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cTheoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay

Institutes, Pleinlaan 2, B-1050 Brussels, Belgium
dInstitute of Theoretical Physics, Faculty of Physics, University of Warsaw ul. Pasteura 5, PL-

02-093 Warsaw, Poland
eRaymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv

69978, Israel
fDepartment of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001,

Israel
gInstitute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,

Engesserstraße 7, D-76128 Karlsruhe, Germany

Abstract: We investigate the general structure of mirror symmetry breaking in the Twin

Higgs scenario. We show, using the IR effective theory, that a significant gain in fine

tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly

coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV

completions and present a simple Twin SUSY model with a tuning of around 10% and

colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY

models are discussed with a focus on the extended Higgs sectors.
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1 Introduction

Supersymmetry (SUSY) and Compositeness are the leading new physics (NP) candidates

to solve the hierarchy problem of the Standard Model (SM). However, the null results of

the LHC searches for new colored particles already put these ideas under pressure. While

it is plausible that one of these theories indeed solves the big hierarchy problem, it is not

easy to see how one can avoid the little hierarchy problem, i.e. the mismatch between

the electroweak (EW) scale and the scale of top-partners. It is certainly possible that this

residual hierarchy is not resolved in nature, and naturalness might not be the only criterion

for physics beyond the SM (BSM). Nevertheless, it is interesting to explore alternatives

that can solve the little hierarchy problem and circumvent the LHC bounds.
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The Neutral Naturalness (NN) paradigm is an attractive idea in this context. It

provides a scenario where the top partners are charged under an SU(3) group that is

different from the SM color group. As a consequence they can be as light as required

by naturalness while evading LHC bounds, because of reduced production cross sections

compared to the usual colored top-partners. Known realizations of NN include models

where the top partners are fermions (twin tops [1]) and models where they are bosons (e.g.

the folded stops in the Folded SUSY model [2]).

Our work focuses on the Twin Higgs scenario, in which the SM Higgs is a pseudo-

Goldstone boson (PGB) of an accidental SU(4) symmetry emerging from a Z2 symmetry

that exchanges the SM with a mirror SM.1 Generalizations of the Twin Higgs mechanism

that involves more general discrete symmetries [7–9] also share some basic features with

the simplest model.

In spite of its simplicity, the Twin Higgs introduces important theoretical challenges

that we try to address in this paper. The first one has to do with the actual gain in

fine tuning (FT) of this setup. Even though the Twin Higgs was originally suggested to

ameliorate the little hierarchy problem, all its known realizations feature an upper bound

on their parametric gain in FT with respect to colored naturalness models. This gain

cannot be more than λ/λSM, where λ is a perturbative SU(4)-symmetric Higgs quartic

coupling and λSM is the quartic coupling of the SM potential (see for example Ref. [10]

for a discussion of this bound). A similar bound has been observed in double protection

models, not necessarily related to the NN proposal [11–17].

The second theoretical challenge concerns the fact that any NN construction only

solves the little hierarchy problem. Above the scale of SU(4) symmetry breaking the Twin

Higgs models should be embedded into a framework that solves the big hierarchy problem.

Embeddings in SUSY [18–20] and in Composite Higgs [4–6] feature the parametric gain

in FT we described above. In SUSY UV completions, λ/λSM is severely constrained by

the perturbativity bound on λ [20]. This bound can be relaxed in Composite Twin Higgs

scenarios. The latter, however, are far from achieving λ ∼ 4π [10, 21].

The mirror symmetry in the Higgs potential can be softly-broken by a mass term and/or

hardly-broken by a quartic coupling. In this paper we give a systematic overview of these

breaking patterns and discuss their relations to the FT.2 The main result of our analysis

is that the above mentioned parametric bound on the FT improvement is not a generic

feature of the Twin Higgs construction but rather an artifact of the soft mirror-symmetry

breaking. This bound can be circumvented if the breaking is dominantly hard, which is

however difficult to realize in composite UV completions of the Twin Higgs and therefore

has been mostly disregarded in the literature (notable exceptions are the models presented

in [19, 25]).

We present viable UV completions of the Twin Higgs in Supersymmetry, where both

1Having in mind perturbative UV completions of the Twin Higgs, the SU(4) accidental symmetry is

automatically enhanced to SO(8) and we do not need to distinguish between the two symmetry groups. We

refer to [3–6] for a careful discussion of the importance of this difference in strongly coupled UV completions.
2A viable spontaneous Z2-breaking necessarily requires extra non-decoupled Higgses and will not be

discussed in this paper, see however Refs. [22–24].
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hard and soft breaking of the mirror symmetry can be easily achieved, and study their

LHC phenomenology. We show that the FT gain of hard Z2-breaking models is substantial

and only limited by the Higgs mass constraint.

Our paper is structured as follows. We review the Twin Higgs mechanism with an

emphasis on its symmetries and the FT gain in Sec. 2, where we work exclusively in the

Twin Higgs IR effective theory and do not ask any questions about possible UV completions.

We reproduce the bound on the FT for soft Z2-breaking and show how this bound can be

relaxed by adding hard Z2-breaking. We analyze in detail the parameter space of the IR

effective theory, emphasize the role of the SM-like Higgs mass constraint, and discuss how

this requirement determines the final gain in FT of hard Z2-breaking vs soft Z2-breaking.

In Sec. 3 we discuss SUSY UV completions of the Twin Higgs. First, we review the

SUSY Twin Higgs with soft Z2-breaking focusing on the simplest scenario of Ref. [20]. We

explore the parameter space of this model showing that its FT gain scales as λ/λSM and

the effective SU(4)-invariant quartic λ is far from being maximized. Second, we construct

SUSY Twin Higgs models with hard Z2-breaking. The minimal model fails to decouple the

colored states due the Higgs mass constraint. We show that in next to minimal realizations

we can comply with such a constraint, decouple the colored states and achieve a FT of

around 10%, a factor of about 5 better than in the soft Z2-breaking scenario.

In Sec. 4 we present a phenomenological analysis restricted to the extended Higgs

sectors of Twin SUSY theories. We leave for future investigations an analysis including the

full matter sector, which can lead to many other interesting signatures both at the LHC

and in cosmological observables (see e.g. Ref. [26–30] for further LHC studies and [31–

36] for the exploration of viable cosmological scenarios). The best probes of Twin SUSY

constructions are certainly direct searches of the Twin Higgs, which looks very much like

a singlet mixing with the SM Higgs [37–41] and for this reason can be hunted for in direct

searches of a resonance decaying into di-bosons. Such searches are always better suited

for weakly coupled UV completions of the Twin Higgs rather than indirect searches from

Higgs coupling measurements. We also find that if the twin Higgs becomes too heavy to

be abundantly produced at the LHC, the MSSM-like Higgses become sensibly lighter than

their mirror states. In this case we can hunt for them in direct searches for MSSM Higgses

in the low tanβ region [42], via their indirect effects on SM Higgs couplings and on the

b→ sγ transition rate [43].

Sec. 5 is devoted to our conclusions and future directions. The technical details, such

as RGE formulae, detailed calculations of the Higgs mass spectrum and branching ratios

are relegated to appendices.

2 EWSB and fine tuning in Twin Higgs Models

In this section we discuss the general structure of the Twin Higgs potential, and study the

fine tuning associated to soft and hard Z2-breaking. We suggest that the hard breaking

can lead to a substantial improvement in FT.
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2.1 Setup

The basic idea of the Twin Higgs mechanism is that the SM-like Higgs is light compared

to the new physics scale, because it is a pseudo-Goldstone boson (PGB) of an approximate

global SU(4) symmetry, spontaneously broken down to SU(3). This SU(4) is merely an

accidental symmetry that holds at one-loop at the level of quadratic terms, as a result of

a Z2 mirror symmetry between the SM and the “twin” sector. As we will see later, this

Z2 has to be broken explicitly in the Higgs potential, in order to allow for a realistic Higgs

sector. By construction the Twin Higgs model is an effective theory that can resolve the

hierarchy problem only up to a scale of around ∼ 5 TeV. Above this scale it should be

UV-completed by a theory which solves the big hierarchy problem.

The gauge group of the Twin Higgs is extended to two copies of the SM, which we

denote by GA and GB, where here and in the following A refers to the visible sector and

B to the twin sector. The Higgs sector of the original Twin Higgs model [1] consists of

two copies of the SM Higgs potential, with two Higgs doublets HA and HB transforming

under GA and GB respectively. The full matter content of the SM is also doubled in

the A and B sector. However, for the purpose of analyzing the FT, we focus on the top

quarks and their twin partners that have the largest couplings to the Higgs sector, in the

spirit of Ref. [26]. Although the contribution of the gauge sector to the little hierarchy

problem is not negligible numerically, we do not address it explicitly, since the discussion

closely follows the one of the top sector. We also assume for simplicity a perfect mirror

Z2 symmetry between the visible and the twin sector, which we break explicitly only in

the Higgs sector. In agreement with the original model we imagine that the low energy

effective theory has no light states that carry both visible and mirror quantum numbers.3

Let us now write down the most general renormalizable Higgs potential for the visible

and the twin Higgs:

V = λ(|HA|2 + |HB|2)2 +m2(|HA|2 + |HB|2)+κ(|HA|4 + |HB|4)+ µ̃2|HA|2 +ρ|HA|4 . (2.1)

Other terms one might be tempted to write down lead to an equivalent potential up to

redefinitions of the existing couplings. We now analyze this potential dividing all the terms

into three different categories: SU(4)-preserving, SU(4)-breaking but Z2-preserving, and

Z2-breaking.

1. SU(4)-preserving terms. These are the first two in the potential, to λ and m2. If

m2 < 0 and λ > 0, the global SU(4) symmetry is spontaneously broken down to

SU(3). We denote the scale of the SU(4) breaking by f , and consequently f2 ≡
v2
A + v2

B. If we disregard the rest of the potential, after the breaking of the SU(4)

global symmetry down to SU(3) we get one real scalar (the so-called radial mode or

the “twin Higgs”) with mass mhT = 2
√
λf and seven Goldstone bosons. After we

gauge the SU(2)×SU(2) subgroup of the SU(4), and identify it with the visible and

3States carrying both GA and GB quantum numbers can be present in other implementations of the

Twin Higgs mechanism, for example if SU(3)A × SU(3)B is embedded in SU(6) [1, 4]. See Ref. [30] for a

discussion of the phenomenology of these states.
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dark4 EW gauge groups, 6 of the Goldstone bosons are “eaten” by the visible and

the mirror W and Z-bosons, while the remaining one is identified with the SM Higgs

boson.

2. SU(4)-breaking but Z2-preserving. This is the term proportional to κ. If this co-

efficient is smaller than zero, the mirror symmetry is spontaneously broken in the

vacuum, and only one of the Higgses, either HA or HB, gets a VEV. This possibil-

ity does not lead to a viable phenomenology in our setup and we will not discuss it

further (see however Ref. [22]). Instead, if κ is larger than zero, the Z2 symmetry is

preserved by the vacuum, and HA and HB get equal VEVs vA = vB = f/
√

2. We

further consider 0 < κ � λ, such that the SU(4)-breaking term gives a sub-leading

contribution to the mass of the radial mode, but generates a small SM-like Higgs

mass mh =
√

2κf . The hierarchy between the two quartics in the potential is tech-

nically natural and so is the hierarchy between the radial mode and the SM Higgs,

because the latter is a PGB in the limit κ� λ. The main problem with the model at

the present stage is the unbroken Z2 symmetry which implies that the SM Higgs is

an equal superposition of the visible and the mirror Higgs and it couples with equal

strength to the mirror and the visible gauge bosons and matter. The couplings of the

SM-like Higgs to the visible gauge bosons and fermions would be then reduced by

a factor 1/
√

2. This scenario is excluded both by LEP EWPM and the LHC Higgs

coupling measurements. Therefore we must include also explicit Z2-breaking terms.

3. Z2-breaking terms. There are two ways to break the mirror symmetry within a

renormalizable theory: via a relevant operator proportional to µ̃ in Eq. (2.1), or via

a marginal one - the ρ term. We define µ̃2 ≡ σf2 and work with the dimensionless

parameters σ and ρ, which are responsible for the Higgs VEV misalignment and the

mixing angle between the SM-like Higgs and the twin Higgs. Maximal mixing is

already excluded and the largest possible misalignment allowed by data translates

into the bound f/v & 2.3 or f & 400 GeV (see for example Ref. [37]).

2.2 Electroweak Symmetry Breaking and Radiative Corrections

In order to analyze EWSB and the Higgs mass in the Twin Higgs scenario it is instructive

to integrate out the heavy radial mode and switch to an effective Higgs theory, where we

can write the Higgs fields in a non-linear realization as

HA = f sin
φ√
2f
, HB = f cos

φ√
2f

. (2.2)

Hereafter we identify φ with the SM-like Higgs. It is straightforward to plug these expres-

sions into Eq. (2.1) and obtain the effective SM Higgs potential in the low energy effective

theory. Minimization of this potential with respect to φ yields the following expressions

4We use the words dark, twin, mirror interchangeably in this paper.
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Figure 1. The blue region inside the solid blue lines corresponds to the allowed parameter space

with f/v > 2.3 and mh = 125 GeV. The dashed (dotted) blue lines shows how the allowed region

shifts if one assumes mh = 120 GeV (mh = 130 GeV). The black lines correspond to the values of

κ. The non-viable region with negative κ is shaded in grey. The green/red star indicates the region

of hard/soft breaking.

for the VEV and the mass of the SM-like Higgs:5

2v2

f2
=

2κ− σ
2κ+ ρ

, (2.3)

m2
h = 4v2 (2κ+ ρ)

(
1− v2

f2

)
= 2f2 (2κ− σ)

(
1− v2

f2

)
. (2.4)

Most of previous work on Twin Higgs has concentrated on soft Z2-breaking, i.e σ � ρ. In

this paper we go further and consider hard Z2-breaking, i.e. the presence of a tree-level ρ,

such that ρ� σ. A hard breaking of the mirror symmetry was already introduced in some

specific Twin Higgs models (see for example Refs. [19, 25]). Note that, in models where

Z2-breaking effects are generated by loops of the matter/gauge sector, ρ is unavoidably

generated. In that case, however, it is typically smaller than σ.6 Here for the first time we

attempt to provide a systematic understanding of the breaking of Z2 mirror symmetry in

the Higgs sector from the EFT point of view.

5The same expressions can alternatively be obtained at the level of the linear sigma model (2.1) by

solving the EWSB conditions and expanding them at leading order in κ, σ � λ. We refer to Appendix B.1

for a discussion of the sub-leading corrections in this expansion.
6A notable example are models where the “twin” hypercharge U(1)B is ungauged [26] and Z2-breaking

effects are generated by U(1)A gauge loops. In this case σ ∼ g21/16π2 and ρ ∼ g41/16π2 and the latter can

safely be neglected.
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As a guideline for model building, it is very helpful to visualize the parameter space

of the Twin Higgs model when both soft and hard Z2-breaking terms are present. In

order to do this we solve the equations for the measured values of the Higgs mass (2.4)

and the VEV (2.3) and remain with only two free parameters,7 which we choose to be

the Z2-breaking ones, namely σ and ρ. The values of the Z2-preserving quartic κ and of

the SU(4)-breaking scale f are then fixed at each point in the (σ, ρ) plane. We show the

contours of κ and the region that satisfy the constraint f/v > 2.3 in Fig. 1. The first

striking message of this figure is that, given the values of the Higgs boson mass and the

electroweak VEV, the acceptable values of the Z2-odd parameters are confined to a narrow

band in the Z2-breaking parameter space. It is also instructive to consider the two limiting

cases of dominant soft and dominant hard Z2-breaking. The corresponding regions in the

parameter space are marked in Fig. 1 with red and green stars, respectively. The values

of κ in both regions can also be inferred from the figure: in the hard Z2-breaking region

κ is forced to be roughly a factor of 5 smaller than in the soft Z2-breaking region as a

consequence of the Higgs mass constraint.

Now we are ready to include the radiative corrections to the various parameters. These

are coming from top loops and EW gauge boson loops (we discuss only the former in detail)

but also from Higgs quartic loops, because the hard Z2-breaking quartic ρ reintroduces for

σ a quadratic sensitivity to the mass threshold at which Z2-breaking is generated.

For the radiative top corrections, we should a priori consider the contributions of both

visible and mirror tops and assume that the numerical value of the top-Higgs coupling in

the visible and the twin sector can be different from one another. However, as was already

pointed out in Ref. [26], the top Yukawas in the visible and the hidden sector should agree

to a level of better than 1% in order to avoid an unacceptable FT. To simplify our discussion

we enforce an exact Z2 symmetry between the top sectors (and the gauge sectors also).

The dominant radiative corrections to the dimensionless parameters read

∆κ =
3y4
t

16π2
log

Λ2
t

m2
tB

+
3λρ

32π2

(
log

Λ2
ρ

m2
hT

+ log
Λ2
ρ

m2
h

)
, (2.5)

∆ρ =
3y4
t

16π2
log

f2

v2
, (2.6)

∆σ =
3ρ

16π2

(
ε
Λ2
ρ

f2
+ 2λ log

Λ2
ρ

m2
h

)
, (2.7)

where we kept frozen the Higgs dependence in the logarithms and expanded to first order

in κ and v/f . The running top Yukawa coupling, yt, is evaluated at the UV cutoff scale

Λt, fixing the scheme dependence of our one-loop computation.

Several clarifications are in order. First, we introduced in these expressions two differ-

ent mass thresholds: Λt and Λρ, cutting-off the top loops and the Higgs loops respectively.

Loosely speaking, in a UV complete natural theory Λt will be identified with the mass scale

of new colored states, while the states associated with Λρ can be complete SM singlets.

7We use mh = 125 GeV and v = 174 GeV in all our calculations. Here we allow for a ±5 GeV Higgs

mass shift because we do not take into account higher order corrections.
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Figure 2. The blue contours indicates the irreducible contributions to the Higgs mass in the pure

soft breaking scenario (ρ0 = 0), coming from top loops normalized to mh = 125 GeV. The red

dashed contours indicate the irreducible contributions to the Higgs mass in the pure hard breaking

case (σ0 = 0), where we fix λ = 1, Λρ = 1 TeV and ε = +1 in Eqs. (2.5) and (2.7). The grey shaded

region at the left edge with f < 2.3 v is excluded by Higgs coupling measurements and the grey

region at the bottom right of the plot has Λt < λf .

While in strongly coupled UV completions it is hard to imagine a wide separation between

Λt and Λρ, in weakly coupled UV completions ( e.g. SUSY) there could be appreciable

differences between the two. Therefore, we keep track of these scales separately and we will

see in the concrete SUSY models of Sec. 3 that Λt and Λρ correspond to different SUSY

mass thresholds. Of course we should keep in mind that these scales cannot be arbitrarily

separated from one another, because of higher-order quantum corrections.

Second, in Eq. (2.7) we introduced a new parameter ε. This parameter stand for the

sign of the UV mass threshold corrections and a priori ε = ±1. Since one cannot calculate

the sign of these radiative corrections within the IR effective theory, we remain agnostic

and consider both positive and negative threshold corrections. As we will see in the next

section, within a full UV complete theory this sign is determined unambiguously.

Having at hand all the radiative contributions to ρ, κ and σ, we can estimate how

big are the radiative contributions to the Higgs mass. We concentrate on two extreme

cases: pure soft breaking, defined as ρ0 = 0, and pure hard breaking, defined as σ0 = 0.

From Eq. (2.4) we can infer that the radiative contributions to the Higgs mass squared,

up to O(v2/f2) corrections, are given by ∆m2
h = 4v2(2∆κ + ∆ρ). We show the size of

these corrections in Fig. 2. The first important conclusion that we draw from this figure

is that while radiative corrections contribute at least ∼ 60% of the Higgs mass for pure

soft Z2-breaking, the radiative corrections typically overshoot the Higgs mass for pure hard
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Z2-breaking , though not by orders of magnitude. In what follows we will see that in the

hard breaking case the FT ∆v/f can be ameliorated compared to the soft case at the price

of adjusting the Higgs mass (with either a large Λρ or a negative tree-level contribution to

κ).

2.3 Fine Tuning in the Low Energy Effective Theory and Beyond

We are now ready to discuss the FT quantitatively. For illustration purposes let us start

from the pure soft case, where the IR FT is well-known to scale as ∼ f2/v2. More precisely,

quantifying the fine-tuning à la Barbieri-Giudice [44], one gets

∆soft
v/f ≡

∣∣∣∣∂ log v2

∂ log σ

∣∣∣∣ =
f2 − 2v2

2v2
. (2.8)

This is only a part of the total fine-tuning that one can estimate in the IR effective theory.

On top of that one should also consider the fine-tuning of the scale f , which one can think

of as the inverse Fermi constant of the spontaneously broken SU(4), with respect to the

top cutoff scale Λt. Strictly speaking this fine-tuning should be computed in the full UV

theory, but one can get a reasonable estimate by analyzing the threshold corrections to the

scale f in the effective theory. These radiative corrections are given by

∆f2 =
1

32π2

(
3y2
t

λ
Λ2
t − 5 Λ2

λ

)
. (2.9)

We will see in the next section how this expression reproduces the dominant RGE effects

of the UV theory, once the “cut-off” scales are identified with physical mass thresholds.

A priori the sensitivities to the thresholds Λt and Λλ are equally dangerous and, unlike

in the SM, it is not clear that the dominant sensitivity comes from the tops rather than

the Higgses themselves. However, at the threshold Λλ we expect to find colorless particles

(singlet scalars and singlinos), which are weakly constrained by the LHC. Instead, one

expects the colored top partners at the scale Λt, which are more tightly bounded from

direct searches. Therefore we will assume that Λt > Λλ and will mostly worry about the

top threshold as main source of the fine-tuning.

From Eq. (2.9) we can estimate the fine-tuning ∆f/Λ of the scale f2 with respect to

the scale Λt as:8

∆soft
f/Λt

≡
∣∣∣∣∂ log f2

∂ log Λ2
t

∣∣∣∣ =
3y2
t

32π2λ

Λ2
t

f2
. (2.10)

What is now the total fine-tuning of the soft Twin Higgs model? It is tempting to say that

∆soft = ∆soft
v/f ×∆soft

f/Λt
. From the point of view of the effective field theory this factorization

is definitely correct and we can estimate the total fine-tuning as

∆soft ≈ 3y2
t

32π2λ

(
Λ2
t

2v2

)
. (2.11)

8One should be careful at this point. Λt “cut-off” is not a parameter of the full UV theory and therefore

one technically need a full UV theory to render this calculation reliable. However, we expect this calculation

to be a good estimate of the fine tuning after the cut-off is properly mapped onto the parameters of the

full theory.
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We will see later that this result is an excellent approximation also well beyond the effective

IR theory.

Interestingly, Eq. (2.11) reproduces the familiar expression for the fine-tuning in com-

mon SUSY models up to the crucial change λ ↔ λSM, where the effective SM quartic

is defined via m2
h = 4λSMv

2, such that λSM ≈ 0.13 (as we will see later we can identify

Λt with the average stop soft mass Ms times a log encoding the dependence on the high

SUSY scale). We conclude that the fine-tuning in the Twin Higgs with a softly broken

Z2 can be reduced with respect to the garden-variety SUSY by a factor λSM/λ at best,

in agreement with the results of Ref. [20] and with later claims about the generic nature

of the fine-tuning in Twin Higgs models (see e.g. Ref. [10]). This parametric structure of

the fine-tuning measure is characteristic of so-called double-protection models [11–17], in

which the Higgs is a PGB, and the scale of the spontaneous global symmetry breaking is

protected by SUSY.

Therefore, the fine-tuning gain is at best moderate in weakly coupled theories where

perturbativity implies that λ cannot exceed ∼ 1 − 1.5. In practice, the gain is even more

modest, because getting such high values of λ is not easy in full SUSY UV complete mod-

els, where λ is a function of other parameters of the underlying theory. This difficulty

has motivated model building in the direction of strongly-coupled Twin Higgs UV comple-

tions [5, 6], with the hope to saturate the parametric gain by taking λ ≈ 4π. This kind

of constructions have their own problems, most notably the large number of states below

the cut-off scale and the tensions with EW precision measurements, which again give an

upper bound on the value of λ [10, 21].
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What happens if we consider pure hard Z2 breaking, i.e. σ0 = 0? In this case σ is

entirely given by the radiative corrections in Eq. (2.7). In this case the fine-tuning in the

IR effective theory is given by the logarithmic variation of v2 with respect to the parameter

ρ and reads

∆hard
v/f =

f2 − 2v2

2v2
× F (v, f ; Λρ) , (2.12)

where we eliminated ρ using the EWSB condition in Eq. (2.3) and we dropped the log Λρ
contributions to σ because they are largely subdominant to the quadratic contributions in

most portions of the parameter space (but not all). Here we have introduced for further

convenience

F (v, f ; Λρ) ≡
3εΛ2

ρ + 32π2v2

3εΛ2
ρ + 16π2f2

. (2.13)

Interestingly the first piece in (2.12) is precisely the fine-tuning in the pure soft breaking

scenario, but in the hard breaking case it is multiplied by a function F (v, f ; Λρ). We

illustrate the behavior of this function in Fig. 3.9 This function is always smaller than

1 and in the limit 3Λ2
ρ � 32π2v2 reduces to 2v2/f2, while in the limit 3Λ2

ρ � 16π2f2

it saturates the upper bound of 1. If we assume that the fine-tuning of the scale f2 with

respect to the top cutoff scale is not different from the soft case and the factorization works,

this tells us (at least naively) that the reduction of the fine-tuning with respect to common

SUSY scenarios should be (λSM/λ)× F (v, f ; Λρ), which can be a significant improvement

compared to the Twin Higgs with softly broken Z2.

Alternatively one can understand the parametric dependence of the fine-tuning mea-

sure in the hard breaking scenario by fixing the cut-off scale Λρ using the EWSB condition

in Eq. (2.3), so that the fine-tuning in Eq. (2.12) can be rewritten as

∆hard
v/f =

f2 − 2v2

2v2
× 2κ

2κ+ ρ
=
f2 − 2v2

2v2
× 8κv2

m2
h

(
1− v2

f2

)
. (2.14)

This expression makes manifest that the gain in fine-tuning of the hard-breaking scenario

with respect to the soft breaking one is roughly proportional to the relative size of quartic

couplings κ and ρ. In the second equality we have used that the combination of the two

quartics in the denominator is fixed by the Higgs mass constraint (2.4), so that the gain in

fine-tuning depends just on the value of κ, which has to be a small (see Fig. 1), in agreement

with our requirement to minimize the fine-tuning. Clearly κ cannot be arbitrarily small

and its natural value is indicated by Eq. (2.5), numerically O(10−2 . . . 10−3). As we see in

Fig. 2 this slightly overshoots the Higgs mass, but the overshooting is O(1) rather than

order of magnitude, therefore the fine-tuning associated with adjusting the value of κ is

also merely of order O(1).

In Fig. 4 we show the improvement in the fine-tuning of two different hard-breaking

scenarios. Both these scenarios will have direct analogs in the SUSY UV completions to be

discussed in Sec. 3.2. On the left panel we consider a purely hard Z2 breaking with σ0 = 0

9Note that on all our plots, including this figure, we single out the region where the mass thresholds

are below λf , i.e. roughly the twin Higgs mass, because we do not expect our low energy EFT to be valid

there.
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Figure 4. The solid blue lines in both plots indicate the gain in fine-tuning of the hard-breaking

model with respect to the soft one. In the white region Λt < λf or Λρ < λf with λ = 1. Left: we

take κ0 = 10−3 and the black dashed contours show the ε × Λρ (in TeV units) adjusted to obtain

mh = 125 GeV. The light red/blue region is the allowed parameters space with ε = ±1. Right:

we fix ε = −1 and Λρ = 1 TeV and fix κ0 (black dashed contours) to get mh = 125 GeV. The light

red/blue region is the allowed parameters space with κ0 ≶ 0.

and a small κ0 that we take 10−3 having in mind its typical value in SUSY UV completions

at small tanβ. The value of ε × Λρ is indicated by the black dashed isolines on the left

panel of Fig. 4. Since κ0 is fixed, this quantity is determined in order to get the measured

Higgs mass value mh = 125 GeV. Interestingly, in the light blue region of Fig. 4 where

the threshold correction proportional to Λρ is negative (i.e. for ε = −1), the Higgs mass

induces a strong upper bound on Λt. In the opposite case where the threshold correction is

positive, one can always adjust the Higgs mass in Eq. (2.4) via a large radiatively induced

σ, increasing Λρ. Of course this comes at the price of reducing the gain in fine-tuning of

the hard-breaking model, as it is shown by the blue isolines on the left panel of Fig. 4.

On the right panel of Fig. 4 we consider a purely hard Z2-breaking case with σ0 = 0,

Λρ = 1 TeV and we fix ε = −1 (i.e. the sign of the threshold correction in Eq. (2.7)). If

we require κ0 to compensate for the overshooting of the Higgs mass, than a negative κ0 is

needed in order to avoid an upper bound on the scale of the colored states Λt . 1 TeV.

This leads to a new contribution to the fine-tuning from the adjustment of κ0 against ∆κ

that we sum up in quadrature with Eq. (2.12), and the final gain in fine-tuning with respect

to the soft breaking scenario is indicated by the blue isolines of Fig. 4 (right).

We now comment on the caveats of our effective analysis. First, the factorization of

the fine-tuning measure very often fails in UV complete models. This failure is related

to RGE effects that introduce a dependence of f on the Z2-breaking parameters. These

effects could be important in UV complete hard breaking models as we will see in Sec. 3.
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Second, there is the log-dependence of both κ and σ on Λρ, which we have neglected in

order to have a simple analytical understanding. Third there might be extra threshold

corrections coming from the UV theory which sensibly affect the Higgs mass estimate. All

these effects can slightly weaken our naive estimates of the reduction in fine-tuning.

In the next section we will show how all these caveats are taken under control in explicit

SUSY UV completions, which indeed follow the parametrical intuition developed here in

most of the parameter space. In particular we will show examples of hard breaking models

that sensibly ameliorate the fine-tuning of the Twin Higgs.

3 SUSY UV completions

In this section we discuss simple SUSY UV completions of the Twin Higgs. In the minimal

setup the Twin SUSY UV completion consists of two copies of the MSSM (MSSMA ×
MSSMB) that are symmetric under the action of the Z2 exchange symmetry A↔ B. The

Higgs sector of the model consists of two replicas of the two Higgs doublet model charged

under the A and the B EW group respectively.

Even if the most general SUSY potential is quite involved, we can develop an analytical

understanding by going in the decoupling limit of the SUSY Higgses and matching it to

the non-SUSY Twin Higgs potential in Eq. (2.1) (with 2 doublets HA,B) by replacing

hAu = HAsA , hBu = HBsB ,

hAd = H†AcA , hBd = H†BcB ,
(3.1)

where sA,B = sinβA,B, cA,B = cosβA,B. Of course this matching gives a good description

of the SUSY Twin Higgs EWSB as long as the SUSY Higgses are heavier than the Twin

Higgs. We give a treatment of the full four Higgs doublet model beyond this approximation

in Appendix B.

We first review Twin SUSY constructions with only soft Z2-breaking, which exemplifies

several generic features of the SUSY UV completions of the Twin Higgs. We pay particular

attention to the simplest soft Twin SUSY model proposed in Ref. [20] and validate our

analytical understanding against a full numerical treatment. We show how the parameter

space of this model can be completely solved once the Higgs mass and EWSB constraints

are imposed and comment on possible directions to ameliorate the fine tuning.

Then we move to Twin SUSY models with hard Z2-breaking, which UV-complete some

previously described setups and feature similar improvement in the FT. We first discuss

the prominent role of the Higgs mass constraint in these models showing that the simplest

implementation of hard Z2-breaking in SUSY has a strong upper bound on the stop mass

scale Ms
10 once the constraint mh = 125 GeV is imposed. Finally, we present an explicit

model where the measured Higgs mass is obtained via a negative contribution to κ, very

much in the spirit of the effective theory presented in the right panel of Fig. 4. In this

model we get ∼ 10% FT with Ms ∼ 2 TeV and λS = 1, ameliorating the fine-tuning of soft

Twin-SUSY by a factor of about ∼ 5.

10Hereafter we define the stop mass scale as a geometric mean of the stop masses Ms ≡
√
Mt̃1

Mt̃2
. Note

also that Mt̃i
stands for the physical mass of the stop, rather than for its soft mass.
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3.1 Soft Twin SUSY

In this subsection we analyze SUSY UV completions of the Twin Higgs with softly broken

mirror symmetry. Even though this kind of UV completions have already been discussed

to some extent in the literature, reviewing them carefully will clarify the basic building

blocks of any SUSY UV completion of the Twin Higgs. Analogously to Sec. 2, we organize

our discussion according to the global symmetries that each term of the scalar potential

preserves.

Generating the SU(4)-invariant part of the Twin Higgs potential in Eq. (2.1) already

introduces some degree of model dependence in SUSY UV completions. Indeed, if we con-

sider the matter content of just two copies of the MSSM, the only SU(4)-preserving opera-

tors at the renormalizable level are the mass terms. Therefore the SU(4)-invariant quartics

require some additional dynamics. The simplest possibility is to use a non-decoupling F-

term from a heavy singlet S that has NMSSM-like couplings with the A and B Higgses, as

in Refs. [18, 20]. The superpotential and soft masses of this setup are

WSU(4) = (µ+ λSS)HuHd +
MS

2
S2 ,

VSU(4) = m2
Hu |Hu|

2 +m2
Hd
|Hd|2 − b (HuHd + h.c.) +m2

S |S|2 .
(3.2)

To make our equations more compact, we have switched here to manifestly SU(4) invariant

notations. We will further use Hu,d = (hAu,d, h
B
u,d), wherever the SU(4) conventions are

appropriate, and with a slight abuse of notation, we will use Hu,d both for the Higgs

superfields and their lowest components.

We also assume that the singlet soft mass is much larger than the SUSY one and

integrate out S in this limit. The potential we get is:

V eff
SU(4) ≈ m

2
u|Hu|2 +m2

d|Hd|2 − b (HuHd + h.c) + λ2
S |HuHd|2 , (3.3)

where we have defined m2
u,d = µ2 +m2

Hu,d
. We also kept just the renormalizable operators

and neglected the extra quartics of order O(M2
S/m

2
S), O(µMS/m

2
S) and O(µ2/m2

S). By

construction these sub-leading quartic terms are also SU(4)-invariant.

Throughout this paper we will often trade the b-term for the mass of the heavy CP-

odd Higgs mAT = 2b/ sin(2β). Note, that unlike in the MSSM, where 2b/ sin(2β) is the

mass-squared of the CP-odd Higgs, here, in the SUSY Twin Higgs, it controls the mass-

squared of the mirror CP-odd Higgs. The mass of the “visible” CP-odd Higgs turns out to

be always lighter: m2
A ≈ m2

AT
− λ2

Sf
2 (see Appendix B).

We further match the SU(4)-invariant parameters of the SUSY potential in Eq. (3.3)

to the parameters of the Twin Higgs potential in Eq. (2.1):

λ ≈
λ2
S

4
s2

2β , m2 ≈ m2
us

2
β +m2

dc
2
β − bs2β . (3.4)

In these expressions we have disregarded the terms that depend on the difference be-

tween the β angles in the different sectors. We will later analyze in detail the role of

the β-misalignment. So far we are taking the SUSY decoupling limit, which is defined by
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Eq. (3.1), while we are keeping the twin Higgs in the spectrum treating the Twin Higgs

model as a full linear sigma model. The effective PGB theory discussed in Sec. 2 can be

obtained integrating out the twin Higgs and expanding at the first non-trivial order in

λ� κ, σ (see Appendix B for details on this point).

Eq. (3.4) immediately explains the origin of the problem already mentioned in the

previous section: SUSY UV completions have a hard time to maximize λ and therefore

also the fine-tuning gain, which is λSM/λ. In SUSY UV completions λS , rather than λ,

should be perturbative. Moreover, as we will shortly see, in order to get the right Higgs

mass we will have to stick to moderate values of tanβ, thus further suppressing the effective

λ. As a result, we will generally get λ < 1, such that the gain in fine tuning will never

be large. In passing, we notice that the fine tuning in the soft models can be slightly

ameliorated by changing the functional dependence of λ on tanβ and other fundamental

parameters, as we comment later on.

We now proceed to discus the leading Z2-even but SU(4)-breaking operators in the

Twin SUSY potential. At leading order the SU(4)-breaking originates at tree-level from

the electroweak D-terms and at one-loop from the top Yukawa sector:

V D
/U(4) =

g2
ew

8

[(
|hAu |2 − |hAd |2

)2
+
(
|hBu |2 − |hBd |2

)2]
, (3.5)

V top
/U(4)
≈ 3y4

t

16π2

[
(|hAu |4 + |hBu |4) log

M2
s

m2
tB

+ |hAu |4 log
f2

v2

]
, (3.6)

where we defined g2
ew = g2 + g′2, and yt is the SUSY superpotential coupling, related to

the top mass as mt = ytv sinβ. In order to get Eq. (3.6) we compute the CW potential

and and set the dynamical Higgses to their VEVs in the non-polynomial terms. The RH

and LH stops mass are assumed to be equal, as well as the soft masses in the A and B

sectors.11

Matching again the effective SU(4)-breaking potential to Eq. (2.1) we identify

κ ≈ g2
ew

8
c2

2β +
3m4

t

16π2v4
log

(
M2
s

m2
t

v2

f2

)
. (3.7)

This expression indicates that the SU(4)-breaking Z2-even quartic κ gets an unavoidable

positive contribution from the EW D-terms at tree level in any SUSY UV completion.

The ballpark of this contribution is O(10−2 . . . 10−3) depending on tanβ. The contribution

from the top-stop sector reproduces the result obtained in Eq. (2.5). Given that top loops

alone already set the Higgs mass in the right ballpark (see the blue contours in Fig. 2),

we expect that for a fixed Ms a Twin SUSY model would have an upper bound on tanβ.

We will later see that because of this bound only models with small or moderate tanβ are

viable.

In those Twin SUSY theories, where the mirror symmetry is broken only softly, the

Z2-breaking terms can be introduced as soft masses in the potential:

V soft
/Z2
≈ ∆m2

u|hAu |2 + ∆m2
d|hAd |2 + ∆b

(
hAu h

A
d + h.c

)
. (3.8)

11We also assume the trilinear A-terms to be negligible and expand these expressions at the leading order

in m2
tA,B

/M2
s .
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These can easily be matched to the respective term in the IR effective potential in Eq. (2.1)

σ ≈ σus2
β + σdc

2
β , (3.9)

where we defined σu,d = ∆m2
u,d/f

2 and assume ∆b = 0.

Using the matching conditions described so far, we can rephrase in SUSY language

the two EWSB conditions, which were already captured by the low energy Twin Higgs

potential in Eq. (2.1). The first EWSB condition is the one we discussed in the PGB limit

in Eq. (2.3) which fixes the EW scale v in terms of f . This is achieved in soft Z2-breaking

models by balancing σ against κ. These two parameters are determined in terms of four

parameters of the SUSY theory: β and Ms determine κ through Eq. (3.7), while σu, σd
and β give σ through Eq. (3.9).

Solving the EWSB condition in the IR effective theory we can trade σ for f/v. The

second combination of σu and σd is unimportant in the δtβ = 0 limit. Imposing the Higgs

mass constraint in the PGB limit then fixes κ and allows us to predict the value of β

in the (f/v,Ms) plane by solving Eq. (3.7) for β. This procedure holds only as far as

κ/λ � 1 and we will later discuss how the Higgs mass formula gets modified beyond the

PGB approximation.

The second condition is essentially the SU(4) breaking condition, namely f2 ≈ m2/2λ,

rephrased in terms of the parameters of the underlining SUSY theory (note that here m

stands for the mass parameter in Eq. (2.1)) using the matching conditions in Eq. (3.4).

The dependence of the scale f on the stop threshold Ms can then be estimated via the

RGE of mHu , which largely dominates the fine-tuning measure. In this approximation we

get that δf2 ≈ 2s2β
λ2Ss

2
2β
× δm2

Hu
. The fine tuning measure derived in Eq. (2.11) in terms of

the SUSY parameters is

∆soft ≈
3y2
t s

2
β

2π2λ2
Ss

2
2β

M2
s log ΛSUSY

Ms

2v2
. (3.10)

In this estimate we also neglect the contribution of the singlet soft mass mS in the RGE

for mHu . This contribution turns out to be sub-leading with respect to the stops one as

long as mS ∼ 1 . . . 2 TeV.

Looking back at the low energy fine-tuning (2.11) we see that in the SUSY theory Λ2
t

is identified with 2M2
s × log

Λ2
SUSY
M2
s

. The UV cut-off ΛSUSY can be interpreted as a scale

where the soft masses are formed, corresponding for example to the messenger scale in low

energy SUSY-breaking scenarios. For the purpose of numerical calculations we will further

use ΛSUSY = 100Ms.

All in all the gain in fine tuning of soft Twin SUSY with respect to standard SUSY

models like the NMSSM is

∆soft

∆NMSSM
≈
m2
h

2v2
× 1

λ2
Ss

2
2β

=
2λSM

λ2
Ss

2
2β

, (3.11)

in agreement with the analysis performed in Ref. [20] as well as with our expectations from

the IR effective theory analysis in Sec. 2. It is important to remember that the Higgs mass
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Figure 5. Soft Twin SUSY parameter space with mAT
= 1.5 TeV (left panel) and mAT

= 3 TeV

(right panel). In the white region mh = 125± 2 GeV cannot be achieved as explained in the text.

We also assume here δtβ = 0, λS = 1 and mS = 1 TeV, µ = 500 GeV, M3 = Ms. Black/red dashed

lines are contours of tanβ/next-to-lightest CP-even Higgs mass in GeV. The gradient color function

indicates region of increasing ∆soft, calculated in Eq. (3.12).

constraint in this model fixes the value of β for a given Ms and f/v determining the final

gain in fine tuning.

We summarize the behavior of the soft Twin SUSY model in Fig. 5. We work directly

in the SUSY theory, solve numerically the EWSB conditions and the Higgs mass constraint,

and present the allowed parameter space in the (f/v, Ms) plane. In this plane we show

the behavior of the fine tuning measure, the minimal value of tanβ that satisfies the Higgs

mass constraint 12 and the mass of the next-to-lightest CP-even Higgs. We show our results

for two different choices of the mirror CP-odd Higgs masses mAT = 1.5, 3 TeV. In the rest

of the section we give an analytical understanding of the results of Fig. 5.

The fine tuning we show in Fig. 5 is computed à la Giudice-Barbieri by evaluating

numerically the logarithmic derivatives of the EW scale v with respect to all the UV

parameters of the full soft Twin SUSY model:

∆soft =

√√√√ ∑
i=Psoft

(
∂ log v2

∂ log pi

)2

. (3.12)

In this expression i runs over the parameters of the Higgs sector PH = {m2
Hu
,m2

Hd
, µ2 , b},

of the colored sector PQ = {m2
Q ,m

2
U ,M3}, of the singlet sector PS = {m2

S , λS}, and of

the Z2-breaking sector P/Z2
= {∆m2

u ,∆m
2
d}. All these parameters are considered at the

“messenger scale” ΛSUSY for the purpose of the fine-tuning computation and we use full

one-loop RGE (see Appendix A) to obtain the final fine tuning.

12Since we are allowing for a range of possible SM Higgs masses we select the minimal tanβ within the

range of the allowed ones.
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One more comment is appropriate here regarding the total fine tuning measure in

Eq. (3.12) that we are using. This is slightly different from the measure which has been used

by Barbieri and Giudice in [44], which assumed the total fine-tuning to be the maximum of

the one-parameter fine tunings, rather than their sum in quadrature, as we do. We choose

this particular measure to give a numerical expression to an intuition, that if a model has a

similar fine-tuning with respect to two independent parameters, it is more fine-tuned, than

a model that is one-tuned only with respect to a single parameter. We checked it explicitly,

and in vast majority of the parameter space our measure is not very different numerically

from the nominal Barbieri-Giudice measure. Note however, that in case of multiple free

parameters and small fine-tuning our measure overestimates the fine-tuning with respect

to the Barbieri-Giudice measure.

As expected, our tuning measure can be well approximated by formula (3.10), meaning

that the gross features of the Twin SUSY model are captured by the PGB intuition we

have developed so far. In particular the factorized formula for the tuning measure works

pretty accurately and we can rewrite Eq. (3.12) as

∆soft ≈

√√√√ ∑
i=P/Z2

∂ log v2

∂ log pi
×

√√√√ ∑
j=PH∪PQ∪PS

∂ log f2

∂ log pj
≈

√√√√ ∑
i=P/Z2

∂ log v2

∂ log pi
× ∂ log f2

∂ logm2
Hu

, (3.13)

where the last expression exactly reproduces the approximated formula in Eq. (3.10).

The gain in fine tuning with respect to the NMSSM (3.11) follows essentially the

contours of tanβ in Fig. 5. Since tanβ decreases at larger Ms, the effective λ grows (see

Eq. (3.4)), and consequently this particular soft Twin SUSY model has a bigger gain with

respect to the NMSSM at higher values of Ms. For λS = 1 the gain is merely a factor of

0.4 . . . 0.5, depending on the region of the parameter space. This can be slightly improved

up to 0.2 . . . 0.3 by taking λS = 1.4, i.e. very close to its perturbativity bound.

The fine tuning measure is a relatively flat function of f/v as expected from the

factorized formula (3.10). This is especially true in the right panel where we take mAT =

3 TeV and the SUSY states are completely decoupled in the full range of f/v. The residual

dependence on f/v in the left panel is introduced indirectly by the Higgs mass constraint,

which in turn determines the value of tanβ at fixed f/v and Ms.

We now analyze the role of the Higgs mass in the soft Twin SUSY parameter space. In

particular, we would like to understand the absolute lower bound on Ms which is present

in both plots and the upper bound on f/v at fixed Ms in the left panel. These two bounds

are responsible for the white region in Fig. 5, where there is no value of tanβ for which the

Higgs mass constraint can be satisfied. Assuming that there is an upper bound on tanβ,

the lower bound on Ms can be easily understood from the PGB mass formula:

m2
h ≈ g2

ewv
2c2

2β +
3m4

t

2π2v2
log

(
M2
s

m2
t

v2

f2

)
, (3.14)

which shows that for most of the moderate tanβ we undershoot mh = 125 GeV unless we

enhance the radiative corrections, yielding a lower bound on the Ms.
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Figure 6. The Higgs mass for Ms = 2 TeV and λS = 1 as a function of tanβ(left) and f/v

(right). Blue and red line correspond to mAT
= 1.5, 3 TeV respectively. In the yellow band we get

mh = 125± 2 GeV.

To understand the upper bound on tanβ we have to go beyond the PGB approximation,

which breaks down for large tanβ, because the PGB approximation requires

κ

2λ
� 1 =⇒

(
gew

2λS

)2

cot2 2β � 1 . (3.15)

Beyond the PGB approximation we should take into account all the κ/λ corrections,

which is not easy to do analytically (see however Appendix B). Nonetheless, we can arrive

to the right conclusions analyzing the first non-vanishing correction to the PGB approxi-

mation:

m2
h ≈ 8κv2

(
1− v2

f2

)(
1− κ

2λ
+ . . .

)
≈ g2

ewv
2 cos2 2β

(
1− g2

ew

4λ2
s

cot2 2β

)
. (3.16)

As tanβ grows, the term in the brackets becomes important, and drives the Higgs mass

down, signalling that in the full Higgs mass we have a “sweet spot” for the β angle at which

we can maximize the Higgs mass, and therefore the minimal allowed value for Ms.

We show the value of the Higgs mass as a function of tanβ and f/v using the full

numerical calculation at all orders in κ/λ on the left panel Fig. 6. This confirms that the

full function of the Higgs mass has a sweet spot for tanβ, in qualitative agreement with

the simplified formula in Eq. (3.16).

The upper bound on f/v at fixed Ms instead strongly depends on the value of mAT

which controls the masses of the SUSY Higgses (see Table 1 and Appendix B for details).

In particular we see in Fig. 5 that the upper bound on f/v disappears for mAT = 3 TeV.

This feature is also illustrated on the right panel of Fig. 6 and can be understood as a

consequence of level splitting between the SM Higgs and the CP-even SUSY Higgs whose

mass squared is proportional to ∝ (m2
AT
− λ2

Sf
2). For fixed mAT increasing f/v reduces
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the SUSY Higgs, thus enhancing the level splitting and decreasing the SM Higgs mass.

This effect can always be compensated by taking a larger mAT (see Fig. 6), however this

comes at the price of an O(1) increasing of the overall fine-tuning for Ms . 3 TeV.

Interestingly, an indirect bound on f/v at fixed Ms implies an upper bound on the

twin Higgs mass. Since the twin Higgs is the radial mode of the SU(4)-charged Higgs,

its mass is roughly ∼ λSf up to the κ/λ corrections. For example, for Ms = 2 TeV and

mAT = 1.5 TeV the twin Higgs cannot exceed 500 GeV and can be probed at the LHC as

we will discuss in more detail in Sec. 4.

Up to now we completely ignored the role of δtβ which we set to zero in Fig. 5 for

simplicity. However, in the full SUSY theory there are two more relations which determine

tanβ and the misalignment between the β angles in terms of the fundamental parameters

(at the leading order in δtβ):

t2β ≈
m2
d

m2
u

, δtβ ≈
2f2

m2
As2β

[
2

(
1− 2

v2

f2

)
g2

ew

8
|c2β|+ σd

]
, (3.17)

where m2
A = m2

AT
− λ2

Sf
2 is the mass of the MSSM-like CP-odd Higgs.

From these expressions one can estimate what would be the natural value for the β

angle misalignment between the different sectors. If we require no unnatural cancellations

and the “sweet spot” values for tanβ (namely of order 2...3), we expect that |δtβ| . 1, but

usually not smaller than 0.1. Because these natural values are not necessarily small, we

show in Fig. 7 how the non-trivial β-angle misalignment changes the allowed parameter

space and the fine-tuning. Negative values of δtβ are allowed, because σd can be either

positive or negative, allowing to extend the parameter space at larger f/v. A positive

δtβ makes instead the parameter space shrink. The qualitative features of the plots are

however left unchanged with respect to the δtβ = 0 case.

We conclude that this particular soft Twin SUSY model has a number of features

which crucially depend on the fact that λ is generated via the non-decoupling F-term

of a NMSSM-like singlet and hence suppressed even for moderate tanβ. In particular the

tanβ-dependence of λ renders the behavior of the tuning measure sub-optimal and certainly

motivates further exploration in the theory space of soft Z2-breaking models. For example,

one can consider models along the lines of [45] where an extra U(1)x is gauged and both

A and B Higgses carry the same U(1)x charge. If the U(1)x is spontaneously broken by

fields with large soft masses, one would obtain a non-decoupling SU(4)-symmetric quartic

from the D-terms of the U(1)x, getting a very different dependence of the effective λ on

the β-angle. We leave an exploration of soft Twin SUSY models for future work.

Let us finally mention some caveats of our analysis. First, the allowed parameter space

presented in Fig. 5 depends crucially on our requirement mh = 125 ± 2 GeV. This range

is probably too conservative since our one-loop computation is subject to large theoretical

uncertainties dominated by two-loop QCD effects. It is known that these effects can some-

times shift the one-loop result by more than 2 GeV in SUSY theories where they have been

already computed like in the MSSM. In particular a large positive shift from two loop effect

might quantitatively change our conclusions on the allowed parameter space of the model.
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Figure 7. Soft Twin SUSY parameter space with mAT
= 1.5 TeV and δtβ = 0.5 (left panel) and

δtβ = −0.3 (right panel). In the white region mh = 125 ± 2 cannot be achieved as explained in

the text. We also fix λS = 1 and mS = 1 TeV, µ = 500 GeV, M3 = Ms. Black/red dashed lines

are contours of tanβ/next-to-lightest CP-even Higgs mass in GeV. The gradient color function

indicates region of increasing ∆soft, which is defined in Eq. (3.12).

Nevertheless our analysis illustrates some important features of tree level effects to the

Higgs mass that will certainly be present also after the inclusion of two loops corrections.

Second, an interesting option to enlarge the parameter space of this particular soft

Twin SUSY model and possibly ameliorate its fine tuning would be to introduce a sizeable

negative δtβ. This value does not come out naturally, but might be justified in a UV

complete model where the origin of both Z2-even and Z2-odd soft masses is specified. We

leave these questions open for future work.

3.2 Hard Twin SUSY

In this section we discuss models of Twin SUSY where a Z2-breaking quartic is generated

at the tree-level. The easiest implementation of this class of models borrows the SU(4)-

invariant sector from the soft model described above and just extends the singlet sector

adding a new singlet SA which couples to the A-sector Higgses only

W hard
/Z2

= λASAH
A
u H

A
d +

MSA

2
S2
A , V hard

/Z2
= m2

SA
|SA|2 . (3.18)

Integrating out the singlet in the limit mSA �MSA , µ we generate a Z2-breaking quartic

at treel level while the Z2-breaking soft masses in Eq. (3.8) are generated at 1-loop:

V hard
/Z2

≈ λ2
A|hAu hAd |2 −

3λ2
Am

2
SA

32π2
(|hAu |2 + |hAd |2) , (3.19)

with the same approximations that we have used before and neglecting the log-pieces in the

CW potential. Matching Eq. (3.19) to the Z2-odd parameters of the Twin Higgs potential
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in Eq. (2.1) we get

ρ ≈
λ2
A

4
s2

2β , σ ≈ −
3λ2

A

32π2

m2
SA

f2
≡ −λ2

AσSA . (3.20)

After comparing these matching conditions with the results of Sec. 2 we see that the

required values of Z2-breaking quartic ρ & 0.1 to get f/v & 2.3 are easy to achieve with a

moderate coupling λA & 0.6 as long as tanβ . 2.

The biggest problem of this model is that the one-loop threshold corrections to σ are

negative and their size is controlled by the singlet mass. A negative σ is subject to a

strong upper bound coming from the stability of the EWSB vacuum (c.f. Fig. 1 and the

discussion in Sec. 2). In a SUSY UV completion we get a similar bound by solving the

EWSB condition for f/v in terms of λA

λ2
A ≈ −

1− 2v2

f2

σSA
2 −

v2

4f2
s2

2β

κ . (3.21)

Since λ2
A > 0 we need

σSA
2 < v2

4f2
s2

2β as long as κ > 0. This poses an upper bound on

the mass of the singlet mSA around 1 TeV. This bound was expected from Sec. 2 where

for negative σ (ε = −1) we got a strong constraint on Λρ which is here identified with the

singlet mass up to numerical factors.

We illustrate the parameter space of the model in Fig. 8. The figure also shows that

the upper bound on the singlet mass we derived in Eq. (3.21) gives indirectly a bound

on the maximal allowed tanβ, which is even stronger constrained than in the soft Twin

SUSY. An important difference between the hard Z2-breaking scenario compared and the

soft one is that the masses of the MSSM Higgses controlled by mAT = 2b/s2β cannot be

arbitrarily decoupled if δtβ is fixed. The β-angle misalignment in this scenario is

δtβ ≈
2

c2
βs2β

f2

m2
A

[(
1− 2v2

f2

)(
g2

ew

8
|c2β|+ δλus

4
β

)
+
λ2
AσSA |c2β|

2

]
, (3.22)

where δλu =
3m4

t

16π2s4βv
4 log

(
M2
s

m2
t

v2

f2

)
encodes the top-stop contribution to κ. The equation

for tanβ however stays intact up to sub-leading corrections. The expression (3.22) shows

that the mass of the CP-odd Higgs is linear in f and drops at lower tanβ, exactly what we

see in Fig. 8. Note also that the range of natural values of δtβ is of order O(10−2 . . . 10−1)

and it can only be positive. Completely neglecting the β-misalignment is often not a bad

approximation in this scenario.

Although light SUSY Higgses can help with the Higgs mass constraint because level

splitting among CP-even Higgses can decrease the mass of the lightest eigenstate (i.e. the

SM-Higgs), the masses of the SUSY Higgses are subject to bounds both from direct and

indirect searches, e.g. b→ sγ and the SM Higgs couplings fit. Even though these bounds

are somewhat model dependent, we conservatively impose mA & 400 GeV in our numerical

scan, which correspond to mH± & 350 GeV using the formulas in Appendix B. We will

further discuss these bounds in detail in Sec. 4.
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Figure 8. Allowed parameter space of the simplest hard model, described in Eq. (3.18). We assume

δtβ = 0.1 and λS = 1, µ = 500 GeV, M3 = Ms. A strong upper bound on Ms comes from the

Higgs mass constraint mh < 127 GeV and the red shaded area is inaccessible. The black dashed

contours stand for the maximal allowed value of tanβ and the green dashed contours for the mass

of the heaviest CP-odd Higgs in TeV.

At the end of the day the simplest model of Twin SUSY has a fine tuning of around

∼ 10% but is so severely constrained by mh = 125 GeV that the SUSY colored states are

always forced to be within the reach of the LHC. This traces back to the fact that with a

negative σ and an irreducible tree level contribution to κ coming from the EW D-terms, we

always overshoot the Higgs mass. The only way out of this is to take tanβ ∼ 1 and render

the log in Eq. (3.7) extremely small. The upper bound on Ms was again expected from

the discussion in Sec. 2 when for ε = −1 we got a strong upper bound on Λt. Interestingly,

the Higgs mass constraint is acting on the parameter space of hard Twin SUSY models in

the opposite direction with respect to the standard MSSM-like SUSY constructions where

it often gives a lower bound on Ms.

A crucial question remains then to be addressed: Is it possible to find a model that

decouples the colored states? Here we present an existence proof for such a model. Notice

that in the IR effective theory for a given Λρ threshold one can access higher values of Λt by

introducing a negative contribution to κ at the tree level, compensating for the unavoidable

positive contribution from the D-terms. Of course this is not the only way one can explore,

but we focus on this option for concreteness and comment later on possible alternative

solutions.

In order to get a negative contribution to κ we introduce a pair of bi-doublets B + B̄

under SU(2)A × SU(2)B with hypercharges ±1/2 and the following potential

∆WZ2 = λBDBh
A
u h

B
u +MBBB̄ , VZ2 = m2

B

(
|B|2 + |B̄|2

)
. (3.23)

Integrating out the bidoublet in the limit of mB � MB , µ and matching it to the Twin
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Higgs potential we obtain:

∆VZ2 = s4
β|λBD|2|HA|2|HB|2 . (3.24)

In the Twin Higgs parametrization in Eq. (2.1) this gives us a negative contribution to κ

and a positive one to λ:

∆κ = −∆λ = −1

2
s4
β|λBD|2 . (3.25)

Therefore we expect that for a given point in the (f/v ,Ms) plane where the Z2-breaking

quartic λA is fixed to get the desired value of f/v, one can always choose an appropriate λB
in order to satisfy the Higgs mass constraint, hence rescuing the hard-breaking Z2-breaking

model. An analytical understanding of the structure of the EWSB conditions can be easily

derived from our previous discussion performing the shift: δλu → δλu −
λ2BD

2 .

Of course this solution for correcting the Higgs mass comes at a price. The main prob-

lem is the presence of states charged under both A and B gauge group that generically

generate a mixing between the photon and the dark photon at one-loop, which is strongly

constrained by experiments [46, 47]. However, this problem can be solved either by un-

gauging the mirror hypercharge or by breaking it, giving a mass to the mirror photon.

These effects would generate extra Z2 breaking contributions in the Higgs potential which

however do not change the structure of our model drastically. In particular the ungauging

of the twin hypercharge leads to a Z2 breaking quartic via the D-terms, which however is

too small to dominate the mirror symmetry breaking in a realistic scenario.

We show the parameter space of the bidoublet model in Fig. 9. The bidoublet coupling

λBD ranges between 0.4 . . . 0.6 depending on the region of the parameter space. This

corresponds to the negative shift in κ of order 0.05 . . . 0.1. Among other parameters we

scan here on tanβ, which however stays around tanβ . 2 in almost the entire parameter

space. We calculate the fine tuning as in the previous section, varying the EW breaking

scale v with respect to all the parameters of the hard model.13

The behavior of the fine tuning isolines in Fig. 9 can be intuitively understood by

means of the following approximate formula

∆hard ≈

√(
∂ log v2

∂ log λA

)2

+

(
∂ log v2

∂ log λBD

)2

× ∂ log f2

∂ logm2
Hu

. (3.26)

The idea behind this approximation is that the fine-tuning of f with respect to the SUSY

scale is dominated by the running of mHu as in soft Twin SUSY. The fine-tuning of the

EW scale with respect to f is instead accounted by the log-derivative with respect to the

hard Z2-breaking quartic and the Z2-preserving quartic λBD which is tuned to satisfy the

13In this case the hard sector parameters include the parameters of the Higgs sector PH =

{m2
Hu

,m2
Hd

, µ2 , b}, of the colored sector PQ = {m2
Q ,m

2
U ,M3}, of the SU(4)-preserving singlet sec-

tor PS = {m2
S , λS} of the Z2-breaking singlet sector P/Z2

= {λA ,m2
SA
} and of the bi-doublet sector

PB = {λB ,m2
B}. As in the soft Twin SUSY case all these parameters are taken to be at the “mes-

senger scale” ΛSUSY for the purposes of the fine-tuning computation and we use full one-loop RGE (see

Appendix A) to obtain the final fine tuning.
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Figure 9. Allowed parameter space of hard Twin SUSY with the heavy bi-doublets. Dashed black

contours stand for the minimal allowed couplings of λBD. The gradient color function indicates

region of increasing fine tuning. The red dashed contours indicate the fine tuning of the EW scale

with respect to λBD. We set δtβ = 0.05, mSA
= 1 TeV and mB = 1 TeV. In the white region

a stable vacuum cannot be achieved. We also fix λS = 1 and mS = 1 TeV, µ = 500 GeV and

M3 = Ms.

Higgs mass constraint at fixed f/v and Ms. This second contribution to the fine-tuning is

shown on Fig. 9 with dashed red contours and it increases at larger Ms as expected. The

approximate formula in Eq. (3.26) is the SUSY analogue of the FT measure we discussed

from the low energy perspective in the right panel of Fig. 4. For Ms = 2 TeV the theory

is tuned at ∼ 3 − 10%, depending on f/v which is roughly a factor of ∼ 3 − 10 better

than the soft Twin SUSY model. Going to larger Ms, the fine tuning needed to satisfy

mh = 125 GeV becomes larger and introducing hard Z2-breaking is not beneficial anymore.

That is why we cut the parameter space of Fig. 9 at Ms ∼ 3.5 TeV.

Of course the approximate formula in Eq. (3.26) relies on a number of assumptions

which are not always satisfied in the full parameter space of the model. The major caveat

is for sure the factorization of the fine tuning measure which is broken in the presence of

extra quartics by the one-loop corrections to the soft masses proportional to both λA and

λBD (see for example the RGE of mHu in Appendix A). These corrections are however

always sub-leading compared to the top-stop contribution to the RGE of mHu as long as

both the couplings are smaller or equal to yt and both the singlet and the bi-doublet soft

masses are not too large. For this reason we set mSA = mB = 1 TeV in our numerical

results.

The white region at low f/v region can be understood by further analyzing the expres-

sions in Eqs. (3.21) and (3.22). First of all we see from Eq. (3.22) that mA decreases with

f/v and hence we expect the lower bound mA > 400 GeV to give a lower bound on f/v.
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It is then clear that small values of δtβ are favored because they can easily raise the mass

of mA as one can see again from Eq. (3.22). In this regime we can approximate δtβ ≈ 0

and solve (3.22) for σSA . Plugging back this solution into (3.21) we get

λ2
A = −2(f2 − 2v2)

v2

(δλu −
λ2BD

2 )s2
β

|c2β|
+
g2

ew

4

 , (3.27)

from which we see that the lower bound on f/v in order to get λA > 0 becomes stronger

at larger Ms (which correspond to a larger δλu), explaining the diagonal shape of the

boundary of the parameter space on Fig. 9.

This lower bound on f/v is of course not a feature of hard Twin SUSY by itself but

of our specific model. It is interesting however that it provides a lower bound on the

Twin Higgs mass, which was instead bounded from above in the soft Twin SUSY model of

Sec. 3.1. Conversely the mass scale mA of the SUSY Higgses, which was a free parameter

in the soft Twin SUSY model, is now fixed by Eq. (3.22) and possibly becomes a promising

signature at the LHC as we will discuss in Sec. 4.

In conclusion, besides being sub-optimal for the reasons explained above, we believe

that the SUSY model described in this section provides a simple existence proof of the hard

Z2-breaking mechanism that can ameliorate the fine-tuning in perturbative UV completions

of the Twin Higgs.

Of course many other constructions in the model space of hard Twin SUSY are still

left unexplored. For example a possible alternative solution to the overshooting of the

Higgs mass would be to flip the sign of the one-loop Z2-breaking threshold to σ via a non

minimal singlet sector. In such a model the constraint mh = 125 GeV can be achieved by

tuning the positive σ. These solutions would be the UV completion of the effective analysis

in the left panel of Fig. 4 and is left for future studies.

4 Twin SUSY Higgs phenomenology

In this section we discuss the phenomenological signatures of the SUSY Twin Higgs. In

particular we focus on the Higgs sector of the theory, which leads to distinctive and model

independent signatures at the LHC. The Twin Higgs mechanism implies the existence

of an extra scalar in the spectrum, the “twin” Higgs, which is the radial mode of the

spontaneously broken SU(4)-symmetry. The phenomenology of the twin Higgs at LHC

essentially resembles the one of a scalar singlet which mixes with the SM Higgs and has been

already studied e.g. in Refs. [37–41]. Here we recast present and future bounds from LHC

and Higgs coupling measurements on the twin Higgs focusing on the particular parameter

space of Twin SUSY models (see Appendix B for detailed formulas about the spectrum, the

mixing angles and the decay widths). In addition we show that extra MSSM-like Higgses,

which are generically present in SUSY UV completions, provide complementary probes on

the parameter space of Twin SUSY both at the LHC and in indirect measurements.

We are not going to explore possible extra signatures coming from the twin matter

sector. These depend very much on its structure that we leave unspecified in this paper (see
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CP-even Higgses

States: h hT H HT

Masses: m2
h λ2

Ss
2
2βf

2 m2
AT
− λ2

Sf
2 m2

AT
− λ2

Sf
2s2

2β

CP-odd Higgses Charged Higgses

States: AT A H± H±T
Masses: m2

AT
m2
AT
− λ2

Sf
2 m2

AT
− λ2

Sf
2 m2

AT
− λ2

Sf
2

Table 1. Higgs spectrum of the Twin SUSY model.

Refs. [26–29] for some studies about LHC signatures in Twin Higgs scenarios). Moreover,

we assume pair production of colored SUSY states to be out of reach of LHC with 300 fb−1,

which roughly corresponds to Ms & 2 TeV. In the previous section we have shown that this

regime is automatically achieved in the simplest soft Twin SUSY model oncemh = 125 GeV

is imposed, because the Higgs mass constraint boundsMs from below. For hard Twin SUSY

models instead, the situation is reversed and the region with Ms & 2 TeV is accessible at

a price of some model building gymnastics.

For Ms . 2 TeV the LHC bounds on extra Higgses should be in principle compared

with the canonical SUSY searches for pair produced superparticles. The same comparison

should be performed for prospects at HL-LHC with 3000 fb−1. We leave such a detailed

comparison for future works and focus on the physics of the extra Higgses from now on.

4.1 The Higgs sector of Twin SUSY

The Higgs sector of the SUSY Twin Higgs exhibits a very rich structure since it contains

at least a double copy of the MSSM. In Sec. 3 we have shown that scalar states beyond

the visible and hidden Higgs doublets are needed in concrete realizations of Twin SUSY in

order to get the required structure of the quartics in the low energy Twin Higgs potential of

Eq. (2.1). Since these states are generically required to have a large soft mass of order∼Ms,

we assume that they are sufficiently heavy to be decoupled from the LHC phenomenology.

We summarize the minimal Higgs sector of Twin SUSY in Table 1. The PGB formula

of the SM-like Higgs mass in Twin SUSY has already been discussed in Sec. 2, and the

expressions beyond PGB can be found in Appendix B. The behavior of the heavy Higgs

spectrum is instead described with very good accuracy by the tree-level formulas in Table

1. Here we have assumed that λ2
S � g2

ew, f2 � v2, m2
AT
� λ2

Sf
2, neglected subleading

corrections proportional to λA and set δtβ = 0.

From these expressions we first recognize the twin Higgs hT with a mass squared given

by m2
hT

= 4λf2, where the SU(4)-invariant quartic λ is given by the SUSY matching

condition in Eq. (3.4). We further notice that among the extra Higgs states there is

a fully degenerate SU(2)-doublet (H,A,H±) with mass set by the CP-odd Higgs mass

m2
A ≡ m2

AT
− λ2

Sf
2, which becomes light at large f . Because this mass should be non-

tachyonic, m2
AT

= 2b/s2β should always be the largest mass scale of the Higgs sector. The

other SUSY SU(2)-doublet (HT , AT , H
±
T ) has instead larger splittings: the heaviest state

is the CP-odd Higgs AT with mass m2
AT

followed by the CP-even HT and the charged
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Higgses H±T . The charged Higgses H± and H±T are mass-degenerate in this approximation

and do not mix because of gauge invariance. As a consequence the charged Higgses H±

have exactly the same couplings as in the MSSM, while H±T are completely dark and hence

uninteresting for collider purposes.

The mixing of the CP-odd and the CP-even SUSY Higgses is controlled by v/f exactly

like the one of the SM Higgs h and the twin Higgs hT : AT and HT are purely dark in the

limit v/f → 0 while A and H become MSSM-like.14 The full expressions for both mixing

angles and mass eigenvalues can be found in Appendix B.

In most of the allowed parameter space the twin Higgs hT is lighter than the visible

MSSM-like SU(2)-doublet and hence it is the next-to-lightest CP-even scalar after the SM-

like Higgs. However, when λ2
Sf

2 & m2
A (corresponding to m2

AT
& λ2

Sf
2), the hierarchy can

be inverted and a full MSSM-like SU(2)-doublet forms the first level of extra scalars above

the SM-like Higgs. The transition between these two regimes is shown in Fig. 10, where

we plot the composition of the next-to-lightest CP-even eigenstate H2 and its mass for the

benchmark values of λS and tanβ. We define the composition of mass ordered CP-even

states HI in terms of the gauge eigenstates of the A and B sector as:

HI =
∑
i

VIihi , hi = {hAu , hAd , hBu , hBd }, (4.1)

In the temperature plot in Fig. 10 we show the combination of the mixing matrices sdark ≡√
V 2

23 + V 2
24 that indicate how much H2 is composed by B-sector Higgses. Both mixing

angles and the mass eigenvalues are computed numerically taking into account all orders

in the λ2
Sf

2/m2
A expansion (setting λA = λBD = δtβ ≈ 0 for simplicity).

As expected, H2 is mainly B-like (i.e. hT ) in the upper left corner of the plot (mA &
λSf), while it is mainly A-like (i.e. H) in the bottom right corner of the plot (mA . λSf).

The four plots in Fig. 10 show how the details of the transition between the two regimes

depend on the value of λS and tanβ: comparing the plots row-wise we see that a larger

tanβ suppresses the radial mode mass hence enlarging the parameter space in which H2 is

mostly B-like (red region). Column-wise, we see that a larger λS enlarges the parameter

space in which H2 is mostly A-like (blue region), because the twin Higgs mass mhT gets

enhanced while the MSSM doublet mass mA gets suppressed.

We are now ready to understand the parametric dependence of the decays of the CP-

even Higgses in the (f/v ,mA) plane, which we can numerically compute using the decay

rates of the CP-even eigenstates that are collected in Appendix B. In Fig. 11 we show the

relevant branching ratios for the next-to-lightest CP-even state H2.

Clearly we have two different regions depending if the lightest CP-even state is the

twin Higgs hT (red region) or the MSSM-like heavy Higgs H (blue region). In the first

case the visible decays of the twin Higgs are into pairs of SM gauge bosons/Higgses and

into top pairs. An invisible decay width can also be present if the decays into dark gauge

bosons are kinematically open. Since we assume equal gauge couplings in the visible and

dark sector, the dark gauge boson masses are fixed and scale approximately linearly with

14Any mass term that mixes Higgs states in A and B sector must be proportional both to the breaking

of SU(2)A and SU(2)B and therefore vanishes in the limit v → 0.
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Figure 10. Mass contours in the mA vs f/v plane. The four plots correspond to different values

of (λS , tanβ). The black and green contours are the second and third lightest CP-even mass state

respectively. The temperature map denote the B-sector composition of the second lightest CP-even

mass eigenstate as explained in the text, where sdark ≡
√
V 2
23 + V 2

24.

f , e.g. mWB
≈ g2√

2
f . Comparing the upper and the lower panel of Fig. 11 we see that a

non-zero invisible decay width for the twin Higgs ultimately depends on the value of the

SU(4)-invariant coupling λS , which sets the scale of the twin Higgs mass. In the upper

row we take λS = 0.9, such that the invisible decay channels are kinematically closed while

in the second row we take λS = 1.4. Of course the latter value is favored by fine-tuning

arguments as discussed in Sec. 3, however since λS . 1 makes the phenomenology of the

twin Higgs radically different we decided to include λS = 0.9 in our discussion.

The most interesting decay channel to hunt for the twin Higgs at the LHC is certainly

the one into Z pairs. In Fig. 11 we see that this branching ratio goes roughly from 25% to

10% in the red area, depending on the region of the parameter space. A 25% branching ratio

into Z pairs is the value expected from the Goldstone equivalence principle if one assumes
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Figure 11. Branching ratio of the second lightest CP-even eigenstate. The four plots correspond

to different values of (λS , tanβ). The purple (black dashed) contours denotes the BR into SM tt̄

pairs (the invisible BR into WD and ZD). The temperature map indicates the BR into SM ZZ.

∼ 100% branching ratio of the twin Higgs into SM gauge bosons/Higgs like was done in

[37]. From Fig. 11 we see that this expectation is only (marginally) saturated in the region

where mA > 1 TeV and f/v > 5. In the bulk of the SUSY Twin Higgs parameter space

the branching ratio into Z pairs (like the ones into WW and hh) is depleted because of an

irreducible branching ratio into top pairs (purple contours). The tt̄ channel is suppressed

only for very large f/v (i.e. very small mixing) or for very small f/v because of the reduced

phase space.

Using the formulas from Appendix B, assuming mA � λSf and neglecting the phase

space suppressions we get

Γ(hT → ZZ)

Γ(hT → tt̄)
≈

m2
hT

12c2
Wm

2
t

≈
λ2
Ss

2
2βf

2

12c2
Wm

2
t

≈ 1×
(
f/v

3

)2

×
(
λS
1

)2

×
( s2β

0.98

)2
, (4.2)

which shows that an irreducible branching ratio into tt̄ for the twin Higgs is somewhat

typical for Twin SUSY scenarios, where the branching ratio into ZZ gets suppressed for
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tanβ > 1 (where sin 2β is reduced) and cannot be enhanced arbitrarily by taking a larger

λS because of perturbativity.

In the second row of Fig. 11 we set λS = 1.4 and the invisible width of the twin

Higgs is different from zero (dashed black contours). When the decays into dark gauge

bosons is kinematically open, if one would assume 100% decay into (Pseudo)-Goldstones,

the Goldstone equivalence theorem would predict a branching ratio of ∼ 0.14 into ZZ

and an invisible width of ∼ 3× 0.14. However, this naive estimate is once again modified

by the irreducible decay width into tt̄ (though less relevant than λS = 0.9 in agreement

with formula (4.2)) and by the fact that in most of the Twin SUSY parameter space the

twin Higgs mass is not parametrically larger than the dark gauge boson masses. Indeed the

invisible width of the radial mode gets sensibly reduced because of phase space suppression,

as can be seen from the contours in Fig. 11. The phase space suppression of the invisible

channels becomes more important at larger tanβ, where the twin Higgs mass is further

reduced.

Finally, for fixed value of f/v, decreasing the value of mA implies that the mixing

with the MSSM-like CP-even Higgs becomes important and the branching ratio into tt̄ is

enhanced with respect to ZZ (and with respect to invisible ones if present). Decreasing

mA further the MSSM-like Higgs becomes the next-to-lightest state and as a consequence

the decay width into ZZ is suppressed while the one into tt̄ gets rapidly close to 100%.

4.2 Probing the SUSY Twin Higgses

From the previous discussion one can infer what are the most promising phenomenological

signatures associated to the Higgs sector of the SUSY Twin model. We essentially have

two different types of signatures depending on the region of the parameter space:

• In the region where mA & λSf the twin Higgs is the next-to-lightest CP-even state

(this is the red region in Figs. 10 and 11). The radial mode is copiously produced

at the LHC via its mixing with the SM Higgs and the most promising channels to

probe it are di-boson final states; in particular di-Higgs (four b-jets) or Z-boson pairs

[20, 37, 42, 48]. Indirect bounds on the twin Higgs also arise from modifications of

the SM-like Higgs couplings (in particular the ones to gauge bosons).

• In the region where mA . λSf we have a full MSSM-like SU(2) doublet which

becomes light. Since having mh = 125 GeV always forces tanβ to be quite small, this

region of the parameter space is preferably tested by searches for charged MSSM-like

Higgses. These can be probed either indirectly through their contribution to b→ sγ,

or directly hunted at the LHC via tb̄ and bt̄ final states [42, 49]. Another interesting

channel is provided by the associated production of a CP-even/odd Higgs with tt̄ [42].

However, searches for charged MSSM-like Higgses typically provide a cleaner channel

for similar mass scales.

We now provide a preliminary study of the LHC reach on the parameter space of Twin

SUSY models, which focus on direct and indirect searches for the twin Higgs and charged

MSSM-like Higgses. We present both existing constraints and the future reach of LHC
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searches and indirect measurements. For LHC prospects we consider projections for the

final stage of LHC with 300 fb−1 and for HL-LHC, where 3000 fb−1 are expected [50].

For the ZZ channel we use the results of Ref. [37], where the current and future

bounds for a scalar singlet mixing with the SM-Higgs are given as a function of its mass

and signal strength into ZZ. We recast these bounds in the Twin SUSY parameter space

by computing the production cross section of the radial mode from both gluon fusion and

vector boson fusion (VBF) processes and multiplying by the branching ratio into ZZ.15

For what concerns Higgs coupling deviations, a global fit of Higgs couplings and EWPT

in Twin SUSY has already been performed in Ref. [20], where it has been shown that

current data cannot probe our region of interest on which we already impose f/v & 2.3

and mA & 400 GeV. To estimate the HL-LHC prospects on Higgs couplings, one can focus

on the measurement of the SM Higgs coupling to Z-bosons. The HL-LHC prospects for

the Higgs coupling measurements will ameliorate the current bound on the mixing angle

by roughly a factor of 2 (the precise numbers can be found in Refs. [37] and [52]), which

leads to a future bound of approximately f/v & 4.6. We will comment on such a limit in

the following discussion.

The LHC prospects for direct probe of the MSSM charged Higgses are taken from

Ref. [42] where the process pp → H+t̄b → tb̄t̄b (and charged conjugate) is employed.

Notice that we can use these bounds without any further modification since the visible

charged Higgses do not mix with the dark sector ones.

Concerning the indirect searches through b → sγ, we parametrize the BSM contribu-

tions as modifications to the Wilson coefficients ∆C7 and ∆C8 with respect to their SM

values [53]:

Bth
sγ × 104 = 3.36± 0.23− 8.22∆C7 − 1.99∆C8 , (4.3)

where ±0.23 is the theoretical uncertainty of the Standard Model prediction. For the

experimental measurement we use the combined result from Ref. [54]

Bexp
sγ × 104 = 3.41± 0.16 , (4.4)

and we derive the bounds allowing for 2σ deviations from the experimental value, summing

in quadrature the theoretical and experimental uncertainties. The contribution of the

charged MSSM-like Higgs to this observable implies a lower bound on its mass for a fixed

value of tanβ. In particular, the existing limits set a lower bound of around mH+ & 500

GeV for tanβ ' 2, and hence does not constraint our parameter space. In order to estimate

the future prospects for this observable, we optimistically assume that both the theoretical

and the experimental uncertainties get reduced by a factor of 2.16 The bound on the charged

MSSM-like Higgs mass is then significantly improved and goes up to mH+ ≥ 775 GeV for

tanβ ' 2.

15To estimate the 8 TeV cross section we use the Higgs production cross section for the gluon fusion and

the VBF processes for equivalent mass [51] and weight them with the appropriate mixing angles. For the√
s = 13 TeV and

√
s = 14 TeV cross section we just re-weight the

√
s = 8 TeV cross sections for gluon

fusion and VBF with the corresponding parton luminosities ratios taken from Ref. [51].
16M. Misiak private communication.
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Figure 12. Phenomenology of the SUSY Twin Higgs model in the (f/v,mA) plane. The dark

grey region denotes the 8 TeV exclusion from di-boson searches. The red regions denote the LHC

prospects for di-boson signatures associated with the twin Higgs state, respectively with 100, 300

and 3000 fb−1 for the solid contour, the dashed contour and the dotted contour. Projected bounds

from b→ sγ are denoted in blue while the HL-LHC reach on the charged Higgs state with 3000 fb−1

is indicated in purple.

In Fig. 12 we project the current and future bounds from the searches described above

in the (f/v ,mA) plane. Analogously to Figs. 10 and 11 we show the results for four

different choices of λS = {1.4 , 0.9} and tanβ = {1.5 , 2.5}. From these plots we can see

that direct searches for the twin Higgs in the ZZ channel give a lower bound on f/v as

long as mA & λSf . In contrast direct and indirect searches on the MSSM charged Higgses

set a lower bound on mA independently on the value of f . We first discuss the features

– 33 –



of the searches targeting the MSSM-like scalars. Comparing the plots row-wise we see

that direct LHC searches on the charged Higgs depend significantly on tanβ, which sets

the couplings to t̄b. The projected bound from b → sγ is also dependent on tanβ and

gets slightly stronger for very low values of tanβ. Note that here we used the complete

expression for the charged Higgs mass which includes also O(v2) corrections. Conversely,

comparing plots column-wise one can see that varying λS does not change the physics of

the MSSM charged Higgs as expected.

Now we focus on the region probed by the di-boson resonance searches. The shape of

the exclusion lines from the ZZ final states presents a rich structure, which depends on

multiple effects controlled by λS and tanβ. The overall reach is affected by variations of

the coupling to tops (the main production mechanism is gluon fusion), variations in the

structure of the mass spectrum (cf. Fig. 10) and in the branching ratio to ZZ (c.f. Fig. 11).

However, independently on the values of λS and tanβ, the exclusion regions exhibit a

peculiar horn-like shape. The horn is located where the next-to-lightest eigenstate changes

from mostly twin-like to mostly MSSM-like In such region, because of the transition, there

is a local enhancement in the A-sector components of the H2 state and the sensitivity is

increased. Then, in the region where the H2 state is very much MSSM-like, the sensitivity

drops because of the reduced branching ratio into gauge bosons. In the low mA region of

the plots (close to mA ∼ 500 GeV) the reach of HL-LHC is again enhanced because the very

small branching ratio of H2 into gauge bosons is compensated by a sizeable enhancement

of the production cross section for such low masses.

In the first row of Fig. 12 we fix λS = 0.9 such that the invisible decay channels are

closed. Comparing the plots row-wise we see that the bounds from LHC are very similar.

The reason is that for lower tanβ the enhancement of the top coupling, and hence of the

gluon fusion channel, is partially compensated by a larger twin Higgs mass (cf. the contours

of Fig. 10). The transition between the twin Higgs regime and the MSSM-like regime is

not the same in the two plots and reflects the discussion of the previous subsection.

In the second row of Fig. 12 we fix λS = 1.4 and the invisible decay channel for the

twin Higgs opens up, depleting the signal strength into ZZ with respect to the λS = 0.9

case. However, in the bottom right plot the larger value of tanβ reduces mhT and closes

the invisible decay into dark gauge bosons exactly where the small bump in the exclusion

curves is, roughly where mhT ∼ 2mWD
(compare with contours in Figure 10).

In summary, we see that searches for the twin Higgs into ZZ final states at the LHC are

extremely interesting in Twin SUSY constructions, because perturbativity of the SU(4)-

invariant coupling λS and tanβ > 1 give an upper bound on the twin Higgs mass for fixed

value of f/v and fixed mA. This has to be contrasted with strongly coupled UV completions

where usually the strongest constraint comes from Higgs coupling measurements. Note

that the prospects for Higgs coupling measurements at HL-LHC reach roughly the value

of f/v ' 4.6 as we mentioned before. For the largest λS we considered, which corresponds

to the largest mhT compatible with perturbativity, the Twin SUSY phenomenology starts

to be similar to strongly coupled UV completions with the Higgs coupling measurements

having a reach not very far from the direct searches (see left bottom plot of Fig. 12).

However, for lower values of λS Higgs coupling measurements are never competitive with
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the direct resonance search as can be seen from the other plots on Fig. 12. Finally, the

region with large f/v features a radial mode too heavy to be probed in ZZ searches at

the LHC, even at High Luminosity. For small mA, the spectrum here resembles the usual

MSSM and MSSM-like Higgses searches will explore this region for mA . 1 TeV.

Looking back at the parameter space of the soft and the hard Twin SUSY models

of Sec. 3, we can roughly compare the sensitivity of the direct searches at the LHC in

these two particular cases. In the simplest soft Twin SUSY model of Fig. 5 and Fig. 7

we found a strong upper bound on f/v for Ms ≈ 2 TeV, which, together with the quite

large value of tanβ ≈ 3.5, gives a stringent upper bound on the mass of the twin Higgs

. 400 − 700 GeV, depending on the particular choice of δtβ and mAT . A considerable

amount of parameter space of soft Twin SUSY is then likely to be probed by ZZ searches

already with 100 fb−1 of data. The mass of the MSSM-like Higgses depends instead on

mAT , which is unconstrained in this model and can always be taken to be heavy.

The hard Twin SUSY model we presented in Fig. 9 has instead a lower bound on the

Twin Higgs mass which increases at large Ms. This lower bound is still pretty mild for

Ms ≈ 2 TeV and Twin Higgs searches are certainly promising to explore these models.

Quite interestingly the masses of the MSSM-like Higgses cannot be arbitrarily decoupled

in this model as far as natural values of δtβ are considered and the charged Higgses can

easily be below the TeV leaving some hope for indirect signatures in b→ sγ or the direct

searches at the LHC.

5 Conclusions

In this work we have performed a systematic study of perturbative UV completions of the

Twin Higgs mechanism based on Supersymmetry. In this context we showed that breaking

the Z2 mirror symmetry with large quartics can be beneficial in terms of fine tuning, leading

to theories with colored states decoupled from the LHC and tuned to the level of ∼ 10%.

In order to explore the role of Z2-breaking quartics, we performed a detailed compar-

ative study between hard and soft breaking of the Z2-symmetry from the effective field

theory point of view in Sec. 2. This study provides a complete picture of the parameter

space of the Twin Higgs and opens up new model building avenues. The main result is that

hard Z2-breaking models can lead to a gain in fine tuning with respect to soft Z2-breaking

at the price increasing the SM-like Higgs mass, which is usually predicted to be too high.

Once the Higgs mass constraint is satisfied, the fine tuning of hard Z2-breaking models can

still be around a factor of ∼ 5 better compared to soft Z2-breaking.

We have studied explicit SUSY UV completions of both soft and hard Z2-breaking

models. We performed our analysis both numerically, solving directly the EWSB conditions

and the Higgs mass constraint in the UV theory, and analytically, using a simple tree level

matching to the original Twin Higgs model after the SUSY states are decoupled. Both

models are not saturating the parametric gain in fine-tuning that we näıvely expect from

Twin SUSY theories with respect to standard SUSY scenarios, but provide simple existence

proofs of both mechanisms of mirror symmetry breaking. By comparing these two simple

SUSY models we recover the gain in fine tuning of the hard Z2-breaking model as obtained
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Figure 13. Comparison of the fine tuning of the soft Twin SUSY and hard one. Inside the strips

we marginalize over all the parameters of the model unless specified.

in the effective field theory. As a summary plot we show in Fig. 13 the allowed FT range in

the soft and the hard model as a function of the scale of the colored particles, marginalized

over the rest of the parameters.

The Twin SUSY constructions discussed here are only valid up to a scale of roughly

∼ 100 TeV. The final goal would be to build full UV completions up to the GUT scale

where both the SUSY-breaking and the Z2-breaking are generated dynamically and then

mediated to the MSSM and its mirror copy. Specifying the mechanism of mediation will

give a definite prediction on the SUSY spectrum of both the visible and the mirror sector.

Further studies in this direction are definitely worthwhile.

Our analysis has unveiled several important aspects of the parameter space of Twin

SUSY models, highlighting in particular the special role of the Higgs mass in constraining

the parameter space of both soft and hard Twin SUSY. To improve the analysis it would

be desirable to have a more precise computation of the SM Higgs mass including at least

2-loop QCD corrections. The implementation of Twin SUSY models in a package like

SARAH [55] can bring them to a similar precision we have for standard SUSY scenarios.

We hope that our study elucidated the basic building blocks of Twin SUSY construc-

tions and their connection to the original Twin Higgs proposal. With these tools at hand

it will be easier to construct “optimal” models of Twin SUSY, in attempt of maximizing

their parametric gain in fine tuning with respect to standard SUSY scenarios..

We also sketched the phenomenology of the Twin SUSY Higgses.

In particular we showed that LHC searches for a resonance going into di-bosons can

probe a large portion of the parameter space of Twin Higgs models, independently on how

the mirror symmetry is broken. This is a consequence of the requirement of perturbativity
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on the SU(4)-invariant quartic coupling which gives an upper bound on the mass of the

twin Higgs at fixed SU(4)-breaking VEV f , and it is a distinctive feature of perturbative

UV completions of the Twin Higgs mechanism.

It would be interesting to further characterize the signatures associated to the invisible

decays of the twin Higgs. These can potentially distinguish it from a generic singlet that

mixes with the SM Higgs. Indeed, the invisible branching ratio of the twin Higgs is likely

to be enhanced when extra light SUSY states are present in the mirror sector making it

discoverable at the LHC in final states with large missing transverse energy (MET).

Interesting signatures can also arise from MSSM-like Higgses which become light at

large f . Twin SUSY models then provide an additional motivation to extend the search

program for extra MSSM-like Higgses in the small tanβ regime both at LHC and at future

colliders [42, 56, 57]. It would be interesting to investigate in detail alternative final states

to probe CP-odd and CP-even MSSM-like scalars, such as the ones suggested in Ref. [42]

including for instance tt̄A/H production. The possibility of having extra invisible decay

channels into the mirror sector can also give rise to final states with MET, enriching further

the landscape of accessible topologies.

The phenomenology of the extended Higgs sector is just the tip of an iceberg of possible

phenomenological questions one can ask in the context of Twin SUSY. By specifying the

detailed structure of both the SUSY and the mirror spectrum one can explore further

the phenomenological implications of Twin SUSY. For instance it would be interesting

to investigate allowed cosmological scenarios as it has been done for the original Twin

Higgs proposal [31–36], identifying possible dark matter candidates (both symmetric and

asymmetric), viable mechanisms for baryogenesis etc. Of course extra LHC signatures other

than the ones associated to extra Higgses can arise once the full spectrum is specified (see

for example Refs. [26–29]) and might require interesting new detecting techniques [58, 59].

All these instances are likely to have an impact on the fine tuning of Twin SUSY models

establishing a unique interplay between cosmology, collider searches and naturalness which

is a distinctive features of NN scenarios.
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A Appendix: Renormalization Group Equations

In this appendix we provide the one-loop RGEs for the Twin SUSY models with a) soft

Z2-breaking, b) hard Z2-breaking and c) hard Z2-breaking with bi-doublets. We neglect

A-terms, singlet B-terms, electro-weakinos, sbottom and slepton masses, and take into

account three families both in the visible and the dark sector (relevant for gauge coupling

running and hypercharge D-terms).

A.1 Soft Z2-Breaking Model

Superpotential and Soft Terms

The superpotential (in the UV) is defined as

W |UV = (µ+ λSS)
(
hAu h

A
d + hBu h

B
d

)
+ yt

(
QA3 U

A
3 h

A
u +QB3 U

B
3 h

B
u

)
+

1

2
MSS

2 , (A.1)

and soft breaking masses (in the UV) are given by

Vsoft|UV = m2
Hu

(
|hAu |2 + |hBu |2

)
+m2

Hd

(
|hAd |2 + |hBd |2

)
− b

(
hAu h

A
d + hBu h

B
d + h.c.

)
+m2

Q

(
|QA3 |2 + |QB3 |2

)
+m2

U

(
|UA3 |2 + |UB3 |2

)
+m2

S |S|2

+ ∆m2
Hu

(
|hAu |2 − |hBu |2

)
+ ∆m2

Hd

(
|hAd |2 − |hBd |2

)
. (A.2)

Note that Z2 is broken in the UV Lagrangian only by soft Higgs masses, which implies that

Z2 is conserved by the RG flow except for sfermion (stop) masses. Therefore we have to

add Z2-odd stop masses in the IR-potential for consistency (but they are negligible since

the Z2-breaking Higgs masses in the UV are taken to be small in the first place)

δVsoft|IR = ∆m2
Q

(
|QA3 |2 − |QB3 |2

)
+ ∆m2

U

(
|UA3 |2 − |UB3 |2

)
. (A.3)

Beta Functions

The beta function coefficients for the gauge couplings g̃Y = gY , g̃2 = g2, g̃3 = g3 are:

bi = (11, 1,−3) . (A.4)

Yukawa couplings

16π2 d

dt
λS = λS

(
6λ2

S + 3y2
t − g2

Y − 3g2
2

)
,

16π2 d

dt
yt = yt

(
6y2
t + λ2

S −
13

9
g2
Y − 3g2

2 −
16

3
g2

3

)
. (A.5)

SUSY masses

16π2 d

dt
µ = µ

(
2λ2

S + 3y2
t − g2

Y − 3g2
2

)
,

16π2 d

dt
MS = 8MSλ

2
S . (A.6)
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Soft Masses

Neglecting the contributions of Z2-breaking stop masses to the RGEs, one has

16π2 d

dt
m2
Hu = g2

Y ξ + 2λ2
SXS + 6y2

tXt ,

16π2 d

dt
∆m2

Hu = g2
Y ∆ξ + 2λ2

S∆XS + 6y2
t∆Xt ,

16π2 d

dt
m2
Hd

= −g2
Y ξ + 2λ2

SXS ,

16π2 d

dt
∆m2

Hd
= −g2

Y ∆ξ + 2λ2
S∆XS ,

16π2 d

dt
m2
Q =

1

3
g2
Y ξ −

32

3
g2

3M
2
3 + 2y2

tXt ,

16π2 d

dt
m2
U = −4

3
g2
Y ξ −

32

3
g2

3M
2
3 + 4y2

tXt ,

16π2 d

dt
m2
S = 8λ2

SXS . (A.7)

with the auxiliary functions

XS ≡ m2
S +m2

Hu +m2
Hd
, ∆XS ≡ ∆m2

Hu + ∆m2
Hd
,

Xt ≡ m2
Q +m2

U +m2
Hu , ∆Xt ≈ ∆m2

Hu ,

ξ ≡ 3m2
Q − 6m2

U +m2
Hu −m

2
Hd
, ∆ξ ≈ ∆m2

Hu −∆m2
Hd
. (A.8)

The RGEs for Z2-breaking stop masses are given by

16π2 d

dt
∆m2

Q =
1

3
g2
Y ∆ξ + 2y2

t∆Xt ,

16π2 d

dt
∆m2

U = −4

3
g2
Y ∆ξ + 4y2

t∆Xt . (A.9)

Moreover one has

16π2 d

dt
b = b

(
10λ2

S + 3y2
t − 3g2

2 − g2
Y

)
,

16π2 d

dt
M3 = −6g2

3M3 . (A.10)

A.2 Hard Z2-Breaking + Bi-doublets

For the sake of brevity we give the RGEs only for the general model with bi-doublets. The

RGEs of the hard breaking model are obtained by setting to zero the bi-doublet parameters

λBD,MΦ,m
2
B,m

2
B̄

.

Superpotential and Soft Terms

The superpotential (in the UV) is defined as

W |UV = (µ+ λSS)
(
hAu h

A
d + hBu h

B
d

)
+ λASAh

A
u h

A
d

+ yt
(
QA3 U

A
3 h

A
u +QB3 U

B
3 h

B
u

)
+

1

2
MSS

2 +
1

2
MSAS

2
A

+ λBDBh
A
u h

B
u +MBB̄B , (A.11)
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where B is a bi-doublet under SU(2)A × SU(2)B and is charged under U(1)A × U(1)B as

(-1/2, -1/2), while B̄ has conjugate quantum numbers. Here we have set to zero the mixed

S-SA mass term, a Z2-breaking µ-term and Z2-breaking top Yukawa and S couplings, as

well as the SA couplings to the B-sector . All these operators are generated in the IR as a

result of the Z2-breaking couplings λA, but remain small as far as λA is not too large:

δW |IR = MSSASSA + λBSAh
B
u h

B
d

+ (∆µ+ ∆λSS)
(
hAu h

A
d − hBu hBd

)
+ ∆yt

(
QA3 U

A
3 h

A
u −QB3 UB3 hBu

)
. (A.12)

Soft breaking masses (in the UV) are defined as

Vsoft|UV = m2
Hu

(
|hAu |2 + |hBu |2

)
+m2

Hd

(
|hAd |2 + |hBd |2

)
+m2

Q

(
|QA3 |2 + |QB3 |2

)
+m2

U

(
|UA3 |2 + |UB3 |2

)
− b

(
hAu h

A
d + hBu h

B
d + h.c.

)
+m2

S |S|2 +m2
SA
|SA|2

+m2
B|B|2 +m2

B̄|B̄|
2 , (A.13)

where we have set to zero the mixed S-SA soft mass, the Z2-breaking stop masses and soft

Higgs masses and the b-term. All these operators are generated in the IR as a result of the

Z2-breaking couplings λA, but remain small as long as λA is not too large:

δVsoft|IR = m2
SSA

(SS∗A + h.c.)−∆b
(
hAu h

A
d − hBu hBd + h.c.

)
+ ∆m2

Hu

(
|hAu |2 − |hBu |2

)
+ ∆m2

Hd

(
|hAd |2 − |hBd |2

)
+ ∆m2

Q

(
|QA3 |2 − |QB3 |2

)
+ ∆m2

U

(
|UA3 |2 − |UB3 |2

)
. (A.14)

In the RGEs we can then neglect the contributions of Z2-breaking couplings except λA (that

is the only Z2-breaking coupling already present in the UV), as well as the contributions

from (SUSY and soft) mixed singlet masses.

Beta Functions

The beta function coefficients for the gauge couplings g̃Y = gY , g̃2 = g2, g̃3 = g3 are:

bhard
i = (11, 1,−3) , bhard+bidoublets

i = (13, 3,−3) . (A.15)

Yukawa couplings

16π2 d

dt
λS ≈ λS

[
6λ2

S + 3y2
t + 2λ2

A − g2
Y − 3g2

2 + 2λ2
BD

]
,

16π2 d

dt
∆λS ≈ 2λSλ

2
A ,

16π2 d

dt
λA ≈ λA

[
4λ2

A + 4λ2
S + 3y2

t − g2
Y − 3g2

2 + 2λ2
BD

]
,

16π2 d

dt
λB ≈ 2λAλ

2
S ,
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16π2 d

dt
yt ≈ yt

[
6y2
t + λ2

S +
1

2
λ2
A −

13

9
g2
Y − 3g2

2 −
16

3
g2

3 + 2λ2
BD

]
,

16π2 d

dt
∆yt ≈

1

2
ytλ

2
A

16π2 d

dt
λBD = λBD

[
5λ2

BD + 2λ2
S + λ2

A − 2g2
Y − 6g2

2 + 6y2
t

]
. (A.16)

SUSY Masses

16π2 d

dt
µ ≈ µ

[
3y2
t + λ2

A + 2λ2
S − g2

Y − 3g2
2 + 2λ2

BD

]
,

16π2 d

dt
∆µ ≈ λ2

Aµ ,

16π2 d

dt
MS ≈ 8λ2

SMS ,

16π2 d

dt
MSA ≈ 4λ2

AMSA ,

16π2 d

dt
MSSA ≈ 2λAλS (MS +MSA) ,

16π2 d

dt
MB = MB

[
(λBD)2 − 6g2

2 − 2g2
Y

]
. (A.17)

Soft Masses

16π2 d

dt
m2
Hu ≈ g

2
Y ξ + 2λ2

SXS + λ2
AXSA + 6y2

tXt + 4λ2
BD

[
m2
B + 2m2

Hu

]
,

16π2 d

dt
∆m2

Hu ≈ λ
2
AXSA ,

16π2 d

dt
m2
Hd
≈ −g2

Y ξ + 2λ2
SXS + λ2

AXSA ,

16π2 d

dt
∆m2

Hd
≈ λ2

AXSA ,

16π2 d

dt
m2
Q3

=
1

3
g2
Y ξ −

32

3
g2

3M
2
3 + 2y2

tXt ,

16π2 d

dt
∆m2

Q3
≈ 0 ,

16π2 d

dt
m2
U3

= −4

3
g2
Y ξ −

32

3
g2

3M
2
3 + 4y2

tXt ,

16π2 d

dt
∆m2

U3
≈ 0 ,

16π2 d

dt
m2
S ≈ 8λ2

SXS ,

16π2 d

dt
m2
SA
≈ 4λ2

AXSA ,

16π2 d

dt
m2
SSA
≈ 2λSλA (XS +XSA) ,

16π2 d

dt
m2
B = −2g2

Y ξ + 2λ2
BD

[
m2
B + 2m2

Hu

]
,

16π2 d

dt
m2
B̄ = 2g2

Y ξ . (A.18)
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with the auxiliary functions

XS ≡ m2
S +m2

Hu +m2
Hd
,

XSA ≡ m
2
SA

+m2
Hu +m2

Hd
,

Xt ≡ m2
Q +m2

U +m2
Hu ,

ξ ≡ 3m2
Q − 6m2

U +m2
Hu −m

2
Hd

+ 2m2
B̄ − 2m2

B . (A.19)

Moreover one has

16π2 d

dt
b ≈ b

[
10λ2

S + 3λ2
A + 3y2

t − g2
Y − 3g2

2 + 2λ2
BD

]
,

16π2 d

dt
∆b = 3λ2

Ab ,

16π2 d

dt
M3 = −6g2

3M3 . (A.20)

B Appendix: Higgs sector spectrum

In this appendix we give further details about the (SUSY) Twin Higgs model. First we fully

solve the Twin Higgs model as a linear sigma model deriving exact formulas for the VEVs,

the masses and the mixing in order to study the validity regime of the PGB approximation.

Then we provide the analytical formulae describing the phenomenology of the Twin SUSY

Higgs sector when some hierarchy is present between the twin Higgs and the SUSY Higgses

(i.e. for λSf � mA): mass eigenvalues, eigenvectors and decay widths.

B.1 The Twin Higgs as a linear sigma model

In Sec. 2 we have explored the parameter space of the Twin Higgs in complete generality,

integrating out the radial mode and obtaining a non-linear sigma model description of the

SM Higgs as a PGB of the spontaneously broken SU(4)-symmetry. Here we repeat the

same exercise working directly at the level of the linear sigma model with both the radial

mode/twin Higgs and the SM-like Higgs in the spectrum. We obtain fully general formulas

for the mass of the twin Higgs and the SM-like Higgs mass and for their mixing. We

show how the PGB formulas are obtained expanding these expressions at leading order in

k, σ � λ.

The Twin potential can be defined in terms of five parameters {λ, ρ, κ,m2, µ̃2}

VT = λ
(
|HA|2 + |HB|2

)2
+m2

(
|HA|2 + |HB|2

)
+ κ

(
|HA|4 + |HB|4

)
+ µ̃2|HA|2 + ρ|HA|4 . (B.1)

The minimization conditions set the VEVs of HA and HB (vA and vB) as a function of these

parameters. Defining v2
A = v2 and v2

B = f2 − v2 in analogy with the PGB approximation,

one obtains with the shorthand notation σ ≡ −2λµ̃2/m2

v2 = −m
2

4

−σ + κ (2− σ/λ)

λρ+ κ (2λ+ ρ+ κ)
, f2 = −m

2

4

2ρ+ κ (4− σ/λ)

λρ+ κ (2λ+ ρ+ κ)
. (B.2)
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Note that in the limit κ � λ one has m2 = −2λf2, thus recovering the definition

of σ in Sec. 2. Moreover, in the limit κ, σ � λ Eq. (B.2) reproduces the PGB formula

in Eq. (2.3). We can use the above equations to trade the two VEVs v and f for two

Lagrangian parameters, for instance the two scales m2 and µ̃2, or equivalently m2 and σ.

We are now interested in the mass spectrum, in particular the mass of the lightest

(PGB) Higgs h. The full analytic expression for the masses of the two physical Higgs

bosons is given by

m2
h,H = 2

[
ρv2 + f2(λ+ κ)

(
1∓
√

1− S
)]

, (B.3)

with

S = 2
v2

f2

λρ+ κ (4λ+ ρ+ 2κ)

(λ+ κ)2 − v4

f4

4λρ+ ρ2 + κ (8λ+ 4ρ+ 4κ)

(λ+ κ)2 , (B.4)

Expanding in v � f and κ� λ the square root in Eq. (B.3) gives

√
1− S ≈ 1− ρ+ κ (4− ρ/λ)

λ

v2

f2
+

2ρ

λ

v4

f4
. (B.5)

Another useful approximation is to expand at leading order in κ/λ and ρ/λ, but keep all

orders in v/f . In this way we get for the Higgs mass

m2
h ≈ 4v2

(
1− v2

f2

)[
(2κ+ ρ)−

(
f2κ− v2 (2κ+ ρ)

)2
λf4

]
, (B.6)

which shows that the PGB expression in Eq. (2.4) tends to overestimate the mass of the

SM Higgs. In the same approximation the mass of radial mode is

m2
H ≈ 4f2λ

[
1 +

f4κ− 2f2κv2 + v4 (2κ+ ρ)

λf4

]
. (B.7)

Defining the mixing angle θ by (cθ ≡ cos θ, sθ ≡ sin θ)

h = cθ hA − sθ hB , H = sθ hA + cθ hB , (B.8)

we find in the same approximation

s2
θ ≈

v2

f2

[
1− 2

(
1− v2

f2

)
κf2 − v2 (2κ+ ρ)

λf2

]
. (B.9)

B.2 The SUSY Twin Higgs

The SUSY Twin Higgs is a double copy of the MSSM. The scalar potential can be schemat-

ically divided into three parts, depending if they break U(4) and/or the Z2 symmetry

V = VU(4) + V/U(4),Z2
+ V/U(4), /Z2

,

VU(4) = λ2
S

∣∣hAu hAd + hBu h
B
d

∣∣2 +m2
u

(
|hAu |2 + |hBu |2

)
+m2

d

(
|hAd |2 + |hBd |2

)
,

V/U(4),Z2
=
g2

ew

8

[(
|hAd |2 − |hAu |2

)2
+
(
|hBd |2 − |hBu |2

)2]− b (hAu hAd + hBu h
B
d + h.c.

)
+ δλu

(
|hAu |4 + |hBu |4

)
+ λ2

BD|hAu |2|hBu |2 ,

V/U(4), /Z2
= λ2

A

∣∣hAu hAd ∣∣2 + ∆m2
u

∣∣hAu ∣∣2 + ∆m2
d

∣∣hAd ∣∣2 + δρu|hAu |4 . (B.10)

– 43 –



where we have defined g2
ew = g2 + g′2. Apart from the soft Z2-breaking terms ∆m2

u,d, hard

breaking terms λ2
A and bi-doublet terms λ2

BD, we have included the terms δλu and δρu
that are generated at one-loop from the stop/top sector, with

δλu ≈
3m4

t

16π2s4
βv

4
log

M2
S

m2
tB

, δρu ≈
3m4

t

16π2s4
βv

4
log

f2

v2
. (B.11)

We then minimize the potential and trade the parameters ∆m2
u,∆m

2
d,m

2
u,m

2
d for v2, f2

and tβ ≡ tanβA ≈ tanβB. We do not take into account corrections proportional to

δ tanβ = tanβA − tanβB, which typically lead only to small corrections. We can then

compute the mass eigenvalues in the CP-even sector, in the CP-odd sector and for the

charged Higgses. These latter results are particularly simple, since the CP-odd and charged

Higgs mass matrices are 2× 2 matrices that can be diagonalized exactly.

CP-odd Higgs Sector

The CP-odd Higgs eigenvalues and eigenvectors are

m2
AT

=
2b

s2β
,

m2
A = m2

AT
− λ2

Sf
2 ,

AT =
v

f
cβ a

A
u +

v

f
sβ a

A
d + cβ

√
1− v2

f2
aBu + sβ

√
1− v2

f2
aBd ,

A = −cβ

√
1− v2

f2
aAu − sβ

√
1− v2

f2
aAd +

v

f
cβ a

B
u +

v

f
sβ a

B
d , (B.12)

where we defined AT as the CP-odd state that is mainly dark for v2/f2 � 1.

Charged Higgs Sector

The charged Higgs eigenvalues and eigenvectors are given by

m2
H±
T

= m2
A ,

m2
H± = m2

A − λ2
Av

2 ,

H−T = cβ
(
h+B
u

)∗
+ sβ h

−B
d ,

H− = cβ
(
h+A
u

)∗
+ sβ h

−A
d , (B.13)

Note that gauge invariance forbids mixing between the visible and dark charged Higgs.

CP-even Higgs Sector

The CP-even sector mass matrix is a 4× 4 matrix whose exact diagonalization expressions

are not very illuminating. In the main text we compute the eigenvalues and eigenvectors

numerically to perform the phenomenological study. In this appendix we provide analytic

expressions in some simplifying limits.
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As we already discussed in Sec. 4, the SUSY Twin Higgs model possesses two different

regimes of the Higgs mass parameters which give a different hierarchy in the mass spectrum.

For m2
A � λ2

Sf
2 the next to lightest state after the SM Higgs boson is the twin Higgs, which

belongs to the dark sector and develops a VEV of order f . In the regime where m2
A & λ2

Sf
2

the lightest scalar above the SM-like higgs is instead the MSSM-like heavy scalar. In this

limit the model resembles the MSSM with a CP-odd mass scale set by the combination

m2
A = m2

AT
− λ2f2.

In order to obtain expressions for the masses that can describe the transition between
these two different regimes, we consider the simplifying limit v → 0 and keep only leading
order terms in g2

ew and δλu. In this approximation the mass eigenvalues are

m2
h = 0 ,

m2
H = m2

A = m2
AT
− λ2Sf2 ,

m2
hT

=
1

4

(
2m2

AT
+ g2ewf

2 + 8δλuf
2s2β − 2m2

AT
R
)
,

m2
HT

=
1

4

(
2m2

AT
+ g2ewf

2 + 8δλuf
2s2β + 2m2

AT
R
)
,

R ≡

√
1− f2

m2
AT

(
4λ2Ss

2
2β + g2ewc4β − 8δλuc2βs2β

)
+

2λ2Sf
4

m4
AT

(2λ2S − g2ew) s22β . (B.14)

We can expand these expressions in the two different regimes. For λ2
Sf

2 � m2
AT

we get

m2
hT

= f2(λ2
Ss

2
2β +

1

2
g2

ewc
2
2β + 4δλus

4
β)

m2
HT

= m2
AT
− f2s2

2β(λ2
S −

1

2
g2

ew − δλu) . (B.15)

Here the twin Higgs is lighter than the MSSM-like state. On the other hand, for small

m2
AT

but still with m2
AT

& λ2
Sf

2 we get

m2
hT

=
1

2
f2g2

ew + s2
2β

(
m2
AT
− λ2

Sf
2
)

+ 4δλuf
2s4
β ,

m2
HT

= λ2
Sf

2 + f2

[
λ2
Sc

2
2β

(
1−

λ2
Sf

2

m2
AT

)
+ δλus

2
2β

]
. (B.16)

Contrary to the previous regime, here the Twin Higgs is always heavier than the MSSM-like

Higgs, and their mass splitting is set by

m2
hT
−m2

H = f2

(
1

2
g2

ew − λ2
Sc

2
2β

(
1−

λ2
Sf

2

m2
AT

)
+ 4δλus

4
β

)
. (B.17)

To make the transition manifest, we plot in Fig. 14 the eigenvalues as a function of f/v fixing

the other parameters 17. The transition between the two regimes happens approximately

at m2
A ≈ λ2

Sf
2. For λ2

Sf
2 smaller than this critical value the lightest eigenstate is the twin

Higgs, while for larger λ2
Sf

2 it is MSSM-like. For completeness we compare the analytic

17As explained in the text, v is set to zero for this plot so the x-axis should be understood as f in units

of 174 GeV.
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Figure 14. Left: Mass eigenvalues as a function of f/v. We fix tanβ = 1.2, mAT
= 1 TeV and

λS = 1. The solid lines are obtained using the analytic expressions in Eq. (B.14) in the v → 0 limit.

The dashed lines are obtained numerically including v/f corrections. The light yellow/white area

correspond to the region where λSf ≶ mA as indicated in the plot.

expressions with the numerical results where v is turned on. On the same plot in Fig. 14

we show in dashed the numerical eigenvalues as a function of f/v on the same benchmark,

showing that v 6= 0 only results in a slight separation of the eigenvalues in the transition

regime.

In order to better understand the phenomenology in Sec. 4 we plot in Fig. 15 the

mixing angles of the two mass eigenstates {H,hT } with respect to the gauge eigenbasis

{hAu , hAd , hBu , hBd }. In the left panel of Fig. 15 we focus on the B-components into the

dark sector and denote with solid blue/red lines the u/d-components the next-to-lightest

eigenvalues. The dashed lines refer instead to the third lightest eigenvalue with the same

color coding (blue for u- and red for d- components). In the right panel of Fig. 15 we plot

with the same color coding the A-components into the visible sector (blue for u- and red

for d- components).

From these plots it is clear that the role of the eigenvalues is inverted in the transition

region around λSf ≈ mA . For λSf . mA the next-to-lightest eigenstate is the twin-Higgs,

while for λSf & mA it is MSSM-like. In the transition region with λSf ≈ mA all states

are sizeably mixed one each other.

The visible sector content of the extra Higgs states determines their production cross

section at the LHC and their visible branching ratio.

For small λSf . mA the twin Higgs is the next-to-lightest Higgs and it gets sizeable

couplings to the visible sector through its component along hAu . As a consequence it can

be produced at the LHC in gluon fusion and it gives rise to interesting signals in di-boson

channels. In the transition region, when λSf ≈ mA, there is an enhancement of the hAu
components as it can be seen from the solid blue line in the right panel of Fig. 15. We
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Figure 15. Mixing as a function of f/v. We fix tanβ = 1.2, mAT
= 1 TeV, λS = 1. The

light yellow/white area correspond to the region where λSf ≶ mA as indicated in the plot. Left:

B-sector components of the next to lightest (thick) and next to next to lightest (dashed) CP-even

Higgs. The blue is the hBu component while the red is the hBd one. Right: A-sector components

of the next to lightest (thick) and next to next to lightest (dashed) eigenstate. The blue is the hAu
component while the red is the hAd one.

then expect a slight improvement in the sensitivity on the twin Higgs searches at LHC into

di-bosons. For λSf & mA the next-to-lightest state becomes MSSM-like and the sensitivity

of the di-boson searches drops since MSSM-like have very small branching ratio into gauge

bosons and at the same time the twin Higgs has a small mixing angle with the visible sector

as it can be seen from the dashed lines in the right panel Fig. 15. This argument explains

the horn-like shape of the di-boson exclusion regions in Fig. 12.

B.3 Approximate expressions for eigenvalues and eigenvectors

We have seen that in the regime λ2
Sf

2 � m2
A the collider phenomenology of the model

is characterised by a light twin Higgs with interesting signatures. In this regime we can

expand the expressions for masses and mixings for large mA (or equivalently large mAT )

and obtain approximate analytical results. From the scalar potential (B.10) we get for the

spectrum, keeping only the leading order terms in g2
ew, λ

2
A, λ

2
BD, δλu, δρu and f2/m2

AT
:

m2
h = v2

(
1− v2

f2

)(
g2

ewc
2
2β + λ2

As
2
2β − 4λ2

BDs
4
β + 8δλus

4
β + 4δρus

4
β

)
,

m2
hT

= λ2
Sf

2s2
2β +

f2

2

(
g2

ewc
2
2β + 8δλus

4
β

)
+ 4λ2

BDv
2s4
β +

v4

f2

(
λ2
As

2
2β + 4δρus

4
β

)
,

m2
HT

= m2
AT
− f2s2

2β

(
λ2
S −

1

2
g2

ew − δλu
)

+ λ2
BDv

2s2
2β −

v4

f2
s2

2β

(
λ2
A − δρu

)
,

m2
H = m2

AT
− λ2

Sf
2 + v2s2

2β

(
g2

ew − λ2
A − λ2

BD + 2δλu + δρu
)
. (B.18)
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Similarly we can calculate the mixing angles in the same approximation. Defining the

rotation matrix V as 
h

hT
HT

H

 = V


hAu
hAd
hBu
hBd

 , (B.19)

the entries are, keeping only the leading order terms in g2
ew, λ

2
A, λ

2
BD, δλu, δρu and f2/m2

AT
:

h =

[
sβ

(
1− v2

2f2
+

λ2
1v

2

2λ2
Sf

2t22β

)]
hAu +

[
cβ

(
1− v2

2f2
+

λ2
1v

2

2λ2
Sf

2t22β

)]
hAd

+

[
− v
f
sβ

(
1− λ2

1

2λ2
St

2
2β

)]
hBu +

[
− v
f
cβ

(
1− λ2

1

2λ2
St

2
2β

)]
hBd ,

hT =

[
v

f
sβ

(
1− λ2

1

2λ2
St

2
2β

)]
hAu +

[
v

f
cβ

(
1− λ2

1

2λ2
St

2
2β

)]
hAd

+

[
sβ

(
1− v2

2f2
+

λ2
1v

2

2λ2
Sf

2t22β

)]
hBu +

[
cβ

(
1− v2

2f2
+

λ2
1v

2

2λ2
Sf

2t22β

)]
hBd ,

HT =

[
v

f
cβ

(
1−

λ2
2t

2
2β

2λ2
S

)]
hAu +

[
− v
f
sβ

(
1−

λ2
2t

2
2β

2λ2
S

)]
hAd

+

[
cβ

(
1− v2

2f2
+
λ2

2v
2t22β

2λ2
Sf

2

)]
hBu +

[
−sβ

(
1− v2

2f2
+
λ2

2v
2t22β

2λ2
Sf

2

)]
hBd ,

H =

[
cβ

(
1− v2

2f2
+
λ2

2v
2t22β

2λ2
Sf

2

)]
hAu +

[
−sβ

(
1− v2

2f2
+
λ2

2v
2t22β

2λ2
Sf

2

)]
hAd

+

[
− v
f
cβ

(
1−

λ2
2t

2
2β

2λ2
S

)]
hBu +

[
v

f
sβ

(
1−

λ2
2t

2
2β

2λ2
S

)]
hBd , (B.20)

with the shorthand notation

λ2
1 = g2

ew − 2λ2
A

v2

f2
t22β − t2βt22β

(
λ2
BD − 2δλu + 2δρu

v2

f2

)
,

λ2
2 = g2

ew − λ2
BD + 2δλu + 2λ2

A

v2

f2
− 2δρu

v2

f2
. (B.21)

B.4 Decay rates

In the phenomenological study in the main text we make use of several branching ratio for

the Higgs sector. Here we report the most relevant formulas used in the analysis.

Decays into fermions

The relevant Lagrangian is given by

L =
mt√
2vsβ

(
tAtAVi1 + tBtBVi3

)
Hi +

mb√
2vcβ

(
bAbAVi2 + bBbBVi4

)
Hi , (B.22)

– 48 –



with Higgs mass eigenstates Hi = h, hT , HT , H and the rotation matrix V has been given

in the previous section. If kinematically allowed, the decay rates into tops, dark tops,

bottoms and dark bottoms are given by:

Γ(Hi → tAtA) =
3m2

tMHi

16πv2s2
β

|Vi1|2
(

1− 4
m2
t

M2
Hi

)3/2

,

Γ(Hi → tBtB) =
3m2

tMHi

16πv2s2
β

|Vi3|2
(

1− 4
m2
tB

M2
Hi

)3/2

,

Γ(Hi → bAbA) =
3m2

bMHi

16πv2c2
β

|Vi2|2
(

1− 4
m2
b

M2
Hi

)3/2

,

Γ(Hi → bBbB) =
3m2

bMHi

16πv2c2
β

|Vi4|2
(

1− 4
m2
bB

M2
Hi

)3/2

, (B.23)

Decays into Vector Bosons

The relevant Lagrangian is given by

L = Hi

(
g

2cW
MZZ

µZµ + gMWW
+µW−µ

)
(sβVi1 + cβVi2)

+Hi

(
g

2cW
MZBZ

µ
BZBµ + gMWB

W+µ
B WBµ−

)
(sβVi3 + cβVi4) . (B.24)

If kinematically allowed, the decay rates into visible and dark gauge bosons are given by

Γ(Hi → ZZ) =
g2M3

Hi

128πc2
WM

2
Z

|sβVi1 + cβVi2|2
(

1− 4
M2
Z

M2
Hi

)1/2(
1− 4

M2
Z

M2
Hi

+ 12
M4
Z

M4
Hi

)
,

Γ(Hi →WW ) =
g2M3

Hi

64πM2
W

|sβVi1 + cβVi2|2
(

1− 4
M2
W

M2
Hi

)1/2(
1− 4

M2
W

M2
Hi

+ 12
M4
W

M4
Hi

)
,

Γ(Hi → ZBZB) =
g2M3

Hi

128πc2
WM

2
ZB

|sβVi3 + cβVi4|2
(

1− 4
M2
ZB

M2
Hi

)1/2(
1− 4

M2
ZB

M2
Hi

+ 12
M4
ZB

M4
Hi

)
,

Γ(Hi →WBWB) =
g2M3

Hi

64πM2
WB

|sβVi3 + cβVi4|2
(

1− 4
M2
WB

M2
Hi

)1/2(
1− 4

M2
WB

M2
Hi

+ 12
M4
WB

M4
Hi

)
,

(B.25)

Decays into Higgs Bosons

Restricting to the U(4)-preserving quartic coupling, the relevant Lagrangian is given by

L =
λ2
S√
2

[
vsβh

A
u h

A
d h

A
d + vcβh

A
d h

A
u h

A
u +

√
f2 − v2sβh

B
u h

B
d h

B
d +

√
f2 − v2cβh

B
d h

B
u h

B
u

]
+
λ2
S√
2

[
vsβh

A
d h

B
u h

B
d + vcβh

A
u h

B
u h

B
d +

√
f2 − v2sβh

A
u h

A
d h

B
d +

√
f2 − v2cβh

A
u h

A
d h

B
u

]
≡
λ2
S√
2
AijkHiHjHk , (B.26)
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with

Aijk = vsβVi1Vj2Vk2 + vcβVk2Vi1Vj1 +
√
f2 − v2sβVi3Vj4Vk4 +

√
f2 − v2cβVi4Vj3Vk3

+ vsβVi2Vj3Vk4 + vcβVi1Vj3Vk4 +
√
f2 − v2sβVi1Vj2Vk4 +

√
f2 − v2cβVi1Vj2Vk3 .

(B.27)

To calculate a given coupling all permutations have to be summed over, e.g. the Lagrangian

coupling L = AhT hhhThh is given by AhT hh =
λ2S√

2
(A122 +A212 +A221). From the general

expression

L = AhHhh+Ah1h2Hh1h2 , (B.28)

the decay rates of the scalar boson eigenstate H can then be obtained as

Γ(H → hh) =
A2
Hhh

8πMH

(
1− 4

m2
h

M2
H

)1/2

, (B.29)

Γ(H → h1h2) =
A2
Hh1h2

16πMH

(
1− 2

m2
h1

+m2
h2

M2
H

+

(
m2
h1
−m2

h2

)2
M4
H

)1/2

. (B.30)
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