C1(Q
2;µf). Recall that DUV(Q

2) is a µf -

independent part of Dβ0
(Q2;µf), which is diagrammatically given by Fig. 1 with an

effective coupling αβ0
(τ) and an IR cutoff µf of the gluon momentum. As inferred

from the above correspondence, in general the all-hard region of a diagram, where

all the momenta are larger than the cutoff scale µf , contributes to C1(Q
2;µf), since

the entire loop integral shrinks to a local vertex. In contrast a contribution which

includes soft modes becomes a non-perturbative matrix element times its Wilson

coefficient.

Dβ0
(Q2;µf) is slightly different from C1 in that it includes both hard and soft

quarks. The leading contribution involving soft quarks reduces to the matrix element

of the dimension-six operator (q̄γµq)(q̄γµq) made only of the quark field.24 (Note that

the dimension-three operator q̄q is absent since it appears together with the quark

mass.) Thus, we obtain25

Dβ0
(Q2;µf) = C1(Q

2;µf) +O(µ6
f/Q

6) . (3.9)

As a result, the µf -independent partDUV is identified with C1(Q
2;µf) up toO(µ4

f/Q
4)

via Eq. (2.41):

C1(Q
2;µf)−DUV(Q

2) = O(µ4
f/Q

4) . (3.10)

In particular, the power correction Λ2
QCD/Q

2 inDUV is a part of the Wilson coefficient

C1.

We note that the matrix element of the dimension-four operator q̄ /Dq vanishes

by the equation of motion /Dq = 0. Essentially the same effect is observed in the

computation of the expansion coefficient of W
(m)
D in the first part of this subsection.

W
(S,S)
D represents contributions in which the gluon and some of the quarks have soft

momenta (see Fig. 5). By explicit computation we confirm that each of W
(S,S)A
D and

W
(S,S)B
D is nonzero at O(z2), while they cancel in the sum, resulting in the z3 term

as the leading term in their sum.26 This property is considered to be a consequence

of gauge invariance and the equation of motion. Since each diagram does not respect

gauge invariance, the soft contribution from each diagram at order 1/Q4 is non-

vanishing, but the sum of all the diagrams should vanish at this order. The first

gauge invariant operator involving soft quarks is dimension six, as already noted.

24 Although one may be worried that the cutoff regularization would break gauge invariance

and generate gauge non-invariant operators, in fact our regularization method preserves gauge

invariance.
25 Contributions from the soft region of the fermion bubble subgraphs are also suppressed.
26 The same cancellation mechanism cannot be seen explicitly in the computation of the massless

diagrams in Fig. 6, since the soft-scale integrals are scaleless and vanish for all the diagrams. On

the other hand, in Fig. 5 the gluon mass τ acts as the soft scale.
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3.3 Example 2: QCD potential

The UV contribution to the force between the static quark and antiquark αF,UV(1/r
2)

and its power behavior are analyzed in Sec. 3.3, where it is shown that the µf -

independent r2-term exists in αF,UV(1/r
2). This result is obtained from the one-

dimensional integral representation of the QCD potential (2.46), and we investigate

the QCD potential in this subsection.

The pre-weight W
(m)
V (z) of the QCD potential in the massive gluon scheme,

where z = τr2, is given by

W
(m)
V (z) = −2CF

π

∫ ∞

0

sin(pr)p

p2 − τ − i0
dp (3.11)

= −CF e
i
√
z . (3.12)

We investigate the kinematical regions which contribute to the small-z expansion of

W
(m)
V (z). To apply the method of expansion by regions, we introduce a variant of

the dimensional regularization by replacing dp→ p−2εdp in Eq. (3.11). While in the

conventional expansion-by-regions method [29] only Feynman integrals in momentum

space are considered, Eq. (3.11) contains both coordinate-space variable (r) and

momentum-space variable (p). To our knowledge, there is no systematic argument

concerning validity of the expansion-by-regions method in such cases. Nevertheless in

the current specific example, we can show validity of the method using the argument

in Ref.[30].

Similarly to Eq. (3.3), the contribution from the hard region p ∼ 1/r is given as

W
(H)
V (z) = −2CF

π

∞
∑

n=0

∫ ∞

0

τn

(p2)n+1
sin(pr)p1−2εdp (3.13)

= −2CF

π
r2εzn

πΓ(−2n− 2ε)

Γ(n + ε+ 1)Γ(−n− ε)
(3.14)

= −CF cos(
√
z) +O(ε) , (3.15)

while the contribution from the soft region p ∼ √τ is given as

W
(S)
V (z) = −2CF

π

∞
∑

n=0

(−1)n
(2n+ 1)!

∫ ∞

0

(pr)2n+1

p2 − τ − i0
p1−2εdp (3.16)

= −CF

π

(
√
z)2n+1

(2n+ 1)!
τ−εΓ(ε− 1

2
)Γ(

3

2
− ε)eiπ(n−ε+1/2) (3.17)

= −iCF sin(
√
z) +O(ε) . (3.18)

Both hard and soft contributions are finite as ε → 0 to all orders in the small-z

expansion.

The hard and soft contributions separate into the real and imaginary part, re-

spectively. There is no mixed contribution from both regions to each expansion
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coefficient, so that the correspondence is simpler than the Adler function. Namely,

each coefficient is either real or pure imaginary, where the former originates from the

hard region and the latter from the soft region. The real and imaginary coefficients

appear alternately. The order z1 term of cos(
√
z) gives the Λ2

QCDr
2 term of αF,UV,

which indeed stems from the hard region.

As already explained in Sec. 2.4, the effective field theory for the QCD potential

is known as pNRQCD, and its construction can be understood using the integration-

by-regions method. According to this understanding, pNRQCD for the static QCD

potential is constructed by integrating out the so-called “hard” and “soft” scales.

The remaining active dynamical degrees of freedom are those in the “ultra-soft”

scale and the ΛQCD scale.27

Computations in the framework of pNRQCD is systematically organized using

the multipole expansion, which gives an OPE in this effective field theory. A num-

ber of Wilson coefficients in pNRQCD have been computed using the method of

expansion by regions. Wilson coefficients are usually regularized by dimensional

regularization and they contain divergences in general. It is possible to change to

another regularization scheme within pNRQCD framework, and the physical pre-

dictions should not depend on the regularization scheme. Hence, through such a

route, computation of the QCD potential in our framework can be related to that of

pNRQCD or full QCD without any ambiguity.

In dimensional regularization and in strict expansion in αs, the leading Wilson

coefficient VS(r) in Eq. (2.58) coincides with VQCD(r) to all orders in αs, since con-

tributions from the ultra-soft and ΛQCD scales (e.g., the second term) evaluate to

scaleless integrals at each order of αs in the expansion-by-regions method. In OPE

the ultra-soft and ΛQCD contributions turn into non-perturbative matrix elements. If

we adopt the large-β0 approximation and the cutoff in the gluon momentum, VS(r)

coincides with Vβ0
(r;µf) in our formulation. At the same time, the leading non-

perturbative matrix element is estimated as order µ3
fr

2 in this regularization scheme.

By examining the matching between full QCD and pNRQCD in detail, we can check

that with this regularization Eq. (2.58) also achieves a consistent separation of the

UV (hard+soft) and IR (ultrasoft+ΛQCD) contributions to the whole static QCD

potential VQCD(r). Details of the computation can be found, e.g., in [17].

4 Relation between XUV and perturbative series at large or-

ders

In this section we show that XUV(Q
2) derived in Sec. 2.2 is reproduced from the

perturbative series in the large-β0 approximation at large orders. Based on this

27 There is no contribution from the “potential region” in the computation of the static QCD

potential due to the fact that the static propagator originating from the Wilson line does not include

the kinetic energy term ∼ ~p 2/(2m).
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observation we confirm that our result XUV is consistent with the renormalon uncer-

tainty and the OPE framework.

The smallest term of the perturbative series of Eq. (2.3) is given at around

n∗ = 4πuIR/(β0αs), hence, it is natural to regard the truncated series at this order

Xn∗
(Q2) as an optimal prediction within perturbation theory. The uncertainty of

the prediction Xn∗
(Q2) is of the order of (Λ2

QCD/Q
2)uIR. By taking a small αs(µ),

we can examine the large order perturbative series keeping the perturbative series

finite, since n∗ becomes large in this case. The truncated series Xn∗
is written as

Xn∗
(Q2) =

n∗−1
∑

n=0

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αs(µ)

[

β0αs(µ)

4π
log

(

µ2e5/3

τ

)]n

=

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αs(µ)
1− Ln∗

1− L
(4.1)

= Im

∫ ∞

0

dτ

πτ
WX

(

τ

Q2

)

αs(µ)
1− Ln∗

1− L
, (4.2)

where we define

L =
β0αs(µ)

4π
log

(

µ2e5/3

τ

)

. (4.3)

Since the integrand of Eq. (4.2) is regular along the integral path (positive real axis),

we can deform the path into Ca:

Xn∗
(Q2) = Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αs(µ)
1− Ln∗

1− L

= Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αs(µ)
1

1− L
+ Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αs(µ)
−Ln∗

1− L
.

(4.4)

The first term is a part of X0(Q
2) since

αs(µ)
1

1− L
= αβ0

(τ) . (4.5)

In the second term of Eq. (4.4), the integrand has a pole at τ = e5/3Λ2
QCD. We

decompose the integral into the principle value part and the delta function part,

after taking the integral path again on the positive axis:

αβ0
(τ) = Pr. αβ0

(τ)− 4π

β0
πτi δ(τ − e5/3Λ2

QCD) . (4.6)

Thus, we obtain

Xn∗
(Q2) =Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αβ0
(τ) +

4π

β0

ReWX

(

e5/3Λ2
QCD

Q2

)

+ Pr.

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αβ0
(τ)(−Ln∗) , (4.7)
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Figure 7. Truncated perturbative series up to O(αn
s (µ)) in the large-β0 approximation

and XUV, for the reduced Adler function X = D (left) and the F -scheme coupling X = αF

(right). We choose αs(µ) = 0.0243 corresponding to n∗ = 24 (n∗ = 18) for X = D

(X = αF ) and uIR = 2 (uIR = 3/2). Optimal perturbative prediction Xn∗
lies close to

XUV in each figure. We set nf = 1.

where we used Eq. (2.14) for the third term. By expanding ReWX in Λ2
QCD/Q

2, we

can see that Xn∗
(Q2) indeed includes XUV(Q

2); see Eqs. (2.21) and (2.23).

In Fig. 7, we show XUV and perturbative series truncated at various orders for

X = D and αF . (The truncated order is denoted as n.) One can see that the

truncated perturbative series gradually approaches to XUV for n . n∗ as we raise n.

For n & n∗ it starts to deviate from XUV.

The difference between Xn∗
and XUV is given by

Xn∗
(Q2)−XUV(Q

2) =
4π

β0

[

ReWX

(

e5/3Λ2
QCD

Q2

)

−
∑

0≤n<uIR

cn

(

e5/3ΛQCD

Q2

)n
]

+ Pr.

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αβ0
(τ)(−Ln∗) . (4.8)

For large n∗, this difference has a power behavior Λ2
QCD/Q

2 whose order is the same

as the renormalon uncertainty:28

Xn∗
(Q2)−XUV(Q

2) ∼ O((Λ2
QCD/Q

2)uIR) . (4.9)

More precisely, we can detect the n∗-dependence of Eq. (4.8) analytically as

Xn∗
(Q2)−XUV(Q

2) ∼ log n∗ ×
buIR

β0

(

e5/3Λ2
QCD

Q2

)uIR

, (4.10)

28 The difference Eq. (4.8) can contain a polynomial of log (Q2/Λ2
QCD), log log (Q

2/Λ2
QCD), · · · ,

as a factor in front of the (Λ2
QCD/Q

2)uIR -term. Therefore, strictly speaking, the difference is

o(Λ2
QCD/Q

2)uIR−δ with 0 < ∀δ ≤ 1.
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Figure 8. Difference between truncated perturbative series Xn∗
and XUV for the reduced

Adler function (left) and αF (right). The red (blue) lines correspond to the input αs(µ) =

0.1013 (0.0243). The truncation orders n∗ are shown in the plots. We set nf = 1.

where buIR
is an expansion coefficient of wX ; c.f., Eq. (2.12). (We give a derivation

in Appendix C.) In Fig. 8 we check Eqs. (4.9) and (4.10) numerically for X = D and

αF . We confirm the predicted behavior, although n∗ = 18 for αF is not large enough

to reach the asymptotic forms.

We can draw some conclusions from Eq. (4.9). First, it shows that the power be-

haviors in XUV are not a new contribution which should be added to the perturbative

prediction, rather they are already contained in the perturbative series. Secondly,

using Eq. (4.9) and the assumption of the renormalon uncertainty, we can extract

the following relation between XUV and the true value X(Q2):

X(Q2)−XUV(Q
2) =

[

X(Q2)−Xn∗
(Q2)

]

+
[

Xn∗
(Q2)−XUV(Q

2)
]

∼ O((Λ2
QCD/Q

2)uIR) . (4.11)

This result is consistent with the interpretation that XUV(Q
2) is the leading order

contribution to X(Q2) in the OPE framework and the deviation from X(Q2) starts

from the next-to-leading order in OPE and has the same order of magnitude as the

non-perturbative matrix element of the order of (Λ2
QCD/Q

2)uIR .

We end this section with comparisons between the known exact perturbative

series and those obtained under the large-β0 approximation to make sure how far we

can trust the result based on the large-β0 approximation. Figs. 9 and 10 show that

the large-β0 approximation reproduces qualitatively the same behavior of the exact

series of D(Q2) [31, 32] and αF (1/r
2) [22–24] 29. Therefore we expect that the results

in this paper (especially Fig. 7) grasp an essential feature of QCD.

29 There is an IR divergence in the exact series of αF from the three-loop order, and the divergence

cancels with contributions from the ultra-soft scale. We do not include the contribution of the ultra-
soft scale because this contribution cannot be regarded as a part of the Wilson coefficient. Instead,
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Figure 9. Perturbative series of D(Q2): exact result for the non-singlet component (left)

and large-β0 approximation (right). NkLO line represents the sum of the series up to

O(αk+1
s ). The input is taken as αs(µ) = 0.2, and we set nf = 1.

Figure 10. Perturbative series of αF (1/r
2). The parameters are the same as those of

Fig.9.

5 Example of timelike quantity: R-ratio in e+e− collision

So far we have considered Euclidean quantities. In this section we investigate how

our method can be extended to the case of the R-ratio in e+e− collision as an example

of a timelike quantity. We obtain a result which can be regarded as an extension of

the massive gluon scheme.

In calculating the R-ratio, we set Q2 < 0 (i.e. q2 > 0) and take the imaginary

part of Π(Q2) according to the optical theorem. The difference from Euclidean

we simply subtract the term proportional to (1/ǫ + 4(2 log(µ/p) + log(4π) − γE)) in momentum
space in dimensional regularization.
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quantities is that we do not have a one-dimensional integral representation of the R-

ratio in the form of Eq. (2.4). Thus, we cannot directly apply the method developed

for Euclidean quantities in Sec. 2, and a reconsideration is needed. Our strategy is

to start from a Euclidean quantity and to use the analytic continuation to derive the

result for the R-ratio.

We consider the reduced vacuum polarization and reduced R-ratio, in which

αs-independent terms are subtracted. Let us start from the reduced vacuum polar-

ization30 in the Euclid region Q2 > 0 with an IR cutoff scale,

Πβ0
(Q2;µf) =

∫ ∞

µ2
f

[

dτ

2πτ

]

r

wΠ

(

τ

Q2

)

αβ0
(τ) , (5.1)

where we denote by [dτ/(2πτ)]r a regularized integral measure which makes the

integral UV finite. We do not need to specify a way of regularization since the

R-ratio, which we are interested in, is finite, and thus the final result should be

independent of the regularization method. The weight is given as [9]

wΠ(x) = w1(x)θ(1− x) + w2(x)θ(x− 1) (5.2)

with

w1(x) = A
[

2(1− log x)x+ (5− 3 log x)x2 + 2(1 + x)2{Li2(−x) + log x log (1 + x)}
]

,

(5.3)

w2(x) = A
[

5 + 3 log x+ 2(1 + log x)x+ 2(1 + x)2{Li2(−x−1)− log x log (1 + x−1)}
]

,

(5.4)

where A = −NCCF/(12π
2). The small-x and large-x behaviors of wΠ(x) are given,

respectively, by

wΠ(x) = A

[

3

2
x2 − 11− 6 log x

9
x3 + . . .

]

(x≪ 1) , (5.5)

wΠ(x) = A

[

3

2
− 11 + 6 log x

9

1

x
+ . . .

]

(x≫ 1). (5.6)

We can see that the first IR renormalon is located at u = 2 for the reduced vacuum

polarization. The constant c∞ ≡ 3A/2 in Eq. (5.6) stems from the UV renormalon

at u = 0, which is the source of the UV divergence of the integral (5.1). As shown in

Eqs. (5.3) and (5.4), wΠ has different analytic forms for x < 1 and x > 1, hence, we

separate the integral path at τ = Q2 in order to represent Eq. (5.1) as an analytic

30 Note that we define the reduced vacuum polarization (5.1) such that its perturbative expansion

does not contain the α0
s-part

NC

12π2 (log (Q
2/µ2) + C), which is included in the renormalized Π(Q2)

of Eq. (2.34). Correspondingly, the reduced R-ratio is different by NCe
2
q for each quark flavor

compared with the R-ratio.
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function of Q2:

Πβ0
(Q2;µf) =

∫ Q2

µ2
f

dτ

2πτ
w1

(

τ

Q2

)

αβ0
(τ) +

∫ ∞

Q2

dτ

2πτ

[

w2

(

τ

Q2

)

− c∞

]

αβ0
(τ)

+

∫ ∞

Q2

[

dτ

2πτ

]

r

c∞ αβ0
(τ) . (5.7)

We also separate the divergent part which needs a regularization.

Now we replace Q2 → |Q2|eiπ in Eq. (5.7) and derive an expression for the

timelike region. The integral path of the first term in Eq. (5.7) can be deformed

after replacing Q2 → |Q2|eiπ as

∫ Q2

µ2
f

dτ

2πτ
w1

(

τ

Q2

)

αβ0
(τ)→

∫ −|Q2|

0

dτ

2πτ
w1

(

τ

|Q2|e
−iπ

)

αβ0
(τ)

−
∫

Cb

dτ

2πτ
w1

(

τ

|Q2|e
−iπ

)

αβ0
(τ). (5.8)

×
µ2
f Q2|Q2|eiπ

e5/3Λ2
QCD

τ

→
×|Q2|eiπ −

×
Cb

The second term in Eq. (5.7) changes as

∫ ∞

Q2

dτ

2πτ

[

w2

(

τ

Q2

)

− c∞

]

αβ0
(τ)→

∫ −∞

−|Q2|

dτ

2πτ

[

w2

(

τ

|Q2|e
−iπ

)

− c∞

]

αβ0
(τ),

(5.9)

×

τ
→

×

where the end point of the integral path is changed from ∞ to −∞ using the fact

that the contribution from CR [defined in Eq. (2.74)] vanishes as R→∞. The third

term becomes

∫ ∞

Q2

[

dτ

2πτ

]

r

c∞ αβ0
(τ)→ −

∫ −|Q2|

0

[

dτ

2πτ

]

r

c∞αβ0
(τ) +

∫

Ca

[

dτ

2πτ

]

r

c∞αβ0
(τ).

(5.10)

×

τ
→ −

×
+

×
Ca
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Collecting these terms, we obtain an expression for the reduced vacuum polarization

in the timelike region:

Πβ0
(|Q2|eiπ;µf) =

∫ ∞

0

dτ

2πτ

[

wΠ

(

τ

q2

)

− c∞

]

αβ0
(−τ + i0)

+

∫

Ca

[

dτ

2πτ

]

r

c∞αβ0
(τ)−

∫

Cb

dτ

2πτ
w1

(

τ

q2
e−iπ

)

αβ0
(τ). (5.11)

By taking the imaginary part, we obtain the reduced R-ratio:

Rβ0
(q2;µf) = 12π

(

∑

q

e2q

)

ImΠβ0
(|Q2|eiπ;µf). (5.12)

Setting
∑

q e
2
q = 1 for simplicity, we have

Rβ0
(q2;µf) =

∫ ∞

0

dτ

πτ
WR+

(

τ

q2

)

Imαβ0
(−τ + i0)− Im

∫

Cb

dτ

πτ
WR

(

τ

q2

)

αβ0
(τ).

(5.13)

We regard WR and WR+ as pre-weights (although we do not have a weight), which

are defined as

WR(z) = 6π{w1(ze
−iπ)− c∞} (|z| < 1) , (5.14)

WR+(z) = 6π{wΠ(z)− c∞} . (5.15)

In taking the imaginary part of the second term of Eq. (5.11) to obtain Eq. (5.13),

we used

2 Im

∫

Ca

[

dτ

2πτ

]

r

c∞αβ0
(τ) = Im

∫

Cb

dτ

πτ
c∞αβ0

(τ) , (5.16)

since the imaginary part of the integrand is zero on the positive real axis. The way

to evaluate the second term of Eq. (5.13), i.e., the integral along Cb, is no longer

different from the case of Euclidean quantities (see the discussion in Sec. 2.2). The

expansion of WR(z) in z reads

WR(z) = NCCF

[

3

4π
− 3

4π
z2 +

11− 6 log z + 6iπ

18π
z3 + . . .

]

. (5.17)

As a result, we can separate the µf -dependence of Eq. (5.13) and obtain a µf -

independent part RUV as

Rβ0
(q2;µf) = RUV(q

2) +O(µ6
f/q

6) , (5.18)

where

RUV(q
2) = R0(q

2)− 3NCCF

β0

e10/3Λ4
QCD

q4
, (5.19)
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Figure 11. RUV [Eq. (5.19)], R0 [Eq. (5.20)] and the Λ4
QCD/q

4-term [Eq. (5.19)] as func-

tions of Λ2
QCD/q

2.

R0(q
2) =

∫ ∞

0

dτ

πτ
WR+

(

τ

q2

)

Imαβ0
(−τ + i0) +

3NCCF

β0
. (5.20)

The µf -dependence appears first at order 1/q
6. In fact, the first IR renormalon of the

reduced R-ratio is known to be located at uIR = 3. Therefore the result is consistent

with Eq. (2.22). However, note that the absence of u = 2 renormalon is considered to

be an artifact of the large-β0 approximation, and there is a possibility that the result

[Eqs. (5.18)–(5.20)] is not based on a good approximation of the exact perturbative

series. Hence, we are cautious in applying our formulation to serious studies of the

R-ratio at the current stage. Even in such a case, nevertheless, we can still learn

some lessons from the above result.

First, the 1/q2-term is absent in Eq. (5.19) due to the vanishing z1-term in

Eq. (5.17).31 As a result, we obtain a very different behavior of the reduced R-ratio

from those of the reduced Adler function and αF , as seen in Figs. 2, 3 and 11. This

fact serves as an evidence that the power corrections indeed play an important role

in the determination of the behavior of a physical quantity and understanding of it.

Secondly, our formulation in this section has common features to those of the

Euclidean observables in the massive gluon scheme. Let us clarify this point. RUV

and R0 [Eq. (5.19) and (5.20)] have the same expressions as those of a Euclidean

observable obtained in the massive gluon scheme [Eqs. (2.24) and (2.30)]. In addition,

WR+ defined in Eq. (5.15) can be regarded to be “constructed by massive gluon

scheme.” To justify this statement, we can use Eq. (2.88), which is satisfied by WX+

in the massive gluon scheme. We regard it as an abstract property of the massive

gluon scheme, since this relation can be checked as long as the observable has Borel

transformation. The Borel transformation of the (reduced) R-ratio is known and

31As discussed below Eq. (5.22), the absence of z1-term stems from BR(1) = 0, which stems from

the absence of a u = 1 renormalon in the reduced Adler function.
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given in appendix A. We can show that WR+ satisfies the same relation as Eq. (2.88):
∫ ∞

0

dz

2π
WR+(z)z

−u−1 = 6π

∫ ∞

0

dz

2π
(wΠ(z)− c∞)z−u−1

= 6π

∫ ∞

0

dz

2π
wΠ(z)z

−u−1

= 6πBΠ(u)|Q2>0

= −6π 1

sin (πu)
BImΠ(u)|q2>0

= − 1

2 sin(πu)
BR(u), (5.21)

where32 we use the relation between the Borel transformations with opposite signs of

Q2 (or q2) [1, 33] and Eq. (5.12). Similarly, we confirm that WR defined in Eq. (5.14)

is consistent with the massive gluon scheme, since the expansion of WR is correctly

reproduced from the relation

CR(v) = −
e−iπv

2 sin (πv)
BR(v) (5.22)

and the inverted formula (2.87), which are also obtained in the case of the massive

gluon scheme.33 Namely, our formulation used here can be regarded as a natural

extension of the massive gluon scheme developed in Sec. 2 to the timelike quantity.

Thus, our formulation for the R-ratio derived by analytic continuation is an

extension of the massive gluon scheme. This is natural if one recalls the discussion

in Sec. 2.6 that the massive gluon scheme is unique with respect to the analyticity

of an observable. Namely, if we adopt a formulation which has a good property in

terms of analyticity, the same result is likely to be obtained.

6 Conclusions and discussion

In this paper we proposed a method to extract a cutoff-independent UV contribution

XUV from a general observable X(Q2) with an explicit IR cutoff, which is free from

IR renormalon ambiguities. Our method can be applied in the deep Euclidean region

(Q2 ≫ Λ2
QCD) and in the large-β0 approximation of perturbative series to all orders.

The UV contribution XUV consists of the non-powerlike (logarithmic) term X0 and

the power correction terms ∼ (Λ2
QCD/Q

2)n.

In our method we introduce an analytic functionWX , which we call “pre-weight,”

for the systematic treatment of various observables. General properties of the pre-

weight, such as its scheme dependence, were investigated. Separation of XUV into

32 The integral of (wΠ(z)− c∞)z−u−1 has the same form as that of wΠ(z)z
−u−1 as a function of

u by analytic continuation.
33 In Ref.[11], the functions WR and WR+ were obtained by the massive gluon method directly.

Our method can be used to circumvent complicated calculations.
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X0 and the power corrections (in particular the coefficients of the power corrections)

depends on the scheme choice. Among various schemes, the “massive gluon scheme,”

in which WX is given by a dispersive integral, has particularly good analytical prop-

erties: (1) The analyticity of XUV satisfies physical requirements within perturbative

QCD; (2) Origins of the power corrections can be analyzed accurately using the

integration-by-regions method. We showed that the feature (1) is satisfied optimally

in the massive gluon scheme. We also find that the analyticity of XUV and a unique

scheme choice follow simultaneously if the pre-weight satisfies certain good analytical

properties in the upper half-plane.

We can use the integration-by-regions method to elucidate the relation between

our formulation and OPE. Using this relation we showed that XUV coincides with

the leading Wilson coefficient in the explicit examples considered. Thus, we can sys-

tematically subtract IR renormalons from the leading Wilson coefficient in a cutoff-

independent way. Furthermore, we used the integration-by-regions method to clarify

that the leading power corrections in XUV indeed originate from UV regions.

As applications of our method, we investigated the Adler function and the force

between a static quark-antiquark pair. For each observable, there is a nontrivial

power correction in XUV, which originates from UV region. In the context of OPE,

this power correction is a part of the Wilson coefficient of the leading identity op-

erator, and it is consistent with the structure of OPE. Comparison with the exact

perturbative series indicates that the large-β0 approximation is fairly good, hence,

it is natural to regard that the power correction (in the massive gluon scheme) is

inherent in the perturbative series or the UV contribution.

By now there exist ample numerical evidences for validity of the large-β0 approx-

imation and IR renormalon dominance hypothesis. Apart from these assumptions,

we tried to avoid including ad hoc assumptions into our method. Thus, we believe

that we provide a firm connection between the OPE framework and our method for

subtracting IR renormalons from Wilson coefficients. Moreover, we consider that our

method (in particular in the massive gluon scheme) would be an optimal one within

the OPE framework, with respect to systematicity, analyticity, and insensitivity to

the factorization scale (IR cutoff scale).

There remain two directions toward generalization of our method: one is to

extend it to timelike quantities and the other is to go beyond the large-β0 approxi-

mation. For the former, we presented an example (R-ratio) but the generalization is

left to be done. We do not have a clear guide to the latter, since the improvement

of the large-β0 approximation in the ordinary perturbation theory is still incomplete

and we need a control up to any order in αs. We speculate that the method of

integration by regions may play a key role to achieve the generalization since the

method enables more complicated scale separation than the single scale separation

which we adopted in this paper. In addition, we note that a systematic improvement

beyond the large-β0 approximation has been achieved for the static QCD potential
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and better consistency with OPE has been observed [15, 34], using the fact that the

pre-weight takes a simple form to all orders in αs.
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Appendices

A Borel tranformations

We list formulas for the Borel transformations in the large-β0 approximation of the

dimensionless observables analyzed in this paper (reduced Adler function, F -scheme

coupling defined from the static QCD force, and R-ratio).

BD(u) =
8NCCF

3π

1

2− u

∞
∑

k=2

(−1)kk
(k2 − (1− u)2)2

, [35] (A.1)

BαF
(u) =

sin (πu)

πu
Γ(2− 2u) , (A.2)

BR(u) =
sin(πu)

πu
BD(u) . [1] (A.3)

B Pre-weight of Adler function

Another expression of the pre-weight of the reduced Adler function in the massive

gluon scheme is given by

W
(m)
D+ (z) = W

(m)
D (−z)

=
NCCF

36π(z + 1)

[

−48z3Li2(1− z) + 48z3Li2(−z) + 24z3Li2

(

1

z + 1

)

− 24z3Li3

(

1− 1

z

)

− 72z3Li3(1− z) + 24z3Li3(−z)− 48z3Li3

(

1

z + 1

)

+ 24z3Li2(1− z) log(z)

− 48z3Li2(1− z) log(z + 1)− 12z2Li2

(

1− 1

z

)

+ 36z2Li2(1− z)− 48z2Li2

(

1

z + 1

)

− 24z2Li2
(

1− z2
)

− 24zLi3
(

1− z2
)

+ 24z3Li2
(

1− z2
)

+ 24z3Li3
(

1− z2
)

− 36zLi2(−z) + 24zLi2

(

1

z + 1

)

+ 24zLi3

(

1− 1

z

)

+ 72zLi3(1− z)− 24zLi3(−z)

+ 48zLi3

(

1

z + 1

)

+ 12Li2

(

1− 1

z

)

+ 12Li2(1− z) + 12Li2(−z)− 24zLi2(1− z) log(z)

+ 48zLi2(1− z) log(z + 1) + 24z3ζ(3) + 4π2z3 + 4z3 log3(z) + 8z3 log3(z + 1)

+ 12z3 log2(z) + 12z3 log2(z + 1)− 42z3 log(z) + 24z3 log(z) log(z + 1)− 4π2z3 log(z + 1)

+ 42z3 log(z + 1) + 8π2z2 − 66z2 + 6z2 log2(z)− 24z2 log2(z + 1)− 42z2 log(z)

+ 66z2 log(z + 1)− 24zζ(3)− 4π2z − 57z − 4z log3(z)− 8z log3(z + 1) + 12z log2(z + 1)

+ 6 log2(z)− 24z log(z) log(z + 1) + 4π2z log(z + 1) + 6z log(z + 1)− 18 log(z + 1) + 9

]

.

(B.1)
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This expression is suited for verifying its analytical properties, such as, that W
(m)
D (z)

has a branch cut along the positive real axis from z = 0, and that W
(m)
D+ (z) takes a

real value for z > 0. (Note that the polylogarithm Lin(z) for n ≥ 2 has a branch cut

along the positive real axis from z = 1. In the above expression the arguments of

Lin are less than or equal to one for z ≥ 0.)

C Evaluation of Xn∗
(Q2)−XUV(Q

2)

We examine the principal value integral appearing in Xn∗
(Q2)−XUV(Q

2) (the second

term of Eq. (4.8)) for large-n∗.

Pr.

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αβ0
(τ)Ln∗ (C.1)

Write L of Eq. (4.3) as a function of n∗

L(Λ̃2/τ) =
β0αs

4π
(log(µ2/Λ2

QCD) + log(e5/3Λ2
QCD/τ)) = 1 +

uIR

n∗
log(Λ̃2/τ) , (C.2)

where Λ̃2 ≡ e5/3Λ2
QCD, then we get

L(Λ̃2/τ)n∗ →
(

Λ̃2

τ

)uIR

as n∗ →∞ . (C.3)

If we use this form, the integral (C.1) does not converge around the region τ ∼ 0

due to the behavior wX(τ/Q
2) = buIR

(τ/Q2)uIR + . . . . Therefore we should calculate

keeping n∗ finite for this part. It is useful to factorize the integral as follows:

Pr.

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αβ0
(τ)L(Λ̃2/τ)n∗

= Pr.

∫ ∞

0

dx

2πx

[

wX

(

Λ̃2

Q2
x

)

− buIR

(

Λ̃2

Q2
x

)uIR

θ(1− x)

]

4π

β0

1

log x
L(1/x)n∗

+ Pr.

∫ ∞

0

dx

2πx
buIR

(

Λ̃2

Q2
x

)uIR

θ(1− x)
4π

β0

1

log x
L(1/x)n∗ (C.4)

The second term of Eq. (C.4) is separated as

Pr.

∫ ∞

0

dx

2πx
buIR

(

Λ̃2

Q2
x

)uIR

θ(1− x)
4π

β0

1

log x
{L(1/x)n∗ − 1}

+ Pr.

∫ ∞

0

dx

2πx
buIR

(

Λ̃2

Q2
x

)uIR

θ(1− x)
4π

β0

1

log x

≡ 4π

β0
buIR

(

Λ̃2

Q2

)uIR

F (n∗) + Pr.

∫ ∞

0

dx

2πx
buIR

(

Λ̃2

Q2
x

)uIR

θ(1− x)
4π

β0

1

log x
(C.5)
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Substituting this into Eq. (C.4), we obtain

Pr.

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αβ0
(τ)Ln∗

≃ 4πbuIR

β0

(

Λ̃2

Q2

)uIR

F (n∗)

+ Pr.

∫ ∞

0

dx

2πx

{

wX

(

Λ̃2

Q2
x

)

− buIR

(

Λ̃2

Q2
x

)uIR

(1− xuIR)θ(1− x)

}

4π

β0

1

log x

(

1

x

)uIR

,

(C.6)

where we used the limit (C.3) for the second term. One can show that the second

term of Eq. (C.6) is o((Λ2
QCD/Q

2)uIR−δ) (see the footnote of § 4) although it is fairly

complicated. F (n∗) behaves for large-n∗ as

F (n∗) =

∫ 1

0

dx

2πx
xuIR

1

log x

[{

1 +
uIR

n∗
log

(

1

x

)}n∗

− 1

]

= −
∫ ∞

0

dt

2π

e−t

t

[(

1 +
t

n∗

)n∗

− 1

]

= − 1

4π
(log n∗ + log 2 + γE) +O

(

1√
n∗

)

, (C.7)

which gives the result Eq. (4.10).

D Asymptotic expansion of X0(Q
2)

We sketch how to derive the relation (2.70). Similarly to Eqs. (4.2)–(4.7), we can

rewrite the truncated series Xn as follows.

Xn(Q
2) =

n−1
∑

k=0

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αk+1
s ℓk

=

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αs
1− (αsℓ)

n

1− αsℓ

= Im

∫ ∞

0

dτ

πτ
WX

(

τ

Q2

)

αs
1− (αsℓ)

n

1− αsℓ

= Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αs

1− αsℓ
− Im

∫

Ca

dτ

πτ
WX

(

τ

Q2

)

αn+1
s ℓn

1− αsℓ
,

(D.1)

where αs = αs(µ), and

ℓ =
β0

4π
log (e5/3µ2/τ) . (D.2)
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In the first term of Eq. (D.1), we can rewrite αs/(1 − αsℓ) = αβ0
(τ). In the second

term, we can deform the integral path back to the positive real axis and rewrite

αn+1
s ℓn

1− αsℓ
→ Pr.

αn+1
s ℓn

1− αsℓ
+

4πi

β0
πτδ(τ − e5/3Λ2

QCD) , (D.3)

where Pr. denotes the principal value.

Therefore, the difference between X0(Q
2), given by Eq. (2.25), and Xn(Q

2) can

be written as

X0(Q
2)−Xn(Q

2) =
4π

β0

[

c0 − ReWX

(

e5/3Λ2
QCD

Q2

)]

+Pr.

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αn+1
s ℓn

1− αsℓ
.

(D.4)

The first term is O(Λ2
QCD/Q

2). This follows from WX(z) =
∑

n cnz
n and Im c0 =

wX(0) = 0. Hence, the first term is smaller than O(αs(µ)
k) for an arbitrary positive

integer k (or it is zero in expansion in αs(µ)). It remains to show that

Pr.

∫ ∞

0

dτ

2πτ
wX

(

τ

Q2

)

αn+1
s ℓn

1− αsℓ
= O(αs(µ)

n+1) . (D.5)

It can be shown that the left-hand side is O(αs(µ)
n+1) in the case that

∫ t dx
x
wX(x)×

[Polynomial of log x] is absolutely convergent as t→∞, and that the first IR renor-

malon is a single pole. (Although the QCD potential does not satisfy the first con-

dition, we can show Eq. (D.5) in another way.) It is valid for general µ, and in

particular if we set µ = Q, we obtain the relation (2.70).
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