
ar
X

iv
:1

60
9.

07
15

1v
1 

 [
he

p-
la

t]
  2

2 
Se

p 
20

16
ALBERTA-THY-09-16

Coulomb Artifacts and Bottomonium Hyperfine Splitting in Lattice NRQCD.

T. Liu,1 A.A. Penin,1, 2 and A. Rayyan1

1Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
2Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

We study the role of the lattice artifacts associated with the Coulomb binding effects in the
analysis of the heavy quarkonium within lattice NRQCD. We find that a “näıve” perturbative
matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the
lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for
the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the
radiatively improved lattice NRQCD [1, 2]. We show that the correct matching procedure which
provides full control over discretization errors is based on the asymptotic expansion of the lattice
theory about the continuum limit, which gives MΥ(1S) −Mηb(1S) = 52.9± 5.5 MeV [1].

The lattice simulations within the effective theory of
nonrelativistic QCD (NRQCD) [3, 4] has developed into
one of the most powerful tools for the theoretical anal-
ysis of heavy quarkonium properties [5]. This method
is entirely based on first principles, allows for simultane-
ous treatment of dynamical heavy and light quarks and
gives a systematic account of the long distance nonper-
turbative effects of the strong interaction. The pertur-
bative matching of lattice NRQCD to the full theory of
relativistic continuum QCD is thought to be well un-
derstood. One of the most interesting applications of
the method is the analysis of the bottomonium hyperfine
splitting. The latter quantity, defined by the mass dif-
ference Ehfs = MΥ(1S) −Mηb(1S), has been a subject of
much controversy since the first observation of the spin-
singlet ηb state in radiative decays of the Υ(3S) mesons
by the BaBar collaboration [6]. The measured value of
the hyperfine splitting overshot the predictions of pertur-
bative QCD [7] by almost a factor of two, well beyond the
experimental and theoretical uncertainty bands. Such
a discrepancy would indicate a serious failure of per-
turbative QCD in the description of the bottomonium
ground state, in clear conflict with the general concept
of the heavy quarkonium dynamics. Further experimen-
tal studies [8–10] were consistent with the initial mea-
surement, while the Belle collaboration reported a sig-
nificantly lower value of the splitting with higher experi-
mental precision [11]. The advance of lattice NRQCD is
expected to provide an accurate model-independent pre-
diction and solve the problem on the theory side. Sur-
prisingly, the two most recent independent calculations
of the hyperfine splitting [1, 2] which fully incorporate
the one-loop radiative corrections give significantly dif-
ferent values of the splitting, see Table I. The analysis [1]
reconciles the theoretical predictions of lattice and con-
tinuum QCD, as well as the most accurate experimental
data [11]. On the other hand the result of Ref. [2] is close
to the PDG average [12] but is not fully consistent with
the perturbative QCD estimate [7]. Both calculations are
based on the same lattice data and the discrepancy be-
tween the results exceeds what one would expect for the
perturbative approximations which are formally of the
same order in the strong coupling constant αs. At the

same time Refs. [1, 2] rely on different methods of per-
turbative matching and the inconsistency of the results
indicates that a careful study of the general procedure
of the radiative improvement of lattice NRQCD is neces-
sary.

In this paper we study a subtle problem of the lattice
NRQCD analysis of the heavy quarkonium spectrum re-
lated to the lattice artifacts associated with the Coulomb
binding effects. We show that a widely used direct nu-
merical matching procedure [13, 14] generates spurious
linear Coulomb artifacts and, in particular, leads to a
large systematic error in the lattice prediction for the
hyperfine splitting [2, 5]. The problem is related to the
all-order character of the Coulomb binding effects and is
naturally solved when the perturbative matching of lat-
tice NRQCD is performed through the asymptotic expan-
sion about the continuum limit [1]. We show that after
removing the spurious contribution the result of Ref. [2]
is in a good agreement with [1].

The paper is organized as follows. In the next section
we outline the general framework and describe different
approaches to the fixed order perturbative matching. In
Sect. II the structure of the Coulomb lattice artifacts is
studied in detail. The result is applied to the analysis of
the hyperfine splitting in Sect. III. Sect. IV is our sum-
mary and conclusion.

I. RADIATIVE IMPROVEMENT AND

MATCHING IN LATTICE NRQCD

Within the NRQCD approach the hard modes, which
require a fully relativistic analysis, are separated from
the nonrelativistic soft modes. The dynamics of the soft
modes is governed by the effective nonrelativistic action
given by a series in heavy quark velocity v, while the
contribution of the hard modes is encoded in the corre-
sponding Wilson coefficients. The nonrelativistic action
can be applied in a systematic perturbative analysis of
the heavy quarkonium spectrum [15–17]. At the same
time the action may be used for lattice simulations of
the heavy quarkonium states, which gives full control
over nonperturbative long-distance effects [18, 19]. In
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the latter approach the inverse lattice spacing a plays
a role of the effective theory cutoff separating the hard
scale mq and the soft scale vmq, where mq is the heavy
quark mass.
As an example, let us consider the spin-dependent part

of the NRQCD Lagrangian, which is responsible for the
hyperfine splitting to O(v4). It reads (see e.g. [20, 21])

Lσ =
cF
2mq

ψ†
Bσψ + (ψ → χc) + dσ

CFαs

m2
q

ψ†
σψχ†

cσχc,

(1)
where B is the chromomagnetic field, CF = (N2

c −
1)/(2Nc) is the SU(Nc) color group factor, ψ (χc) are the
nonrelativistic Pauli spinors of quark (antiquark) field,
and we have projected the four-quark interaction on the
color-singlet state. The coefficients cF = 1 +O(αs) and
dσ = O(αs) parameterize the quark anomalous chromo-
magnetic moment and the effective local four-quark inter-
action, respectively. In the given order of the NRQCD
expansion in 1/mq they depend logarithmically on the
effective theory cutoff 1/a. This dependence can be pre-
dicted to all orders of perturbation theory by renormal-
ization group methods (see e.g. [22, 23]). The radiative
improvement of the action is therefore mandatory for the
correct continuum limit.
The effect discussed in this paper is characteristic for

the quark-antiquark interaction and we focus on the Wil-
son coefficient dσ of the four-quark operator. It vanishes
in the Born approximation and is determined by match-
ing the one-particle irreducible quark-antiquark scatter-
ing amplitudes in QCD and NRQCD. The matching be-
comes particulary simple when the amplitude is com-
puted at the quark-antiquark threshold and vanishing
momentum transfer. In this case the one-loop full QCD
amplitude is

MQCD
1PI =

CFα
2
s

m2
q

[

CA

2
log

(mq

λ

)

+ (ln 2− 1)TF

+

(

1− 2πmq

3λ

)

CF

]

ψ†
σψχ†

cσχc,

(2)

where CA = Nc, TF = 1/2, and we introduced a small
auxiliary gluon mass λ to regulate the infrared diver-
gence. The power enhanced 1/λ term corresponds to the
Coulomb singularity of the threshold amplitude, while
the term proportional to TF is due to the two-gluon an-
nihilation of the quark-antiquark pair.
On the other hand the lattice NRQCD result for the

one-loop amplitude to the same order in 1/mq can be
written as follows

MNRQCD
1PI =

CFα
2
s

m2
q

[

−
(

δ +
1

2
ln (aλ)

)

CA − 2πmq

3λ
CF

+
dσ
αs

]

ψ†
σψχ†

cσχc +O(a), (3)

where the nonlogarithmic nonabelian term δ depends
on a particular realization of the lattice action. The

Experiment

BaBar, Υ(3S) decays[6] 71.4+2.3
−3.1(stat)± 2.7(syst)

BaBar, Υ(2S) decays [8] 66.1+4.9
−4.8(stat)± 2.0(syst)

Belle, hb(1P ) decays [11] 57.9± 2.3

PDG average [12] 62.3± 3.2

Theory

NRQCD, NLL [7] 41± 11(th)+9
−8(δαs)

Lattice QCD [26] 54.0± 12.4+1.2
−0.0

Lattice NRQCD O(v4) [5] 68± 9

Lattice NRQCD O(v6) [2] 60.0± 6.4

Lattice NRQCD [1] 52.9± 5.5

TABLE I. Results of high-precision experimental and theoret-
ical determinations of the bottomonium hyperfine splitting in
MeV.

matching procedure determines the Wilson coefficient
dσ by equating the effective and full theory amplitudes,
Eqs. (2,3), to a given order in αs and 1/mq. The sub-
tlety in this procedure is related to the treatment of the
terms in the NRQCD amplitude which vanish in the con-
tinuum limit. Below we compare two different matching
prescriptions currently used in lattice NRQCD calcula-
tions.

A. Expansion about the continuum limit

This approach has been developed in [1] and relies
on the formal asymptotic expansion of the lattice loop
integrals about the continuum limit [24] to obtain the
NRQCD amplitude as a series in a order by order in the
heavy quark mass expansion. To the leading order in
1/mq and a it gives (cf. Eqs. (2,3))

dσ = αs

[(

δ +
1

2
L

)

CA + (ln 2− 1)TF + CF

]

, (4)

where L = ln(amq). For the simplest lattice action with
no improvement for gluonic and heavy quark fields the
method provides the analytical result [1]

δnaive = −7

3
+ 28π2b2 − 256π2b3 = 0.288972 . . . , (5)

where the irrational constants b2 = 0.02401318 . . ., b3 =
0.00158857 . . . parameterize the lattice tadpole integrals
and can be computed with arbitrary precision. For the
HPQCD action [5], which is used in real simulations,
the nonlogarithmic coefficient has been computed numer-
ically [1]:

δ = 0.1446(28) . (6)

Note that Eq. (3) has only a logarithmic singularity in a
in the formal continuum limit a→ 0. In higher orders of
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the NRQCD expansion in 1/mq the asymptotic expan-
sion includes more singular terms with a negative power
of a. Such 1/(amq)

n terms are suppressed with respect
to Eq. (3) in the region 1/a≪ mq, where lattice NRQCD
is applied.

B. Direct numerical matching

This approach has been originally used for the radia-
tive improvement of lattice NRQCD. Within this pre-
scription for a given action in a given order in αs the
NRQCD amplitude is computed numerically without the
expansion in 1/mq and a. The Wilson coefficient is
then determined by the difference between the QCD and
NRQCD amplitudes in the limit λ→ 0. Since no expan-
sion is performed, it has a nontrivial dependence on a
dimensionless variable amq and can be written as follows

dσ = αs

[

CA

2
L+ (ln 2− 1)TF +∆(amq)

]

, (7)

where the logarithmic and annihilation contribution are
separated and given in an analytic form. The function
∆(amq) can formally be expanded in an asymptotic series

∆(amq) =
∑

n

(amq)
n∆(n), (8)

where the lower summation limit is negative and depends
on the approximation used for the NRQCD action. To
determine the function ∆(amq) we use the numerical
data of the most recent analysis [2] based on the O(v6)
action.1 In Ref. [2] the numerical values of the Wilson
coefficient are given for three different values of the lat-
tice spacing corresponding to amq = 1.95, 2.73, 3.31,
where the actual lattice simulations are performed. Nu-
merical simulations [2, 14] show that in general the terms
with negative n become important for significantly lower
values of the lattice spacing corresponding to amq ∼ 1
and can be neglected in the region under consideration.
Indeed, the numerical data are well approximated by a
linear function with the coefficients

∆(0) = 1.31(3), ∆(1) = −1.52(1). (9)

The zero-order term of the expansion can be related to
the value of the Wilson coefficient obtained through the
expansion about the continuum limit, Eq. (4), as follows

∆(0) = δCA + CF = 1.767(9), (10)

in a reasonable agreement with Eq. (9). A characteristic
feature of the result of the numerical matching is the

1 In Refs. [2, 5, 13, 14] a different basis of the four-quark operators
is used and the Wilson coefficient dσ/αs should be identified with
the linear combination 9

8
(d1 − d2)

(a) (b)

FIG. 1. One-loop Feynman diagrams with Coulomb singular-
ity contributing to the spin-dependent one-particle irreducible
part of the scattering amplitude in QCD (a) and NRQCD
(b). The symmetric NRQCD diagram is not shown. In the
diagram (b) the double arrow, dashed and wavy lines stand
for the nonrelativistic quark, Coulomb and transverse gluon
propagators, respectively. The black circles denote the ef-
fective spin chromomagnetic interaction proportional to the
Wilson coefficient cF in Eq. (1).

linear dependence of the Wilson coefficient on a, which
is unusual for the lattice simulations with the improved
action. It is related to the Coulomb binding effects in
heavy quarkonium discussed in the next section.

II. COULOMB BINDING EFFECTS ON THE

LATTICE

In perturbation theory the Coulomb binding effects
shows up through the singular (αs/v)

n terms in the con-
tribution of the n-loop planar ladder diagrams. Since
in an approximately Coulomb bound state v ∼ αs, such
terms have to be resummed to all orders. In the per-
turbative approach [16] this is done by constructing the
perturbative expansion about the Coulomb nonrelativis-
tic solution rather than the free quark and antiquark.
At the same time the characteristic momentum scale of
the Coulomb dynamics is vmq ≪ 1/a and the Coulomb
effects are included in the lattice NRQCD simulations
along with the nonperturbative effects of strong interac-
tions at the scale ΛQCD. The Coulomb contribution is
ultraviolet finite and therefore its effect on the matching
coefficients is suppressed by a power of a, i.e. is a lat-
tice artifact. Below we consider the role of such Coulomb
artifacts in the calculation of the coefficient dσ.

A. One-loop Coulomb artifacts

The Coulomb singularity is contained in the planar box
diagrams of QCD (Fig. 1a) and NRQCD (Fig. 1b), and
takes the form αsmq/λ since the matching calculation is
performed with v = 0. Let us consider the evaluation of
the corresponding contribution to the NRQCD amplitude
to O(a). The expansion of the lattice NRQCD Feynman
rules in a generates the second or higher order terms so
we can use the continuum expressions for the gluon and
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nonrelativistic heavy quark propagators

Dµν(k) =
gµν

k2 − λ2
, S(k) =

1

k0 − k
2/(2mq)

, (11)

where k = (k0,k). After integrating over the time com-
ponent of the virtual momentum by taking the residue of
the heavy quark propagator, the Coulomb contribution
to the scattering amplitudes takes the form

MNRQCD
C = − 2

3π

C2
Fα

2
s

mq

[
∫

B

dk

(k2 + λ2)2

]

ψ†
σψχ†

cσχc

+O(a2), (12)

where the integration over the spatial virtual momen-
tum is restricted to the first Brillouin zone. Without loss
of generality we consider a spherically symmetric lattice
with the Brillouin zone defined by |k| < π/a, and after
integrating over the angular components obtain

∫

B

dk

(k2 + λ2)2
=

∫ π/a

0

d|k| 4πk2

(k2 + λ2)2

=
π2

λ
− 4a+O(a2). (13)

The contribution of the first singular term of Eq. (13)
agrees with Eq. (3), while the second term represents the
linear Coulomb lattice artifact corresponding to ∆(1) =
− 8

3
CFαs

π in the expansion Eq. (8). This coefficient is
independent of the infrared cutoff but does depend on
the approximation for the NRQCD action. For example,
let us consider the O(v4) heavy quark propagator

S(k) =
1

k0 − k
2/(2mq) + k

4/(8m3
q)
. (14)

The correction term in the denominator of Eq. (14) re-
sults in an additional contribution to the integral in
Eq. (12)

−
∫ π/a

0

d|k| π

(m2
q − k

2/4)
= −4a+O(1/mq), (15)

where we neglected the gluon mass since the integral is
infrared finite. Thus the O(v4) correction to the non-
relativistic kinetic energy increases the coefficient of the
linear term by factor two, which gives

∆(1) = −16

3

CFαs

π
. (16)

For comparison with the direct numerical matching this
value should be multiplied by a geometrical factor ν =
0.831 . . ., which converts the result obtained on the spher-
ically symmetric lattice into the one for the standard cu-
bic lattice [1]. This gives ∆(1) ≈ −1.87, which is slightly
above the O(v6) value of Eq. (9), but is in a very good
agreement with the value ∆(1) ≈ −1.82 obtained from
the fit of the O(v4) result [13]. Numerically the one-loop
linear artifact dominates the series in Eq. (8) for typical

values of a and one may argue that its inclusion into the
Wilson coefficient is mandatory. However the above anal-
ysis takes into account only a single Coulomb gluon ex-
change while the effect of multiple Coulomb exchanges is
not parametrically suppressed and significantly changes
the structure of the expansion in a as discussed in the
next section.

B. Coulomb artifacts to all orders

Though we consider the properties of the heavy
quarkonium bound states, the analysis of the previous
sections involved the scattering amplitudes of the free
quark and antiquark. This is sufficient if in the matching
region the binding effects can be expanded in a regu-
lar series in αs. The Coulomb artifacts, however, are
related to the dependence of the bound state character-
istics on the lattice spacing, which cannot be described
within the finite-order perturbation theory. In this case
the matching procedure should be applied to the matrix
elements of the effective action operators between the
quarkonium states with the wave functions computed on
the lattice and in the continuum. The relevant nonrela-
tivistic Coulomb wave function in the continuum is well
known. On the lattice it can be obtained in a straight-
forward way by solving the nonrelativistic Schrödinger
equation as a difference equation for a given finite a. In
the formal limit ΛQCD ≪ v2mq one can neglect the non-
perturbative dynamics of strong interactions at long dis-
tance and the result obtained by numerical solution of the
disretized Schrödinger equation provides the same bound
state wave function as the real lattice simulations based
on the functional integral approach.
Let us apply the above “Schrödinger matching” ap-

proach to the analysis of the hyperfine splitting. The
relevant four-quark operator is generated by the mag-
netic gluon exchange and corresponds to the leading or-
der spin-dependent amplitude2

MNRQCD
LO = −2

3

CFαs

m2
q

ψ†
σψχ†

cσχc . (17)

In coordinate space this local spin-flip operator is propor-
tional to δ(x). The corresponding matrix element, which
in fact determines the leading order hyperfine splitting, is
proportional to |ψ(0)|2, where ψ(x) is the ground state
quarkonium wave function. The Coulomb solution for
this quantity takes into account the contribution of all-
order Coulomb exchange diagrams including Fig. 1b. In
the continuum it reads |ψ(0)|2 = C3

Fα
3
sm

3
q/(8π). The lat-

tice value of the wave function at the origin is obtained by
numerical solution of the Schrödinger equation with the

2 In a Coulomb system the infrared divergences are regulated by
the dynamically generated binding energy and we can neglect
the fictitious mass in gluon propagator.
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Coulomb Hamiltonian. It is performed on a spherically
symmetric lattice, which retains the qualitative proper-
ties of the solution. To match the setup of real lattice
simulations [19] we use the central difference discretiza-
tion of the kinetic energy operator, which has O(a4) local
error. The boundary condition of the eigenstate problem
is determind by the value of the exact continuum solution
at sufficiently large distance, where the wave function is
exponentially suppressed. Though the parameters of the
bound state can be obtained for an arbitrary value of lat-
tice spacing, we are interested in their behavior at small
a. For the expansion of the ground state energy and the
wave function at the origin about their continuum values
we get

E = −C
2
Fα

2
smq

4

(

1− 1

4
ā2 +O(ā4)

)

, (18)

|ψ(0)|2 =
C3

Fα
3
sm

3
q

8π

(

1− 1

2
ā2 +O(ā4)

)

, (19)

where ā = CFαsamq/2 is the dimensionless lattice spac-
ing in Coulomb units, and the rational coefficients of the
expansion are conjectured from the high accuracy numer-
ical result. The expression for the ground state energy is
not required for our analysis and is given for complete-
ness. Eq. (19) does not have a linear dependence on a.
This may be expected since the integration of a second
order difference equation with O(a4) local discretization
error gives O(a2) global error of the solution (see e.g.

[25]).
Eq. (19) determines the difference between the lat-

tice and continuum results for the matrix element of the
leading order spin-flip operator Eq. (17). They can be
matched by adding to the lattice NRQCD action the
four-quark operator with dσ, which has the following co-
efficients of the expansion in amq

∆(1) = 0, ∆(2) = − (CFαs)
2

12
. (20)

Thus when the Coulomb effects are taken into account
consistently to all orders in αs, the linear artifact in
the four-quark matching coefficient is absent and the
first nonvanishing term is quadratic in a. The qualita-
tive difference between the one-loop and all-order expres-
sions can be attributed to the modification of the bound
quark propagator at large momentum, which make the
all-order result less sensitive to the ultraviolet cutoff. We
would like to emphasize that though the coefficient ∆(2)

is proportional to α2
s, it gets contributions from all-order

Coulomb exchange diagrams. This coefficient is changed
by the higher order terms in the NRQCD action and is
different for the standard cubic lattice, as in the case of
the linear artifact discussed in the previous section. In
principle, within the same method the Coulomb lattice
artifacts can be evaluated for a given NRQCD action on
a given lattice. However for practical applications they
can be removed along with the nonperturbative artifacts
by the extrapolation of the lattice data to a = 0, as it is

FIG. 2. The results of the lattice simulation of the bottomo-
nium hyperfine splitting with O(v6) NRQCD action and the
four-quark Wilson coefficient given by (a) the asymptotic ex-
pansion about the continuum limit [1], (b) the direct numer-
ical matching and (c) dσ = 0 [2]. All data points include the
statistical error and the uncertainty in the value of the lattice
spacing. The error bars of (a) include also the uncertainty due
to the higher order perturbative corrections. The difference
between (a) and (b) data sets is mainly due to the spurious
linear Coulomb artifact contributing to (b).

discussed in the next section. The absence of the linear
artifact is crucial for this procedure though.

III. DETERMINATION OF THE ENERGY

SPECTRUM FROM THE LATTICE DATA

Let us now consider how the Coulomb artifacts affect
the determination of the energy spectrum from the lat-
tice data. The results of nonperturbative lattice NRQCD
simulations are typically given for a ∼ 1/(vmb) [2, 5].
The use of relatively large values of the lattice spacing
ensures the suppression of the unphysical 1/(amb)

n con-
tributions, which become important at a ∼ 1/mb . At
the same time it results in sizable Coulomb lattice arti-
facts proportional to a power of αsamb ∼ 1. In addition
the lattice data include the nonperturbative lattice arti-
facts which scale as (aΛQCD)2 and cannot be removed
through the matching procedure discussed above. To
minimize these effects the results of the lattice simula-
tions are numerically extrapolated to a = 0. The extrap-
olation below a ∼ 1/mb in this case is justified because
the numerical effect of the 1/(amb)

n terms on the data
points is small. Since the radiatively improved lattice
result is supposed to be free of linear artifacts, the ex-
trapolation is performed through a constrained fit of the
data points by a polynomial in a with vanishing linear
term (see e.g. [1, 2, 5]). The correct treatment of the
linear artifacts is therefore crucial for the extrapolation
procedure. As it has been shown in the previous section
by the analysis of the discretized Schrödinger equation,
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the linear Coulomb artifacts are absent in the bare lattice
data. The contribution of the four-quark interaction to
Ehfs reads

∆Ehfs = −dσ
4CFαs

m2
q

|ψ(0)|2. (21)

Thus the linear Coulomb artifact in the Wilson coefficient
obtained by the direct numerical matching [13, 14] results
in s spurious linear dependence of the radiatively im-
proved lattice data on a, which leads to a systematic error
in the extrapolation procedure based on the fit with the
vanishing linear term. At the same time the Wilson co-
efficient obtained by the asymptotic expansion about the
continuum limit is free of the Coulomb artifacts and pro-
vides the correct functional dependence of the radiatively
improved lattice data on a and therefore can be used for
consistent extrapolation procedure. The numerical effect
of the spurious linear artifact turns out to be very signifi-
cant, see Fig. 2. The analysis of the hyperfine splitting [1]
based on the O(v6) lattice simulations and the matching
coefficient from Eq. (4) gives Ehfs = 51.5. At the same
time the analysis [2] based on exactly the same lattice
data gives Ehfs = 60.0. The discrepancy between the
results is mainly due to the spurious linear artifact and
is well beyond the reported discretization/extrapolation
uncertainty, which is below 3 MeV. Thus the analysis of
the hyperfine splitting in Refs. [2, 5, 13, 14] contains a
systematic error and should be corrected.
The result of the direct numerical matching can yet

be used for the self-consistent analysis of the quarko-
nium spectrum through the decomposition of the form
of Eqs. (7,8). After separating the logarithmic part, the
result for the Wilson coefficient should be fitted by a
polynomial in amq and the linear term of the expansion
should be subtracted. In the case under consideration
only the ∆(0) term should be retained in dσ. The further
analysis follows Ref. [1] with the coefficient ∆(0) from
Eq. (10) substituted by the one from Eq. (9). This gives
the central value Ehfs = 52.7, which is significantly below
the result of Ref. [2] but in a very good agreement with
the O(v6) result of Ref. [1] given above.
Though the quadratic Coulomb artifact is eliminated

by extrapolation, it is instructive to estimate its contri-
bution to the dependence of the lattice data on a and
corresponding uncertainty in the the extracted value of
Ehfs. The result of the fit for the hyperfine splitting can
be represented as follows

Elattice
hfs = Ehfs

(

1− (Λa)2 +O(a3)
)

, (22)

where Λ is the mass scale characterizing the approach of
the lattice approximation to the continuum limit. Nu-
merically one gets Λ ≈ 360 MeV for the O(v4) and
Λ ≈ 790 MeV for the O(v6) lattice action [1]. On the
other hand the quadratic Coulomb artifact with the co-
efficient Eq. (20) corresponds to

Λ =
CFαsmq

2
√
2

, (23)

which gives Λ ≈ 530 MeV for the values of the input
parameters taken in the middle of a typical interval for
the lattice spacing. Though Eq. (23) is obtained in a
simplified model with the Coulomb Hamiltonian and on
a spherical lattice, we can conclude that the quadratic
Coulomb artifact to a large extent determines the depen-
dence of the bare lattice result on a and can be used as a
prior for the constrained fit. As we observed in Sect. II A
the effect of the lattice artifacts is enhanced by the rel-
ativistic corrections since the contribution of the higher
dimension operators is more sensitive to the ultraviolet
momentum region. This explains a slower approach to
the continuum limit and larger discretization errors of the
extrapolation based on O(v6) lattice data. The smaller
discretization uncertainty balances the larger relativistic
corrections in the O(v4) case and both actions provide
comparable total errors. The best estimate is obtained
as the weighted average of two results [1]

Ehfs = 52.9± 5.5 MeV, (24)

which is slightly above the O(v6) result. Hence Eq. (24)
can be considered as an unambiguous and the most ac-
curate lattice NRQCD prediction for the bottomonium
hyperfine splitting available so far.

IV. SUMMARY AND CONCLUSION

In this paper we critically examined the matching
procedure for the radiative improvement of the lattice
NRQCD. We have demonstrated that the Wilson coeffi-
cients of the effective four-quark interaction obtained by
the widely used direct numerical matching suffer from
spurious linear Coulomb lattice artifacts, which result in
a large systematic error in the predictions for the heavy
quarkonium spectrum. This problem is solved by using
the matching procedure based on the asymptotic expan-
sion about the continuum limit. We also have shown how
the direct numerical matching should be modified for a
consistent treatment of the lattice artifacts.
Our analysis resolves the discrepancy between the most

recent lattice NRQCD predictions for the bottomonium
hyperfine splitting [1, 2] in favour of the result of Ref. [1],
Eq. (24), which reconciles the lattice predictions, contin-
uum QCD [7], and the most accurate experimental data
[11].
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