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1. Introduction

Since the discovery of the Higgs boson [1, 2] a major challenge of the LHC experiments is the
precise determination of the Higgs properties. An important ingredient for corresponding analyses
is the Higgs production cross section in gluon fusion.

The leading order (LO) contributions to σ(pp→ H +X) [3, 4, 5, 6] have been known for a
long time already. Also the next-to-leading order (NLO) QCD [7, 8], electroweak [9] and mixed
QCD-electroweak [10] corrections were obtained. At next-to-next-to-leading order (NNLO) the
contributions have been computed in the limit of an infinitely heavy top quark [11, 12, 13, 14]. At
the same order also the finite top quark mass corrections have been studied [15, 16, 17, 18, 19, 20,
21], which amount to 1%.

For a calculation of Higgs production at N3LO the effective Higgs-gluon coupling is needed
at the same accuracy, which was achieved in a four loop calculation [22, 23, 24]. Furthermore
the O(ε) contributions to the NNLO master integrals [21, 25] as well as the LO, NLO and NNLO
partonic cross sections to higher orders in the dimensional regulator are known [26, 27]. The nec-
essary convolutions of partonic cross sections with splitting functions from collinear factorization
were obtained in [26, 28, 27]. The dependence on the factorization and renormalization scales is
known to N3LO [27].

Finally, using asymptotic expansions to very high orders in the soft limit, the complete N3LO
contribution to gg→ H was obtained [29, 30] reaching an accuracy which is high enough for
phenomenological application. Nevertheless a second computation is needed to confirm the result.
Here I want to present a step in this direction, which is the analytic computation of the contribution
with two quarks of different flavor in the initial state. In particular, I will detail two technical
aspects: some advantages of using a canonical basis of master integrals for the computation, as
well as the properties of the iterated integrals appearing in the result of the calculation.

2. An exact computation of the qq′-channel

The effective theory of QCD with an infinite top quark mass is given by the lagrangian density

LY,eff = −
H
4v

C1(GµνGµν)+L
(5)

QCD . (2.1)

where the Lagrangian of five flavor QCD is denoted by L
(5)

QCD, H is the Higgs field, v its vacuum
expectation value and C1 is the matching coefficient between the full and the effective theory. Gµν

is the gluonic field strength tensor.
In the effective theory the cross section for gg→ H depends on one kinematical quantity

x =
mn

s
(2.2)

only, where mh is the Higgs mass and s is the partonic center of mass energy.
In this paper we consider the process qq′→ H, which contributes to the N3LO corrections to

Higgs production in the gluon fusion channel. The diagrams are organized in 17 Topologies, and
are characterized by two quark lines of different flavor passing from the initial state through to the
final state. Thus the final state contains at least two real partons in addition to the Higgs boson. As
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a consequence, one has to deal with real-real-virtual contributions (3-particle phase space integrals)
as well as triple real contributions (4-particle phase space integrals).

In order to deal with the computation of the phase space integrals we makes use of the rela-
tion between phase space integrals and loop integrals [13] as given by the Cutkosky rules. This
correspondence makes it possible to apply methods for loop calculations to the problem, such as
integration by parts relations, or more precisely the reduction to master integrals. Details to the
IBP reduction are given in [31].

The reduction to master integrals also supplies one with the possibility of deriving a coupled
system of differential equations

∂x f̃ (x,ε) = Ã(x,ε) f̃ (x,ε), (2.3)

for the master integrals. Solving such a system is straight forward if a change of basis

f (x,ε) = B(x,ε) f̃ (x,ε), (2.4)

can be found such that the differential equation assumes the shape (cf. [32])

∂x f (x,ε) = εA(x) f (x,ε). (2.5)

Here the vector of master integrals f̃ is mapped onto the canonical master integrals f via the matrix
B(x,ε). The matrices A(x,ε) and A(x) define the respective differential equations.

For canonical differential equations of the topologies of the qq′ → H channel one finds the
general form

A(x) =
a

1− x
+

b
1+ x

+
c
x
+

d
1+4x

+
e

x
√

1+4x
. (2.6)

where d and e only contribute to the topology in fig. 1.
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Figure 1: The topology BT3 generates iterated integrals with square root letters.

The solution of the differential equation can then be constructed order by order in ε , introduc-
ing appropriate integration constants. The integration constants are fixed from direct computations
of the master integrals in the limit x→ 1. For the computation of these boundary values we refer
to [31].
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3. Relations among the boundary values

Apart from the construction of the x-dependence to finite order in ε , the canonical differential
equation also supplies one with the resummation of the leading logarithms log(1− x) in the limit
x→ 1. As was observed in [33], the knowledge of the expansion regions contributing to this limit
together with the resummed solution in the same limit already has the power to imply relations
among the boundary values.

The reasoning starts with the observation that a differential equation

∂x f =
εa

1− x
f (3.1)

can be solved to all orders in ε by a matrix exponential

f (x,ε) = R T (x,ε) fR with T (x,ε) := (1− x)−εΛ exp
{
−(J−Λ)ε log(1− x)

}
, (3.2)

where Λ = diag(λ1, ...,λn) is the diagonal of the Jordan normal form J of a. Furthermore R relates
the two matrices with each other, i.e. a = RJR−1. The vector fR is independent of x.

With this in mind, we write the canonical differential equation as

∂x f (x,ε) =
[

εa
1− x

+ εB(x)
]

f (x,ε), (3.3)

where B(x) is regular in the limit x→ 1. Transforming f via g := T−1(x,ε)R−1 f , one finds the
differential equation

∂xg(x,ε) = εT−1R−1BRT g (3.4)

which shows, that g only receives log(1− x)-contributions starting from O((1− x)1).
As was pointed out in [33], each entry in g is now connected with a unique factor (1− x)−ελi .

On the other hand, expansion by regions associates with each region a factor of the same kind. If
factors of this type occur in Λ, which don’t occur in the asymptotic expansion of the according
master integrals, the corresponding initial values of g vanish, which implies relations among the
integration constants for the canonical master.

Another source of relations originates in the interplay of the basis change from the master
integrals of the reduction to the canonical masters with the matching of the boundary values. The
soft expansions of the master integrals have to be transformed into the canonical basis before the
matching of the integration constants can be performed. The solved and matched canonical masters
are then mapped back onto the reduction basis. If this is done with generic expressions for the soft
expansions, one observes that some matched master integrals, when expanded, are completely
determined from expansion coefficients of other master integrals.

4. Iterated integrals with square root letters

All integral families, except for the one depicted in fig. 1 evaluate to harmonic polylogarithms.
The iterated integrals which leave the class of HPLs contain an irrational letter with square roots,
and occur with maximum weight 5. Iterated integrals with square root letters have been studied
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before [34, 35, 36, 37]. Methods for algebraic manipulations and other properties of these objects
are available in the Mathematica package HarmonicSums [38, 39, 40], which was used in the
present calculation.

Since the integration constants are determined from the soft expansions of the master integrals,
we need the soft expansion of the iterated integrals with square roots. If the matching is performed
in the canonical basis, however, only the leading terms are needed which are of orders (1− x)0

and log(1− x)i. This simplifies the expansion procedure for the iterated integrals. Note, that an
iterated integral H~w(x) is finite in the limit x→ 1 if there is at most one letter in the alphabet that
is divergent in that limit and this letter does not occur in the leftmost position in ~w. Here the only
divergent index is 1/(1− x). So the procedure for determining the leading terms takes the form

1. Remove the index 1/(1−x) away from the leftmost position, making all divergencies explicit
in terms of factors log(1− x)i.

2. Evaluate all remaining finite iterated integrals at 1.

3. Reduce the constants to a basis.

This procedure is independent of the actual set of letters which are finite in x→ 1, so in particular
it works if (finite) square root letters are present.

Figure 2: Common subtopology of all the graphs in BT3 which generate square root letters.

The square root letters only occur in the topology BT3, cf. fig. 1. Out of the 24 master integrals
of this topology which are needed, only six canonical master integrals show the square root letter.
All others can be represented in terms of harmonic polylogarithms. The master integrals in which
square root letters occur can be classified as having the common subtopology drawn in Fig. 2. The
contributing integrals with this property are

BT3(1,0,0,1,1,1,1,1,1,0,0,0),

BT3(1,0,−1,1,1,1,1,1,1,0,0,0),

BT3(1,0,0,1,1,1,1,1,1,1,0,0),

BT3(1,1,1,1,1,1,1,1,1,0,0,0),

BT3(1,1,1,1,1,1,1,1,1,0,−1,0),

BT3(1,1,1,1,1,1,1,1,1,−1,0,0) . (4.1)

Since the square root letter is combined only with 1/x and 1/(1+ x) in the final result, it
is possible to transform the alphabet into a rational alphabet with the transformation x→ (1−
x′)/x′2. This however introduces the cyclotomic letters 1/(1− x′− x′2) and x′/(1− x′− x′2) (for
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the definition and properties of cyclotomic polylogarithms, the reader is referred to [41]). The
cyclotomic polynomials can be factorized over the complex numbers, leading to a representation
of the functions in terms of multiple polylogs. This leads to a complex representation in the three
letter alphabet {1,0,(−1)1/3}. Here is an example for such a relation:

H0,−1,s4(x) = −8H1

(
2x−

√
4x+1+1
2x

)
Re
[

H1,e3

(
2x−

√
4x+1+1
2x

)]
+4Re

[
H0,e3,1

(
2x−

√
4x+1+1
2x

)]
+16Re

[
H1,1,e3

(
2x−

√
4x+1+1
2x

)]
−4H0,1,1

(
2x−

√
4x+1+1
2x

)
+

4
3

H1
3
(

2x−
√

4x+1+1
2x

)
,

where the index s4 refers to the letter fs4 =
1
x

(
1√

1+4x
−1
)

.

5. Conclusions

I reported on the computation of contributions to Higgs production in gluon fusion at N3LO
from diagrams with two quarks of different flavor in the initial state. The computation is performed
in the limit of an infinite top quark mass. Integration by parts relations were used for a reduction to
master integrals. The master integrals were determined using differential equations and a canonical
basis.

This paper focused on the one hand on technical advantages in the use of a basis of canonical
master integrals. In particular it was used to derive additional relations for the boundary conditions.
A second focus was set onto the structure of the result. Here an interesting feature is the occur-
rence of iterated integrals with square root letters, which can be related to multiple polylogarithms
involving the sixth root of unity.

The analytic results were published in [31].
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