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Abstract

We compute next-to-leading order QCD corrections to the process gg → ZH. In
the effective-theory approach we confirm the results in the literature. We consider
top quark mass corrections via an asymptotic expansion and show that there is a
good convergence below the top quark threshold which describes approximately a
quarter of the total cross section. Our corrections are implemented in the publicly
available C++ program ggzh.

1 Introduction

In the upcoming years the general purpose experiments ATLAS and CMS at the CERN
LHC will collect a large amount of data which will be used to perform precision studies
of various quantities. Among them are certainly the properties of the Higgs boson, in
particular its couplings to the other particles of the Standard Model. Important quantities
in this context are the production cross sections and partial decay rates of the Higgs boson.
The dominant production process is via gluon fusion followed by vector boson fusion and
the so-called Higgs-strahlung process pp → V H (V = Z,W ) which is the subject of the
current paper. Although pp → V H has a much smaller cross section it is a promising
channel to observe, e.g., if the Higgs boson decays to a bb̄ pair once substructure techniques
are applied [1].

The leading order (LO) cross section is obtained from the Drell-Yan process for the pro-
duction of a virtual gauge boson V ⋆ and its subsequent decay into V H . Next-to-next-
to-leading order QCD corrections to this channel have been computed in Refs. [2–6] and
electroweak corrections have been considered in Refs. [7,8]. QCD corrections up to NNLO
and electroweak corrections up to NLO for the total cross section have been implemented
in the program vh@nnlo [9].

In Ref. [10] the loop-induced production channel gg → ZH has been computed at leading
order. NLO QCD corrections have been computed in Ref. [11] in the heavy top quark limit
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which significantly simplifies the calculation. They are also implemented in vh@nnlo [9].
Note that the NLO corrections to gg → ZH are formally N3LO contributions to pp → ZH .
However, due to the numerical importance of the gluon-induced process it is worthwhile
to compute gg → ZH to NLO accuracy.

In this paper we study the effect of a finite top quark mass. At LO exact results are avail-
able. However, at NLO the occurring integrals are highly nontrivial and their evaluation
is beyond straightforward application of current multi-loop techniques. We investigate
the mass effects by expanding the amplitudes for large mt. This approximation is not
valid in all phase space regions. However, it provides an estimate of the numerical size
of the power-suppressed terms and thus of the quality of the effective-theory result. Fur-
thermore, it constitutes an important reference for a future exact result since we observe
a good convergence of the partonic cross sections below the top quark pair threshold. We
only consider the gg channel; similar techniques can also be applied to the loop-induced
contributions of the qg and qq̄ channels which are, however, numerically much smaller [11].
In our calculation we do not consider decays of the final-state Z boson.

Similar to gg → ZH also the process gg → HH is mediated by heavy quark loops. NLO
and NNLO corrections have been considered in a series of papers [12–21] applying various
approximations. Recently the exact NLO corrections became available [22, 23]. The
comparison to the approximations shows sizeable differences for the total cross section and
the Higgs transverse momentum distribution. However, reasonable agreement between
the exact and the in 1/mt-expanded results is found for the Higgs pair invariant mass
(mHH) distribution for not too large values of mHH if the approximated result is re-scaled
with the exact LO cross section. Note that the region between the production threshold
and the top quark threshold corresponds to about 100 GeV in the case of HH and to
about 135 GeV in the case of ZH production which makes the heavy-top expansion more
interesting for the latter.

Top quark mass effects have also been computed for the related process gg → ZZ. In
Ref. [24] 1/m2

t corrections have been computed at NLO, and interference effects have been
considered in [25]. In the latter reference Padé approximation and conformal mapping
has been applied to improve the validity of the expansion in 1/mt.

The remainder of the paper is organized as follows: In Section 2 we briefly discuss the
LO cross section and compare the in 1/mt expanded and exact results. In Section 3 we
present our findings for the partonic NLO cross section. In particular, we identify the
approximation procedure which leads to promising hadronic results, subject of Section 4.
We summarize our results in Section 5.

2 gg → ZH at LO

Sample Feynman diagrams contributing to the LO cross section are shown in Fig. 1 (a)
and (b). There are triangle contributions where the final-state Z and Higgs bosons are
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Figure 1: Sample Feynman diagram contributing to gg → ZH at LO and NLO. Solid,
wavy, dashed and curly lines denote quarks, Z and Higgs bosons, and gluons, respectively.
Internal wavy lines can also represent Goldstone bosons.

produced via a s-channel Z or χ boson exchange. Both bottom and top quarks can be
present in the loop. In the case of the box diagrams the Higgs boson couples directly
to the quark running in the loop and thus only internal top quarks are present since we
neglect the bottom Yukawa coupling. The effect of a finite bottom quark mass on the LO
cross section is at the per mille level.

In the heavy-mt approximation the diagrams with internal top quarks reduce to vacuum
integrals. The massless triangle diagrams are computed with the help of simple form
factor-type integrals which can be expressed in terms on Γ functions (see, e.g., Appendix A
of Ref. [26]).

We perform the calculation for general Rξ gauge and check that the gauge parameter ξZ
present in the Z and χ boson propagators drops out in the result for the cross section. In
fact, it cancels between the diagrams with top and bottom quark triangles and a neutral
Goldstone boson or a Z boson in the s channel. Note, that for special choices of ξZ the
calculation can be significantly simplified. For example, in Landau gauge the massless
triangle contribution with virtual Z boson vanishes [11]. Note that due to Furry’s theorem
there is no contribution from the vector coupling of the Z. Altogether there are 16 LO
Feynman diagrams, all of them are individually finite.

We compute the LO amplitudes both in an expansion for large top quark mass including
terms up to order 1/m8

t , and without applying any approximation and keeping the full top
quark mass dependence. In the latter case we have reduced the tensor integrals to scalar
three- and four-point integrals which are evaluated using the LoopTools library [27, 28].
We want to mention that in the limit mt → ∞ the calculation is significantly simplified.
In particular, all top quark triangle contributions with a coupling of the Z boson vanish.

For the numerical results we use the following input values [29]

MZ = 91.1876 GeV ,
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MW = 80.385 GeV ,

MH = 125 GeV ,

Gµ = 1.16637 · 10−5 GeV−2 ,

Mt = 173.21 GeV , (1)

where Mt is the top quark pole mass. To obtain our numerical results we follow Ref. [11]
and use the so-called Gµ scheme where the electromagnetic coupling constant α and the
weak mixing angle (sW ≡ sin θW ) are defined via

c2W = 1− s2W =
M2

W

M2
Z

≈ 0.77710 ,

α =

√
2GµM

2
W s2W

π
≈ 0.0075623 . (2)

Our default PDF set is PDF4LHC15_nlo_100_pdfas [30] which we use to compute both the
LO and NLO cross sections. For the strong coupling constant we use the value provided
by PDF4LHC15_nlo_100_pdfas which is given by

αs(MZ) = 0.118 . (3)

For the implementation of the PDFs we use version 6.1.6 of the LHAPDF library [31] (see
https://lhapdf.hepforge.org/) which also provides the running for αs form MZ to the
chosen renormalization scale µR. Our default choice for the latter and for the factorization
scale µF is the invariant mass of the ZH system

µ2
0 = (pH + pZ)

2 . (4)

If not stated otherwise we choose sH = 14 TeV for the hadronic center-of-mass energy.

In Fig. 2 we compare the partonic cross section of the exact (black solid line) and expanded
results (blue dashed lines, see caption for details). One observes a continuous improvement
of the large-mt approximations below the top quark pair threshold which is at

√
s ≈

346 GeV. However, the characteristic behaviour at threshold and the drop of the cross
section for large values of

√
s cannot be reproduced. We pick up the idea of Ref. [25]1 and

use the expansion terms to construct the [2/2] Padé approximant, see (red) dash-dotted
line in Fig. 2. One observes that the Padé result approximates reasonably well the exact
curve up to

√
s ≈ 346 GeV which is indicated by the vertical dashed line.

In Fig. 3 we show the hadronic cross section for gg → ZH as a function of the cut on the
invariant mass of the Z-Higgs system using the same conventions as in Fig. 2. We observe
a rapid convergence of the 1/mt expansion (blue dashed curves) for mcut

ZH ∼< 350 GeV and
a good approximation of the exact result (solid, black) by the Padé curve (dash-dotted,

1In contrast to [25] we apply the Padé approximation at the level of differential cross sections and not
at the level of the amplitudes. Furthermore, we refrain from performing a conformal mapping since in
our case the gain is marginal.
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Figure 2: LO gg → ZH partonic cross section as a function of the partonic center-of-
mass energy

√
s. The exact result is shown as black solid line and the expansion terms

including 1/m0
t , . . . , 1/m

8
t terms (note that the 1/m2

t term vanishes) are represented by
(blue) dashed lines where shorter-dashed lines include higher order power corrections.
The dash-dotted (red) line represents the [2/2] Padé result, see text.

red). By construction, for large values of mcut
ZH the total cross section is reproduced. It is

interesting to note that for mcut
ZH ∼< 346 GeV the cross section amounts to about a quarter

of total cross section. For this value of mcut
ZH the Padé result yields 16.1 fb which is very

close to the exact result (17.0 fb). On the other hand, the infinite top mass approach only
gives 11.0 fb.

For a collision energy of
√
sH = 8 TeV we obtain for the total hadronic cross section

σ
(exact)
H,LO = 16.0 fb which agrees impressively well with the result obtained from the effective-

theory approximation: 15.8 fb. Since the partonic cross sections have completely different
shapes (cf. solid and long-dashed curves in Fig. 2) this agreement has to be considered as

accidental. In fact, for
√
sH = 14 TeV we have σ

(exact)
H,LO = 61.8 fb whereas the infinite-mt
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Figure 3: Hadronic LO gg → ZH cross section as a function of mcut
ZH , the cut on the

invariant mass of the Z-Higgs system. The exact result is shown in black. The dashed
(blue) curves correspond to the expanded results (see caption of Fig. 2 for more details)
and the [2/2] Padé approximation is shown as dash-dotted (red) curve.

approximation gives 80.5 fb.

3 Partonic NLO corrections

Sample Feynman diagrams contributing to the real and virtual NLO corrections can be
found in Fig. 1. In our calculation we apply standard techniques. In particular, the one-
and two-loop integrals are reduced to master integrals using the program FIRE [32]; the
resulting master integrals can be found in Refs. [33, 34]. For the isolation of the soft and
collinear infrared divergences we follow Ref. [35] which allows to compute differential cross
sections. Although we consider top quark mass effects we express our final result in terms
of αs defined in the five-flavour theory.
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We write the partonic cross section to NLO accuracy in the form

σNLO = σ
(exact)
LO + δσ

(approx)
NLO + δσ

(virt,red)
NLO , (5)

where results for the LO cross section have already been discussed in Section 2.

δσ
(virt,red)
NLO is the contribution from the reducible diagrams where two quark triangles are

connected by a gluon in the t or u channel, see Fig. 1(e) for a sample Feynman diagram.
In Ref. [11] the effective-theory result for the corresponding differential cross section is
given, which is obtained by considering the interference with the LO amplitude. We con-
firm the analytic expression of [11] and add power-suppressed terms up to order 1/m8

t .
Furthermore, we have computed this contribution exactly keeping the full top mass de-
pendence. For the numerical results which we present in Section 4 the exact expression
is used.

In this section we discuss δσ
(approx)
NLO . We define the NLO approximation by factoring out

the exact LO cross section multiplied by the ratio of the in 1/mt expanded NLO and LO
contribution:

δσ
(approx)
NLO = σ

(exact)
LO

δσ
(exp−n)
NLO

σ
(exp−n)
LO

, (6)

where “exp− n” means that the corresponding quantity contains expansion terms up to
order 1/mn

t .

In Fig. 4 we show as (blue) dashed lines the quantities δσ
(exp−n)
NLO and as (red) dashed-dotted

line the [2/2] Padé approximant as a function of the partonic center-of-mass energy
√
s.

We observe a similar behaviour as at LO (cf. Fig. 2). In particular, it can not be
expected that meaningful NLO approximations are obtained for large values of

√
s from

these expansion terms. However, based on observations at LO we expect that the Padé
result provides a reasonable approximation below

√
s ≈ 346 GeV. In Fig. 4 we also show as

(yellow) long- and short-dashed curves the quantity δσ
(approx)
NLO with n = 0 and 8 (the curves

for n = 2, 4, 6 lie in between and are not shown for clarity). The shape is now dictated
by the LO cross section and has a well-behaved high-energy limit. For

√
s < 346 GeV

the two curves are close together, however above the top threshold the n = 8 curve is
significantly higher.

As an alternative to Eq. (6) we consider an approach where the exact LO result is factored
at the differential level, i.e., before the integration over phase space. Schematically we
write

∫

dPS2

∣

∣

∣
M(exact)

LO

∣

∣

∣

2

∣

∣

∣
M(exp−n)

NLO

∣

∣

∣

2

∣

∣

∣
M(exp−n)

LO

∣

∣

∣

2 , (7)

where “dPS2” indicates that we use this kind of factorization for the two-particle phase
space contributions. The contribution from the three-particle phase space (which is nu-
merically small) is added in the infinite top quark mass approximation. The integrand of
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Figure 4: NLO partonic cross section as a function of
√
s. The expansion terms including

1/m0
t , . . . , 1/m

8
t terms are represented by (blue) dashed lines where shorter-dashed lines

include higher order power corrections. The dash-dotted (red) line represents the [2/2]
Padé result. Approximations based on Eqs. (6) and (7) are shown as yellow and brown
curves, respectively. In both cases we either include only the leading top quark mass
corrections (long-dashed curves) or corrections up to order 1/m8

t (short-dashed curves).

Eq. (7) is better behaved than the one for δσ
(exp−n)
NLO in Eq. (6), which might lead to better

approximations for the total cross section. However, below the top quark pair threshold
we only expect small differences between Eqs. (6) and (7).

Fig. 4 shows δσ
(approx)
NLO as obtained from Eq. (7) for n = 0 and 8 as brown dashed lines.

Note that the n = 0 curve lies almost on top of the yellow curve (which is based on
Eq. (6)). This is because the two-particle phase space contributions to the squared matrix
elements are proportional to the LO result. Moreover the three-particle contribution is
small. As before, the n = 0 and n = 8 curves are close together below the top threshold
and significant deviations are observed above.
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Figure 5: NLO contribution δσ
(approx)
H,NLO to the hadronic cross section as a function of mcut

ZH .
The dashed (blue) curves contain expansion terms up to order 1/m8

t and the dash-dotted
(red) curve represents the Padé result. The long-dashed (yellow) curve is based on Eq. (6)
with n = 0.

4 Numerical results for hadronic cross sections

Numerical results for the LO cross section have already been discussed in Section 2. At
NLO we write in analogy to Eq. (5)

σH,NLO = σ
(exact)
H,LO + δσ

(approx)
H,NLO + δσ

(virt,red)
H,NLO . (8)

For the construction of δσ
(approx)
H,NLO we consider three possibilities: (i) we either use the in

1/mt expanded partonic results; (ii) we construct an approximation using Eq. (6) (where
the partonic cross sections are replaced by their hadronic counterparts), or (iii) we utilize
the differential approach of Eq. (7). The latter option is only applied to the total cross
section.

Fig. 5 shows the mcut
ZH dependence of the NLO contribution δσ

(approx)
H,NLO . We concentrate
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√
sH/GeV σ

(exact)
H,LO σ

(exp−0)
H,NLO σ

(re−scale)
H,NLO σ

(diff)
H,NLO σ

[2/2]
H,NLO NLO scale variation

7 11.2 23.9 24.9 26.1 26.5 +21%
−21%

8 16.0 35.2 35.4 37.2 38.8 +20%
−20%

13 52.4 129 113 121 140 +14%
−17%

14 61.8 155 133 142 168 +13%
−16%

Table 1: LO and NLO results for the total cross section in fb. In columns 3 to 6 the
following NLO contributions are added to the exact LO result: infinite top mass ap-
proximation (σ

(exp−0)
H,NLO ), re-scaled NLO contribution based on Eq. (6) (σ

(re−scale)
H,NLO ), re-scaled

NLO contribution based on Eq. (7) (σ
(diff)
H,NLO), and the approximation where below the

top threshold the [2/2]-Padé result and above the infinite top mass approximation is used

(σ
[2/2]
H,NLO). The last column gives the scale uncertainties for σ

[2/2]
H,NLO where µF = µR is

varied by µF/µ0 ∈ [1/3, 3]. The NLO cross sections contain σ
(virt,red)
H,NLO .

on the region below the top quark threshold where approximations are valid. For large
values of mcut

ZH one obtains the total cross section which is briefly discussed below. The
(blue) dashed curves are obtained from the asymptotically expanded results and the dash-
dotted (red) curve is obtained from the [2/2] Padé approximation. The general picture
is similar to the one at partonic level. In particular, one observes a good convergence for
mcut

ZH . 350 GeV and one can expect that the Padé result provides a good approximation
to the unknown exact result. Note that for mcut

ZH = 346 GeV the large-mt approximation
gives 13 fb whereas the Padé result leads to 21 fb which corresponds to an increase of
more than 50%. The total cross section for mcut

ZH = 346 GeV amounts to about a quarter
of the total cross section computed in the infinite top quark mass approximation (see also
below).

The dashed yellow curve in Fig. 5 is based on Eq. (6). It is obtained from the mcut
ZH-

dependence of the exact LO result multiplied by the ratio of the NLO and LO total cross
sections taken in the infinite top quark mass approximation. Below mcut

ZH . 350 GeV
this result and the Padé curve lie basically on top of each other. Very similar results are
also obtained if the ratio of the mcut

ZH-dependent NLO and LO total cross sections are
considered in the effective theory limit. For reasons of clarity the corresponding curve is
not shown in Fig. 5.

We refrain from showing the mcut
ZH dependence for δσ

(virt,red)
H,NLO since this contribution is

numerically small. It is negative and amounts to about 1% of δσ
(approx)
NLO . However, it

is included in the discussion of the total cross section below. Note that the infinite top
quark mass approximation of σ

(virt,red)
H,NLO is off by a factor two.

Table 1 shows the values for the total cross section at LO and for four possible approx-
imations at NLO, see caption for details. The first three approximations treat the top
quark as infinitely heavy, whereas the third one incorporates the heavy quark effects con-
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sidered earlier in the form of a [2/2] Padé approximation. Note, that we only consider
finite top mass corrections for

√
s < 346 GeV. For higher values of s the infinite top

mass limit is applied. One observes, that the finite top mass corrections shift the total
cross section upwards, however, the size is well within the scale uncertainties which are
shown for σ

[2/2]
H,NLO in the last column. Similar uncertainties are also obtained for the other

approximations.

The numerical results discussed in this section and in Section 3 have been obtained with
the help of the program ggzh which can be downloaded from [36]. A brief description of
ggzh can be found in the appendix. ggzh can be used to reproduce the numerical results
of Ref. [11].

5 Conclusions

The associated production of a Higgs and Z boson is a promising channel in view of the
determination of the Higgs boson couplings, in particular the Yukawa coupling to bottom
quarks. We compute top quark mass effects to the loop-induced process gg → ZH at
NLO in QCD by expanding the Feynman amplitudes in the limit of large top quark
mass. Our leading term reproduces the results of Ref. [11]. It is not expected that the
top quark suppressed terms provide a good approximation for large partonic center-of-
mass energies. However, we can show that below the production threshold of two top
quarks, say for

√
s . 350 GeV, the 1/mt-expansion shows a good convergence at NLO.

This is strongly supported by the good agreement of the re-scaled NLO approximation
using the exact LO cross section and the [2/2] Padé approximation constructed from
expansion terms up to 1/m8

t . Thus, the corrections computed in this paper provide a
good approximation to the mZH distributions below

√
s . 350 GeV. This region covers

about 25% of the total cross section. Furthermore, the top mass corrections in this region
constitute an important cross check once the exact calculation of the NLO corrections to
gg → ZH is available. The numerical results presented in this work can be reproduced
with the program ggzh which is publicly available from [36].
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A Brief description of ggzh

Together with this paper we also publish the program ggzh which can be downloaded
from [36]. ggzh includes all contributions to the process gg → ZH which are discussed
in this paper.

ggzh is written in C++. Before compilation it is necessary to install the libraries CUBA [38],
LoopTools [27, 28] and gsl [39]. The corresponding paths should be inserted in the file
Makefile.local. Afterwards, make starts the compilation.

The input file xsection.cfg defines the channels which shall be considered. Furthermore,
one has to decide whether the partonic or hadronic cross section is considered, which pdf
set is used and whether the sum of the considered channels is computed or not. Thus,
xsection.cfg typically looks as follows

active channels: {LO_exact,LO_0}

pdf set: PDF4LHC15_nlo_100_pdfas

hadronic: true

sum channels: false

ggzh outputs partonic cross sections in case hadronic: false is chosen. In the sample
file the exact LO cross section and the effective-theory result including 1/m0

t terms is
computed. Further available channels are LO_<i> with i = 2, 4, 6, 8 for the 1/mi

t contri-
bution and pade22_LO for the [2/2] Padé approximation of the LO cross section. The

1/mi
t contribution to δσ

(approx)
NLO is obtained by summing the channels NLO_phase2_<i>,

NLO_phase2eta_<i> and NLO_phase3_<i> (i = 0, 2, 4, 6, 8) and δσ
(virt,red)
NLO is implemented

in NLO_reducible_exact.

Results based on the differential factorization of Eq. (7) can be obtained via the channels
NLO_differential_phase2 and NLO_differential_phase2eta (remember that Eq. (7)
is only applied to two-particle phase space contributions). The parameter diff_order

in the input file params.cfg specifies the expansion depth used for the LO and NLO
expressions in (7).

The second input file params.cfg contains the values for the various input parameters
needed for the calculation. It overwrites the default values which are given in params.def

together with a brief description of the meaning. The package comes with template files
which clarify the syntax.

ggzh is launched by simply calling the executable in the shell

> ./ggzh

All input parameter are repeated in the output and the results for the individual channels
is given in the form

12



Calculating hadronic cross-section for channel "LO_exact".

Integrating (Vegas) ...

Number of integrand evaluations: 1050000

Integration time: 49s. Per iteration: 0.04697ms

Result [1/(GeV)^2]: 1.5875696750976581e-10

Error [1/(GeV)^2]: 7.5506640742330014e-13

Result [fbarn]: 61.816682911840118

Error [fbarn]: 0.29400725786852289

Relative error: 0.0047561150812284996

Chi^2 Probability: 0.18458145471778875

#points dropped: 0

Calculating hadronic cross-section for channel "LO_0".

Integrating (Vegas) ...

Number of integrand evaluations: 1050000

Integration time: 2s. Per iteration: 0.002444ms

Result [1/(GeV)^2]: 2.0665863953725464e-10

Error [1/(GeV)^2]: 1.3007066760509459e-13

Result [fbarn]: 80.468604254996833

Error [fbarn]: 0.050646830445289774

Relative error: 0.00062939864452967408

Chi^2 Probability: 6.004534622038346e-12

#points dropped: 0

Besides the total cross section it is also possible to introduce a cut on the invariant mass
mZH which is switched on with use_inv_mass_cutoff: 1 in the file params.cfg. The
numerical values for the cut is specified with inv_mass_cutoff: <m_ZH-value>.

With the help of use_mt_threshold: 1 one switches on the possibility to use the infinite
top mass approximation above the value for

√
s given by mt_threshold: <mtthr-value>.

ggzh contains the option to vary µR and µF independently. Furthermore, it is possible
to choose fixed scales (e.g. µR = MH or µR = mt) or identify the scales to the partonic
center-of-mass energy.
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