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1. Introduction

In the light of ongoing large-scale experimental effort éaixh for new particles at the high-
energy frontier, with the daunting task of filtering signaig of the overwhelming Standard Model
(and, in particular, QCD) background processes, the impo#g of evaluating the fundamental
building blocks that enter high-precision perturbativpansions cannot be overstated. One class of
such fundamental building blocks are so-called mastegiats, which arise in modern Feynman-
diagrammatic multi-loop calculations. In order to optimithe theoretical effort that is invested in
obtaining the necessary high-precision determinatioqgs$ical observables, it is often desired to
once and for all tabulate universal elements (such as thastemintegrals) that are required often,
but are difficult or time-consuming to obtain.

Master integrals come in all sorts of flavors, and can beifledsccording to number of loops,
external invariants, propagator masses, space-time diorenfiniteness, or number content, to
name a few properties. Integration being an art rather thraeahanic task such as differentiation,
only a small subset of master integrals is expected to be alpleeio analytic methods, while the
majority will need to be approximated numerically, a tasknpticated by ultraviolet and infrared
divergences and -subdivergences that can be present.

In this contribution, pushing on the loop-frontier, we vidcus on one of the simplest possible
integral classes: fully massive tadpoles, which corredgornvacuum diagrams without external
lines, in which all particles/propagators share a commossmahe mass-dependence then follows
trivially from dimensional arguments, such that, withoosd of generality, we can set the mass
parameter to unity, leaving us with a zero-scale problenoaiuting pure numbers. Indeed, over
the years there have already been a fair number of talks oungehis very class of basic integrals
at this conference series, elucidating any subset of aspsied above. We wish to continue this
discussion, adding news at five loops.

2. Method

As mentioned in the introduction, we focus on the specifis<laf fully massive tadpoles
up to 5 loops. The 5-loop integral family needs 15 propagatof which maximally 12 can be
present in a vacuum graph, see fig[lire 1 for examples. These @&xiumber of viable methods
evaluating such integrals, such as integration in cootdispace, differential equations (in a mass
ratio, lettingM /m — 1 in the end), or numerical solutions of difference equatifin a symbolic
propagator poweK that is set to unity the end) via factorial series. We faver titer approach,
as formulated algorithmically by Laportg [, 2].

Laporta’s setup, based on integration by pdits [3], hasdyréoeen successfully applied to
the evaluation of a large number of Feynman integrals, anghiticular also to 4-loop massive
tadpoles in 3d[]4] and 4d][4] 6]. This makes a 5-loop extensiatural; for some first results,
see [J]. Our method has been developed and described in retai id [B] and [P], where the
latter reference in particular contains a substantial fiméag of the Laporta approach in order to
delay intermediate expression swell, implementing ideak ss using coupled equations, reducing
recurrence relations, and predicting instability factarsd presents the prograhh DE. Regarding
results given earlier[[?] and below, we would like to notetthia order to obtain convention-
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Figure 1: Momentum integral$, discussed here. Solid lines denote massive propagatth$-& n?).

independent results, we choose to divide eldbop integral by the respective power of the 1-
loop massive tadpol@- which, picking a concrete momentum integral measure andingin
Euclidean space-time, reads- [d'%/(k?*+ 1) = %21 (1—d/2).

3. Resultsand checks

We have obtained numerical results for gxexpansions of the set of fully massive tadpoles
at 5 loops, most of which are new. In practice, we aimed at &80 digits of final precision for
the first tenc-orders in expansions aroumg = 2,3 and 4 dimensions. Our results cover the full
set of 63 5-loop sectors with 5 to 11 lines, amassing a totdl0O8f master integrals. A number
of results for four-dimensional expansions of 5-loop masteve already been given elsewhere
[B, [4. Presently, mainly due to limitations in computeraeses, we are unable to obtain results
for the four 5-loop sectors with 12 lines, depicted|ggas 131740 130899 @nd I3gs27 in figure [1,
which together contain a total of 9 masters integrals. Furtiptimizations of the cod€l DE [f]
are under way, and we are confident that these last four segttbbe solved in the near future.

As has already been mentioned above, in the progreBE, a number of new ideas and im-
provements over the original Laporta algorithm have begriemented. Therefore, it is important
to perform cross-checks on the results the code deliverthiFend, we have performed successful
checks against known lower-order results, in particuldoat loops in 4d [b[J6] as well as 3fi][4].

Furthermore, there is an important internal check thathgiient in the method of difference
equation that we are employing. Except for totally symneegriaphs (which correspond to our 5-
loop sector numbers 28686, 30876 and 31740, see fijure H)) fw-called corner integrals (those
with all propagator powers equal to unifff) DE generates a number of independent results coming
from deriving difference equations with pow¥ron inequivalent lines. All of these results have
to coincide atX = 1, and they do within our numerical precision for expansiarmund different
values (we have explicitly checked 4d, 3d, and 2d expangifithie space-time dimension.

We can also look at specific sets of integrals that are knovatyacally. As an example, we
take the 2-loop massive sunset vacuum integral, for whidhdanensional analytic solution in
terms of hypergeometric functions is availallg [0, 6]. Tleemalized 2-loop sunset integral can
then be expanded to all ordersdnn various dimensions, for example:

17/32 4= —3 _ 361 3(3Hy— 1) €2+ 3(8Hy — 6H3 — 2) £3 4 6(3H, — BHz + 6Hy — 2) €% + ... |
/32 #22° BHp 2 — 12Hz €3 + 24H, 6% — 48H5 % + 96Hg €8 + . .. (3.1)
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where the rather compact expressions are due to havinglutead the set of transcendentals

3F/2r(1—¢)
- T2(1-¢/2)
where the operatot, picks out the coefficient of ordes”. For exampleH; = 21/+/27, while
3H, = v/3Cl(211/3) is related to the Clausen function &) = 3 oSin(kx)/k" = ImLin(e*)
that had been studied in relation with massive 3-loop vacintegrals [1jL]. We observe that the
corresponding numerical results ferdelivered byT| DE agree perfectly with the expansions given
above, in four as well as two dimensions. Generalizing tmsestintegral tqL + 1) lines connect-
ing two vertices, the corresponding integral cl&sgan in principle be studied numerically in any
dimension and at any loop order using coordinate-spacenitpobs [IR]. Our lower-loop results
I7, 151 andlgs1 compare favorably witls,, S andS, respectively. At five loops, the corresponding
result forSs/J° is easily superseeded in precision ByDE, which delivers at least 250 digits of
(we only show 50 digits here; recall that we divide by the dpldadpole, which corresponds to
multiplying 4d 5-loop integrals bg®)

| 28686/ J° = —2.9999999999999999999999999999999999999999999988999
—1.50000000000000000000000000000000000000000000@3000
+0.5416666666666666666666666666666666666666666666666
—0.87986111111111111111111111111111111111111111%%111
—1.2132523148148148148148148148148148148148148148148
+13595072868792871461956492733702218574897992953584 (3.3)

Ho = ho+ i1 (1 B ERE AR N 1 ) I )

Similarly, for another check at five loops, we consider treessiM of wheel-type integrals
with L spokes. In four dimensions, their leadiagprder is known to all loop order§ [[13]
W (=D-reEe-1
Jb 0 r(Lr(L+1
with the leading term of our result for

Z2L—3) e 14+ 0(eY (3.4)

I32596/J5 — —14.116889883346919575757165697897154634398089847913
+23507729596783467131454388080950411779239347239580
—2267738683293008412296299448058020585548754541:5738 (3.5)

matching the five-loop casts/J° = —14Z(7)e* to 250 digits, and our lower-loop resultg;1 and
I3 matchingW, andWs to tens of thousands digits. In the same spirit, considdhirdamily Z, of

L-loop zigzag-type integrals, we can compare with knowraap-order results in four dimensions,
which in terms of the previous class reafdd [14,[15, 16]

1)k =
a _W 4<1+ (212{731) +0(e"). (3.6)

J Ot L

The leading term of our result for
l3027¢/J° = —11.117050783135699165908767987094009274588495755231
+181782239286123408207907882360186429611987419%£209

—1725999613740352080595167399244211728860770495%F542 (3.7)
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agrees withzs/J° = —%1((7)54 predicted by eq.[(3.6) to our 5-loop numerical precision 50 2
digits, while the lower-loop ones agree to much higher gieni (at 4 and 3 loops, the two integral
families actually coincidé)\; = Z4 andWs = Z3).

Another standard method to evaluate Feynman integralstégriation over the Feynman-
parametric representation (see, €.g] [17]), where thegratel is given by two characteristic poly-
nomials (Symanzik polynomials, usually calledand F) that are fixed by the topology of the
underlying graph. In most practical cases, this amountsitoenical integration, and a number of
public implementations exist to facilitate this ta$k][{8, P0]. We can use this method here for
some low-precision checks of our results, and to estimaerthgnitude of the missing integrals.
It turns out that for the class of fully massive integralsheift external legs, the graph polyno-
mials coincide in general (sinde = (X, +--- +xy)U = U). Therefore, a fully massive-loop
vacuum integral ird dimensions, havingl propagators with powers, ..., ay, normalized tal*-
(whered is the 1-loop massive tadpole, containing the momentungtiateneasure of choice) can
be represented as an integral overikkdimensional simplex with a particularly simple integrand

la _ T(A—-Ld/2) r® Pa(X)

2 = [r(l_d/z)]l_/od'\‘xé(l—x) DR (3.8)
We have denoted the sum of indicesfs- a; +--- +an, andX = X; + --- + Xy IS the sum of
integration variables. The integrand contains a numeraot) = r]i'\‘zlx;-a“‘l/l'(ai) that is different
from unity for integrals with dots, and the graph polynonmihthat is homogeneous of degree
Typically, a so-called primary sector decompositipr] [23] i& performed on eq[(3.8), whence the
integration domain simplifies to@ — 1)-dimensional hypercube

(3.9)

lz T[(A—Ld/2) 2 dV1z N pa(Zs)
Jt [F(l—d/Z)]L/O(

) T2 2 )

Here,Z =z +--- + zy_1 is the sum of integration variables, ang= (z,...,z51,1,Z,...,Zy-1)
fits the (N — 1) integration variables into aN-vector. All polynomials in eq.[(3.9) are positive
semidefinite, such that we can use a simple numerical irttegreoutine to verify many of our
results to low precision, and confirm that the 12-line maisitgrals are indeed finite ith= 4.

4. Applications

As a first application of our (4d) five-loop master integrai® have set out to determine the
set of anomalous dimensions in QJD][23]. The calculatioloved standard procedures, utilizing
Qur af [P4] for diagram generation arflORM[P]] for most computer algebraic manipulations.
To isolate the overall ultraviolet divergences of the (ness two- and three-point functions, one
can either re-route external momenta through the diagrartevwer ways in order to systematically
cancel infrared divergencep [26] 271, or introduce massesdill propagators, at the expense of
one additional (mass-) counterterin][£8} 29]. We chooseltovidhe second option, and map all
integrals onto fully massive tadpoles by recursively ajogjythe identity [3P[3]1]

1 1 (1 m2—2kq—q2)’

(rar ~ @rm T kap D
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wherek (q) are loop (external) momenta and where integrals that ate by naive power-counting
are dropped, eventually ending the recursion. Reductiahefarge number of resulting scalar
integrals to master integrals is done via integration byspi, for which a number of public codes
are available[[32, 33, B4]. However, due to the complexitfivatloops, we found it necessary to
use our own in-house prograras usher [Bg] andTI DE [H] for the integral reduction. The latter
is written almost entirely ifC++, expect that it useBer mat [B@] for the polynomial algebra, and
runs all time-critical code in parallel. Along these lines have been able to partially generalize
results for the 5-loop SU(3) QCD Beta function presentechieyKarlsruhe groud [37] to a general
gauge group. Concretely, so far we have completely repemtitice Beta function up to four loops,
and obtained thelf4 and Nf3 contributions at five loops for a general gauge grdup [23jficming
the correspondin®U(3) results.

The ability to change the space-time dimensionality in aiug and demand-expansions
around any desired integer dimension opens up a number ef @idids of application (besides
the obvious, evaluating the remaining renormalizationstamts of QCD). In particular, there are
interesting questions related to renormalization-graugefions in three-dimensional field theories,
such as whether an analogue of Zamolodchikov's two-dinosasic-theorem can be proven in
odd dimensional supersymmetric theoripg [38]. Furtheemallowing for zero-mass propagators
as well, even the constant parts of 3d expansions of zete-staster integrals do contribute to
physical observables, such as for example in QCD thermaudiasa where they enter an effective
theory treatment of the strongly interacting gluons pregerthe hot early-universe plasma, see
e.g. [39]. Going finally to two dimensions, massive tadpatas be used to study non-trivial
properties of QCD-like theories such as the Gross-Nevel) {@dtlel, where evanescent operators
spoil multiplicative renormalizability[J40]. The GN modé& particularly interesting due to its
connection with problems in condensed-matter theory, asdhe evaluation of critical exponents.

5. Conclusions

In the era of highly automated perturbative calculations &ey building block are master
integrals. We have reported progress on evaluating thef $@edoop massive vacuum integrals,
which play an important role in determining anomalous disi@ms of various quantum field the-
ories. Since we are able to obtain high-precision numerisllts for thes-expansions around
any number of dimensiond = dy — 2¢, applications include determinations of (a) the QCD Beta
function [23] and other anomalous dimensionsigt 4; (b) effective theory contributions to ther-
modynamic observablep [39], or renormalization functiohsupersymmetric gauge theorig¢s][38]
at dp = 3; (c) Beta functions of QCD-like models relevant for criexponents in condensed
matter systems such as graphdné [4@hat 2.

As an open challenge, due to the complexity of the correspgndifference- and recursion
relations, the evaluation of the missing 12-line integimleft for future work. These four sectors of
trivalent 5-loop graphs are finite (é§ = 4), however, such that they are not expected to contribute
to the anomalous dimensions.
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