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1. Introduction

In the light of ongoing large-scale experimental effort to search for new particles at the high-
energy frontier, with the daunting task of filtering signalsout of the overwhelming Standard Model
(and, in particular, QCD) background processes, the importance of evaluating the fundamental
building blocks that enter high-precision perturbative expansions cannot be overstated. One class of
such fundamental building blocks are so-called master integrals, which arise in modern Feynman-
diagrammatic multi-loop calculations. In order to optimize the theoretical effort that is invested in
obtaining the necessary high-precision determinations ofphysical observables, it is often desired to
once and for all tabulate universal elements (such as these master integrals) that are required often,
but are difficult or time-consuming to obtain.

Master integrals come in all sorts of flavors, and can be classified according to number of loops,
external invariants, propagator masses, space-time dimension, finiteness, or number content, to
name a few properties. Integration being an art rather than amechanic task such as differentiation,
only a small subset of master integrals is expected to be amenable to analytic methods, while the
majority will need to be approximated numerically, a task complicated by ultraviolet and infrared
divergences and -subdivergences that can be present.

In this contribution, pushing on the loop-frontier, we willfocus on one of the simplest possible
integral classes: fully massive tadpoles, which correspond to vacuum diagrams without external
lines, in which all particles/propagators share a common mass. The mass-dependence then follows
trivially from dimensional arguments, such that, without loss of generality, we can set the mass
parameter to unity, leaving us with a zero-scale problem of computing pure numbers. Indeed, over
the years there have already been a fair number of talks concerning this very class of basic integrals
at this conference series, elucidating any subset of aspects listed above. We wish to continue this
discussion, adding news at five loops.

2. Method

As mentioned in the introduction, we focus on the specific class of fully massive tadpoles
up to 5 loops. The 5-loop integral family needs 15 propagators, of which maximally 12 can be
present in a vacuum graph, see figure 1 for examples. There exist a number of viable methods
evaluating such integrals, such as integration in coordinate space, differential equations (in a mass
ratio, lettingM/m→ 1 in the end), or numerical solutions of difference equations (in a symbolic
propagator powerX that is set to unity the end) via factorial series. We favor the latter approach,
as formulated algorithmically by Laporta [1, 2].

Laporta’s setup, based on integration by parts [3], has already been successfully applied to
the evaluation of a large number of Feynman integrals, and inparticular also to 4-loop massive
tadpoles in 3d [4] and 4d [5, 6]. This makes a 5-loop extensionnatural; for some first results,
see [7]. Our method has been developed and described in more detail in [8] and [9], where the
latter reference in particular contains a substantial fine-tuning of the Laporta approach in order to
delay intermediate expression swell, implementing ideas such as using coupled equations, reducing
recurrence relations, and predicting instability factors, and presents the programTIDE. Regarding
results given earlier [7] and below, we would like to note that, in order to obtain convention-
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J 7 51 63 841 1011 28686

30876 32596 32279 32745 31740 30699 30527

Figure 1: Momentum integralsIn discussed here. Solid lines denote massive propagators 1/(k2+m2).

independent results, we choose to divide eachL-loop integral by the respective power of the 1-
loop massive tadpoleJL which, picking a concrete momentum integral measure and working in
Euclidean space-time, readsJ =

∫

ddk/(k2+1) = πd/2 Γ(1−d/2).

3. Results and checks

We have obtained numerical results for theε-expansions of the set of fully massive tadpoles
at 5 loops, most of which are new. In practice, we aimed at about 300 digits of final precision for
the first tenε-orders in expansions aroundd0 = 2,3 and 4 dimensions. Our results cover the full
set of 63 5-loop sectors with 5 to 11 lines, amassing a total of103 master integrals. A number
of results for four-dimensional expansions of 5-loop masters have already been given elsewhere
[9, 7]. Presently, mainly due to limitations in computer resources, we are unable to obtain results
for the four 5-loop sectors with 12 lines, depicted asI32745, I31740, I30699 and I30527 in figure 1,
which together contain a total of 9 masters integrals. Further optimizations of the codeTIDE [9]
are under way, and we are confident that these last four sectors will be solved in the near future.

As has already been mentioned above, in the programTIDE, a number of new ideas and im-
provements over the original Laporta algorithm have been implemented. Therefore, it is important
to perform cross-checks on the results the code delivers. Tothis end, we have performed successful
checks against known lower-order results, in particular atfour loops in 4d [5, 6] as well as 3d [4].

Furthermore, there is an important internal check that is inherent in the method of difference
equation that we are employing. Except for totally symmetric graphs (which correspond to our 5-
loop sector numbers 28686, 30876 and 31740, see figure 1), forall so-called corner integrals (those
with all propagator powers equal to unity)TIDE generates a number of independent results coming
from deriving difference equations with powerX on inequivalent lines. All of these results have
to coincide atX = 1, and they do within our numerical precision for expansionsaround different
values (we have explicitly checked 4d, 3d, and 2d expansions) of the space-time dimension.

We can also look at specific sets of integrals that are known analytically. As an example, we
take the 2-loop massive sunset vacuum integral, for which ad-dimensional analytic solution in
terms of hypergeometric functions is available [10, 6]. Thenormalized 2-loop sunset integral can
then be expanded to all orders inε in various dimensions, for example:

I7/J2 4−2ε
= − 3

2 −
3
2 ε +3(3H2−1)ε2+3(3H2−6H3−2)ε3+6(3H2−3H3+6H4−2)ε4+ . . . ,

I7/J2 2−2ε
= 6H2 ε2−12H3ε3+24H4ε4−48H5ε5+96H6ε6+ . . . , (3.1)
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where the rather compact expressions are due to having introduced the set of transcendentals

Hn = hn+h1Ĉn−1

(

1−
3ε/2Γ(1− ε)
Γ2(1− ε/2)

)

, hn = n+1Fn
(

1
2, . . . ,

1
2; 3

2, . . . ,
3
2; 3

4

)

, (3.2)

where the operator̂Cn picks out the coefficient of orderεn. For example,H1 = 2π/
√

27, while
3H2 =

√
3Cl2(2π/3) is related to the Clausen function Cln(x) = ∑k>0sin(kx)/kn = ImLin(eix)

that had been studied in relation with massive 3-loop vacuumintegrals [11]. We observe that the
corresponding numerical results forI7 delivered byTIDE agree perfectly with the expansions given
above, in four as well as two dimensions. Generalizing the sunset integral to(L+1) lines connect-
ing two vertices, the corresponding integral classSL can in principle be studied numerically in any
dimension and at any loop order using coordinate-space techniques [12]. Our lower-loop results
I7, I51 andI841 compare favorably withS2, S3 andS4, respectively. At five loops, the corresponding
result forS5/J5 is easily superseeded in precision byTIDE, which delivers at least 250 digits of
(we only show 50 digits here; recall that we divide by the 1-loop tadpole, which corresponds to
multiplying 4d 5-loop integrals byε5)

I28686/J5 = −2.9999999999999999999999999999999999999999999999999ε0

−1.5000000000000000000000000000000000000000000000000ε1

+0.5416666666666666666666666666666666666666666666666ε2

−0.8798611111111111111111111111111111111111111111111ε3

−1.2132523148148148148148148148148148148148148148148ε4

+135.95072868792871461956492733702218574897992953584ε5 . (3.3)

Similarly, for another check at five loops, we consider the classWL of wheel-type integrals
with L spokes. In four dimensions, their leadingε-order is known to all loop orders [13]

WL

JL =
(−1)L Γ(2L−1)

Γ(L)Γ(L+1)
ζ (2L−3)εL−1+O(εL) , (3.4)

with the leading term of our result for

I32596/J5 = −14.116889883346919575757165697897154634398089847913ε4

+235.07729596783467131454388080950411779239347239580ε5

−2267.7386832930084122962994480580205855487545413738ε6 (3.5)

matching the five-loop caseW5/J5 =−14ζ (7)ε4 to 250 digits, and our lower-loop resultsI1011and
I63 matchingW4 andW3 to tens of thousands digits. In the same spirit, consideringthe familyZL of
L-loop zigzag-type integrals, we can compare with known all-loop-order results in four dimensions,
which in terms of the previous class reads [14, 15, 16]

ZL

JL =
WL

JL

4
L

(

1+
(−1)L −1

22L−3

)

+O(εL) . (3.6)

The leading term of our result for

I32279/J5 = −11.117050783135699165908767987094009274588495755231ε4

+181.78223928612340820790788236018642961198741994209ε5

−1725.9996137403520805951673992442117288607704957542ε6 (3.7)
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agrees withZ5/J5 = −441
40 ζ (7)ε4 predicted by eq. (3.6) to our 5-loop numerical precision of 250

digits, while the lower-loop ones agree to much higher precision (at 4 and 3 loops, the two integral
families actually coincide,W4 = Z4 andW3 = Z3).

Another standard method to evaluate Feynman integrals is integration over the Feynman-
parametric representation (see, e.g. [17]), where the integrand is given by two characteristic poly-
nomials (Symanzik polynomials, usually calledU and F) that are fixed by the topology of the
underlying graph. In most practical cases, this amounts to numerical integration, and a number of
public implementations exist to facilitate this task [18, 19, 20]. We can use this method here for
some low-precision checks of our results, and to estimate the magnitude of the missing integrals.
It turns out that for the class of fully massive integrals without external legs, the graph polyno-
mials coincide in general (sinceF = (x1 + · · ·+ xN)U = U ). Therefore, a fully massiveL-loop
vacuum integral ind dimensions, havingN propagators with powersa1, . . . ,aN, normalized toJL

(whereJ is the 1-loop massive tadpole, containing the momentum integral measure of choice) can
be represented as an integral over theN-dimensional simplex with a particularly simple integrand,

I~a
JL =

Γ(A−Ld/2)
[Γ(1−d/2)]L

∫ ∞

0
dNx δ (1−X)

p~a(~x)

[U(~x)]d/2
. (3.8)

We have denoted the sum of indices asA = a1 + · · ·+ aN, andX = x1 + · · ·+ xN is the sum of
integration variables. The integrand contains a numeratorp~a(~x) = ∏N

i=1xai−1
i /Γ(ai) that is different

from unity for integrals with dots, and the graph polynomialU that is homogeneous of degreeL.
Typically, a so-called primary sector decomposition [21, 22] is performed on eq. (3.8), whence the
integration domain simplifies to a(N−1)-dimensional hypercube

I~a
JL

=
Γ(A−Ld/2)
[Γ(1−d/2)]L

∫ 1

0

dN−1z

(1+Z)A−Ld/2

N

∑
s=1

p~a(~zs)

[U(~zs)]d/2
. (3.9)

Here,Z = z1+ · · ·+zN−1 is the sum of integration variables, and~zs = (z1, . . . ,zs−1,1,zs, . . . ,zN−1)

fits the (N− 1) integration variables into anN-vector. All polynomials in eq. (3.9) are positive
semidefinite, such that we can use a simple numerical integration routine to verify many of our
results to low precision, and confirm that the 12-line masterintegrals are indeed finite ind = 4.

4. Applications

As a first application of our (4d) five-loop master integrals,we have set out to determine the
set of anomalous dimensions in QCD [23]. The calculation follows standard procedures, utilizing
Qgraf [24] for diagram generation andFORM [25] for most computer algebraic manipulations.
To isolate the overall ultraviolet divergences of the (massless) two- and three-point functions, one
can either re-route external momenta through the diagram inclever ways in order to systematically
cancel infrared divergences [26, 27], or introduce masses into all propagators, at the expense of
one additional (mass-) counterterm [28, 29]. We choose to follow the second option, and map all
integrals onto fully massive tadpoles by recursively applying the identity [30, 31]

1
(k+q)2 =

1
k2+m2

(

1+
m2−2kq−q2

(k+q)2

)

, (4.1)
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wherek (q) are loop (external) momenta and where integrals that are finite by naive power-counting
are dropped, eventually ending the recursion. Reduction ofthe large number of resulting scalar
integrals to master integrals is done via integration by parts [3], for which a number of public codes
are available [32, 33, 34]. However, due to the complexity atfive loops, we found it necessary to
use our own in-house programscrusher [35] andTIDE [9] for the integral reduction. The latter
is written almost entirely inC++, expect that it usesFermat [36] for the polynomial algebra, and
runs all time-critical code in parallel. Along these lines,we have been able to partially generalize
results for the 5-loop SU(3) QCD Beta function presented by the Karlsruhe group [37] to a general
gauge group. Concretely, so far we have completely reproduced the Beta function up to four loops,
and obtained theN4

f andN3
f contributions at five loops for a general gauge group [23], confirming

the correspondingSU(3) results.

The ability to change the space-time dimensionality in our setup and demandε-expansions
around any desired integer dimension opens up a number of other fields of application (besides
the obvious, evaluating the remaining renormalization constants of QCD). In particular, there are
interesting questions related to renormalization-group functions in three-dimensional field theories,
such as whether an analogue of Zamolodchikov’s two-dimensional c-theorem can be proven in
odd dimensional supersymmetric theories [38]. Furthermore, allowing for zero-mass propagators
as well, even the constant parts of 3d expansions of zero-scale master integrals do contribute to
physical observables, such as for example in QCD thermodynamics, where they enter an effective
theory treatment of the strongly interacting gluons present in the hot early-universe plasma, see
e.g. [39]. Going finally to two dimensions, massive tadpolescan be used to study non-trivial
properties of QCD-like theories such as the Gross-Neveu (GN) model, where evanescent operators
spoil multiplicative renormalizability [40]. The GN modelis particularly interesting due to its
connection with problems in condensed-matter theory, suchas the evaluation of critical exponents.

5. Conclusions

In the era of highly automated perturbative calculations, one key building block are master
integrals. We have reported progress on evaluating the set of five-loop massive vacuum integrals,
which play an important role in determining anomalous dimensions of various quantum field the-
ories. Since we are able to obtain high-precision numericalresults for theε-expansions around
any number of dimensionsd = d0−2ε , applications include determinations of (a) the QCD Beta
function [23] and other anomalous dimensions atd0 = 4; (b) effective theory contributions to ther-
modynamic observables [39], or renormalization functionsof supersymmetric gauge theories [38]
at d0 = 3; (c) Beta functions of QCD-like models relevant for critical exponents in condensed
matter systems such as graphene [40] atd0 = 2.

As an open challenge, due to the complexity of the corresponding difference- and recursion
relations, the evaluation of the missing 12-line integralsis left for future work. These four sectors of
trivalent 5-loop graphs are finite (atd0 = 4), however, such that they are not expected to contribute
to the anomalous dimensions.
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