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Abstract

Neutrino mixing sum rules are common to a large class of models based on the (discrete)
symmetry approach to lepton flavour. In this approach the neutrino mixing matrix U is
assumed to have an underlying approximate symmetry form Ũν , which is dictated by, or
associated with, the employed (discrete) symmetry. In such a setup the cosine of the Dirac
CP-violating phase δ can be related to the three neutrino mixing angles in terms of a sum
rule which depends on the symmetry form of Ũν . We consider five extensively discussed
possible symmetry forms of Ũν : i) bimaximal (BM) and ii) tri-bimaximal (TBM) forms,
the forms corresponding to iii) golden ratio type A (GRA) mixing, iv) golden ratio type
B (GRB) mixing, and v) hexagonal (HG) mixing. For each of these forms we investigate
the renormalisation group corrections to the sum rule predictions for δ in the cases of
neutrino Majorana mass term generated by the Weinberg (dimension 5) operator added
to i) the Standard Model, and ii) the minimal SUSY extension of the Standard Model.
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Parameter Best fit 1σ range 3σ range

sin2 θ12/10−1 2.97 2.81→ 3.14 2.50→ 3.54

sin2 θ13/10−2 (NO) 2.14 2.05→ 2.25 1.85→ 2.46

sin2 θ13/10−2 (IO) 2.18 2.06→ 2.27 1.86→ 2.48

sin2 θ23/10−1 (NO) 4.37 4.17→ 4.70 3.79→ 6.16

sin2 θ23/10−1 (IO) 5.69 4.28→ 4.91⊕ 5.18→ 5.97 3.83→ 6.37

δ/π (NO) 1.35 1.13→ 1.64 0→ 2

δ/π (IO) 1.32 1.07→ 1.67 0→ 2

∆m2
21/10−5 eV2 7.37 7.21→ 7.54 6.93→ 7.97

∆m2
31/10−3 eV2 (NO) 2.54 2.50→ 2.58 2.40→ 2.67

∆m2
23/10−3 eV2 (IO) 2.50 2.46→ 2.55 2.36→ 2.64

Table 1: The best fit values, 1σ and 3σ ranges of the neutrino oscillation parameters taken
from [7].

1 Introduction

Understanding the observed pattern of neutrino mixing and establishing the status of leptonic
CP violation are among the “big” open questions in particle physics. Considerable efforts have
been made in the past years trying to answer these fundamental questions. In particular, the
approach based on a discrete non-Abelian family symmetry in the lepton sector, assumed to
be existing at some high-energy scale, has been widely studied in the literature (for reviews on
the subject see [1–4]). In this approach the family symmetry has necessarily to be broken at
low energies to some residual symmetries of the charged lepton and neutrino mass matrices.
These residual symmetries constrain the form of the matrices which diagonalise the charged
lepton and neutrino mass matrices, and hence the form of the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) neutrino mixing matrix.

In the three neutrino mixing case (see, e.g., [5]) the 3 × 3 unitary PMNS matrix can be
parametrised in terms of three mixing angles, θ12, θ13, θ23, one Dirac phase δ and, if the
massive neutrinos are Majorana particles, two Majorana phases [6]. The Dirac and Majorana
phases are responsible for CP violation in the lepton sector. The neutrino mixing parameters
sin2 θ12, sin2 θ13 and sin2 θ23 have been determined with a relatively high precision in the
recent global analyses [7–9]. These analyses provided only a hint so far that δ ≈ 3π/2. In
Table 1 we summarise the best fit values, 1σ and 3σ allowed ranges of the mixing parameters
and the mass squared differences ∆m2

21 and ∆m2
31 (∆m2

23), with ∆m2
ij ≡ m2

i − m2
j , m1,2,3

being the neutrino masses, found in ref. [7] for the neutrino mass spectrum with normal
(inverted) ordering (denoted further as the NO (IO) spectrum). We will use the results given
in Table 1 in our numerical analyses.

In the discrete symmetry approach specific correlations between the mixing angles and
the CP-violating (CPV) phases occur. These correlations are usually referred to as neutrino
mixing sum rules (see, e.g., [3, 4, 10–17]). 1 Since mixing sum rules are concrete relations

1In flavour models there exists another type of correlations which hold between the neutrino masses and
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between different observables, i.e., the neutrino mixing angles and the Dirac phase, they can be
tested experimentally. Thus, via sum rules, one can examine the current phenomenologically
viable flavour models based on different discrete symmetries.

In [12,15] different mixing sum rules have been derived and in [13–15] the phenomenolog-
ical consequences of these sum rules have been studied. In [16] sum rules and predictions for
cos δ have been obtained from different types of residual symmetries in the charged lepton
and neutrino sectors. In these studies it was assumed that the sum rule is exactly realised
at low energy. However, as every quantity in quantum field theory, the mixing parameters
get affected by renormalisation group (RG) running. Similar to the study of renormalisation
group corrections to neutrino mass sum rules in [19], we investigate in the present article the
impact of corrections from the renormalisation group equations (RGEs) on the mixing sum
rule predictions for the Dirac phase δ. The main question we want to address is how stable
the predictions for δ are under RG corrections which under certain conditions can be expected
to be quite sizeable [20].

In the literature RG corrections to certain type of mixing sum rules have been studied
before. The first attempt to study RG corrections to mixing angle sum rules, to our knowledge,
has been made in [21] for the quark-lepton complementarity relations, θ12 + θC ∼= π/4 and
θ23 + arcsin Vcb ∼= π/4, θC and Vcb being the Cabibbo angle and an element of the Cabibbo,
Kobayashi, Maskawa (CKM) quark mixing matrix. In [22] the RG corrections for the sum
rule relating the element Uτe of the PMNS matrix to the element V TBM

τe = − 1/
√

6 of the
tri-bimaximal mixing matrix, |Uτe| = 1/

√
6, and for the leading order in θ13 versions of this

sum rule, have been investigated. In refs. [21] and [22] the bimaximal (BM) mixing [23]
scheme and the tri-bimaximal (TBM) mixing scheme [24], respectively, were analysed. In [25]
the study of RG perturbations was done for an approximate (leading order) mixing sum rule
and for normal hierarchical neutrino mass spectrum, m1 � m2 < m3, neglecting terms of
order O(m1/m2) and O(m1/m3). The authors of [25] extended their analysis to incorporate
canonical normalisation effects besides RG corrections. Both type of corrections were assumed
to be dominated by the third family effects. The authors of [26] estimated the size of RG
corrections to the sum rules we will be considering in the present study by taking into account
only the RG correction to θ12.

In the present article we go beyond these previous works i) by considering the exact form
of the general mixing sum rules derived in [12], ii) by taking into account the RG corrections
not only to the angle θ12, but to all three neutrino mixing angles θ12, θ23, θ13 and the CPV
phases, iii) discussing not only the cases of BM or TBM mixing schemes, but also the cases
of golden ratio type A (GRA) [27], golden ration type B (GRB) [28] and hexagonal (HG) [29]
mixing schemes, and iv) by considering both the cases of NO and IO neutrino mass spectra.
We perform the analysis assuming that the neutrino Majorana mass matrix is generated by
the Weinberg (dimension 5) operator. The RG corrections to the sum rule of interest are
calculated in the Standard Model as well as in the minimal supersymmetric extension of the
Standard Model (MSSM).

Our study goes also beyond [30] where only the GRA, BM and TBM mixing schemes
were analysed. We discuss different forms of the charged lepton mixing matrix and present
a significantly larger number of results. In particular, we derive values of the neutrino mass
scale and tanβ for which the various mixing schemes are still viable. We make a thorough

the Majorana phases. These correlations are called neutrino mass sum rules (for recent extensive studies, see,
e.g., [18, 19]).
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numerical analysis from which we derive likelihood functions for the value of the Dirac CPV
phase δ at low energies if the specified mixing sum rule holds at high energies.

The paper is organised as follows: after a short review of the framework for mixing sum
rules in Section 2, we present analytical estimates for the allowed parameter regions for δ
taking RG corrections into account in Section 3. In Section 4 we present the numerical
results for the different mixing schemes. Finally, we summarise and conclude in Section 5 and
present in the appendix plots for the likelihoods in terms of cos δ for better comparison with
previous literature.

2 Mixing Sum Rules

In this section we briefly review the framework in which mixing sum rules are obtained and fix
notation and conventions. In the most general case the PMNS matrix U can be parametrised
as [31]

U = U †eUν = (Ũe)
†ΨŨνQ0 . (2.1)

Here Ue and Uν are 3×3 unitary matrices, which diagonalise, respectively, the charged lepton
and neutrino mass matrices. Ũe and Ũν are CKM-like 3× 3 unitary matrices, and Ψ and Q0

are diagonal phase matrices:

Ψ = diag
(

1, e−iψ, e−iω
)
, (2.2)

Q0 = diag

(
1, ei

ξ21
2 , ei

ξ31
2

)
. (2.3)

The phases in Q0 contribute to the Majorana phases in the PMNS matrix.
Similar to what has been done in [12–15] we will consider the cases when Ũν has the BM,

TBM, GRA, GRB and HG forms. For all these forms Ũν can be expressed as a product of
3× 3 orthogonal matrices R23 and R12 describing rotations in the 2-3 and 1-2 planes, i.e.,

Ũν = R23(θν23)R12(θν12) , (2.4)

with θν23 = −π/4 and θν12 = π/4 (BM); θν12 = arcsin(1/
√

3) (TBM); θν12 = arctan(1/φ)
(GRA), φ = (1 +

√
5)/2 being the golden ratio; θν12 = arccos(φ/2) (GRB); θν12 = π/6 (HG).

For convenience, in another convention the same list reads sin2 θν23 = 1/2 and sin2 θν12 = 1/2
(BM); sin2 θν12 = 1/3 (TBM); sin2 θν12 = (5 −

√
5)/10 (GRA); sin2 θν12 = (5 −

√
5)/8 (GRB);

sin2 θν12 = 1/4 (HG).
For the matrix Ũe, following [12], we will consider two different forms both of which

correspond to negligible θe13. They are realised in a class of flavour models based on a GUT
and/or a discrete symmetry (see, e.g., [32–38]). The first form is characterised also by zero
θe23, i.e.,

Ũe = R−1
12 (θe12) . (2.5)

In this case there is a correlation between the values of sin2 θ23 and sin2 θ13:

sin2 θ23 =
sin2 θν23 − sin2 θ13

1− sin2 θ13
, (2.6)
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which for all the symmetry forms of Ũν introduced above leads to

sin2 θ23 =
1− 2 sin2 θ13

2 (1− sin2 θ13)
=

1

2
− 1

2
sin2 θ13 +O(sin4 θ13) . (2.7)

This implies in turn that θ23 cannot deviate significantly from π/4. The second form of Ũe
corresponds to non-zero θe12 and θe23, i.e.,

Ũe = R−1
23 (θe23)R−1

12 (θe12) . (2.8)

This matrix provides the corrections to Ũν necessary to reproduce the current best fit values
of all the three neutrino mixing angles θ12, θ13 and θ23 in the PMNS matrix U without any
further contributions like RG or other corrections.

It was shown in [12] that for Ũν given in eq. (2.4) and Ũe determined in eqs. (2.5) or (2.8),
the Dirac phase δ present in the PMNS matrix satisfies a sum rule which reads

cos δ =
tan θ23

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− cot2θ23 sin2 θ13

)]
. (2.9)

Additionally, in the case of Ũe given in eq. (2.5), the correlation between θ23 and θ13, eq. (2.7),
has to be respected. The sum rule, eq. (2.9), in this case reduces to [12]

cos δ =
(1− 2 sin2 θ13)

1
2

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) 1− 3 sin2 θ13

1− 2 sin2 θ13

]
. (2.10)

In the following we will refer to the case with Ũe given in eq. (2.5) (eq. (2.8)) as to the
case of zero (non-zero) θe23. In this article we will study the impact of the RG corrections on
the mixing sum rules in eqs. (2.9) and (2.10), and the angle sum rule in eq. (2.7), which are
assumed to hold at some high-energy scale specified later.

In [15] other forms of the matrices Ũe and Ũν corresponding to different rotations and
leading to sum rules for cos δ of the type of eqs. (2.9) and (2.10) have been investigated. The
RG corrections to them, however, are expected to be similar to the ones which take place
for the sum rules described above. For this reason we will not consider them in the present
study.

3 Analytical Estimates

Before we present our numerical results in the next section we give in this section analytical
estimates of the effect of radiative corrections on the mixing sum rules. We discuss how we
obtain constraints on the mass scale and on tanβ (in the MSSM) from the requirement that
the mixing sum rule has to be fulfilled at the high scale.

3.1 General Effects of Radiative Corrections

The running of the mixing parameters is already known for quite some time, see, e.g., [20].
One might wonder if RG corrections have a large impact on the predicted value for δ from
the sum rule in eq. (2.9). Indeed, we expect large RG corrections for a large Yukawa coupling
(large tanβ) and a heavy neutrino mass scale. To be more precise, the β-functions of the
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mixing angles, in the leading order in θ13 and neglecting the electron and muon Yukawa
couplings in comparison to the tau one, depend on the tau Yukawa coupling, the absolute
neutrino mass scale (or min(mj), j = 1, 2, 3), the mixing angles, the type of spectrum – normal
or inverted ordering – the neutrino masses obey, on the Majorana phases α1 and α2

2, and in
the MSSM – on tanβ. In the leading order in θ13 only the β-function for θ13 depends on δ.
The β-functions read up to O(θ13) [20]:

d θ12

d ln(µ/µ0)
= − Cy

2
τ

32π2
sin 2θ12s

2
23

∣∣m1eiα1 +m2eiα2
∣∣2

∆m2
21

+O(θ13) , (3.1)

d θ13

d ln(µ/µ0)
=

Cy2
τ

32π2
sin 2θ12 sin 2θ23

m3

∆m2
32(1 + ζ)

× [m1 cos(α1 − δ)− (1 + ζ)m2 cos(α2 − δ)− ζm3 cos δ]

+O(θ13) , (3.2)

d θ23

d ln(µ/µ0)
= − Cy

2
τ

32π2
sin 2θ23

1

∆m2
32

[
c2

12

∣∣m2eiα2 +m3

∣∣2 + s2
12

∣∣m1eiα1 +m3

∣∣2
1 + ζ

]
(3.3)

+O(θ13) ,

with µ being the renormalisation scale, ζ =
∆m2

21

∆m2
32

and Cy2τ
32π2 ≈ 0.3 · 10−6(1 + tan2 β) in the

MSSM and Cy2τ
32π2 ≈ −0.5 ·10−6 in the SM. In the SM there is no tanβ enhancement and hence

the effects are usually relatively small.
To give an idea about the size of the effect of interest we show in Fig. 1 results for cos δ

as derived from the sum rule in eq. (2.9) for the GRA mixing scheme. We used the REAP

package [39] to solve the RGEs for the mixing parameters between the low-energy scale MZ

and the high-energy scale which we have set equal to the seesaw scale MS ≈ 1013 GeV. We
only consider the case with θe12 6= 0, θe23 6= 0 and θe13 = 0. We have set all mass squared
differences and angles to their best fit values given in Table 1, scanned over the lightest
neutrino mass and chose random values for the low energy Majorana phases. For the SM
case we see no effect, while for tanβ = 30 and 50, the RG effects are significant. Even for a
moderate tanβ in the MSSM and a relatively small mass scale mlightest ≈ 0.04 eV the effect
is non-negligible. Since the running of the angles is stronger with an inverted mass ordering,
the effect for the prediction of cos δ is larger in the IO case. For that case it is furthermore in
particular remarkable that the corrections do not go to zero for m3 going to zero. This is due
to the well-known fact, cf. [20], that the β-functions for δ and θ12 are in this limit enhanced
by a factor of ∆m2

23/∆m
2
21. Together with the tanβ enhancement this leads to quite sizeable

effects for all relevant neutrino mass scales.

3.2 Allowed Parameter Regions with RG Corrections

In this subsection we derive constraints on tanβ (in the case of the MSSM) and the mass
of the lightest neutrino, mlightest, by imposing the mixing sum rule at the high scale and by
requiring that cos δ ∈ [−1, 1] at the high scale. We have chosen the high-scale to be equal
to the seesaw scale MS ≈ 1013 GeV. The BM mixing scheme is strongly disfavoured for

2The Majorana phases α1 and α2 are related to those of the standard parametrisation of the PMNS
matrix [5], α21 and α31, as follows: α21 = α1 − α2 and α31 = α1.
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Figure 1: Results for the predicted value of cos δ from the sum rule in eq. (2.9) for the GRA
mixing scheme in the case where θe12 6= 0, θe23 6= 0 and θe13 = 0. The black dashed lines represent
the tree level result. The blue points are our scan points. For the angles and the mass squared
differences we took the best fit values from Table 1. We let the parameters run between the
high-scale MS ≈ 1013 GeV and the low-scale MZ . The Majorana phases are chosen randomly
between 0 and 2π. The plots on the left (right) side correspond to normal (inverted) mass
ordering.
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the current best fit values of the neutrino mixing angles without taking the RG corrections
into account. Thus, one of the questions we are interested in is whether the corrections can
reconstitute the validity of the BM scheme even for the best fit values of the angles.

We give first analytical estimates of the RG effects on eq. (2.9). We expand the angles
and find:

cos δtree + δ(cos δ) ≈
tan θ23

sin 2θ12 sin θ13
(cos 2θν12 + (sin2 θ12 − cos2 θν12)(1− cot2θ23 sin2 θ13))

+ f13(θ13, θ12, θ23, θ
ν
12) δθ13

+ f23(θ13, θ12, θ23, θ
ν
12) δθ23

+ f12(θ13, θ12, θ23, θ
ν
12) δθ12 , (3.4)

where the δθij are the RG corrections to the angles and the fij are prefactors from the
expansion.

For the best fit values of the angles the function f12 is always positive independent of the
value of θν12. Since the sign of δθ12 is always negative to leading order in θ13, the correction to
cos δtree due to the running of θ12 has a fixed negative sign in this approximation. The sign of
the correction due to the running of θ23 depends on θν12 and the mass ordering: δθ23 is positive
for inverted ordering and negative for normal ordering and f23 is negative for θν12 & 33◦. The
sign of the correction due to the running of θ13 depends on the CPV phases and θν12.

For BM mixing the function f13 dominates in δ(cos δ), in contrast to the other mixing
patterns for which f12 has the largest influence. This means that the contribution in TBM,
GRA, GRB and HG mixings due to the running of θ12, which is larger than the contributions
due to the running of the other angles (except for the case of a parametric suppression of the
β-function which will be discussed later), is additionally enhanced by the large prefactor f12

making the δθ12 even more important.
Since the running depends also on the unknown Majorana phases we will vary them and

give in the rest of the subsection the results for minimal or maximal corrections. Note that
minimal corrections can also correspond to negative values of δ(cos δ).

The allowed parameter regions in the mlightest-tanβ plane for the GRA and HG cases
are shown in Fig. 2. For minimal corrections the parameter regions get severely constrained,
tanβ > 20 is incompatible with cos δ ∈ [−1, 1] for IO spectrum; for NO spectrum it is
incompatible with cos δ ∈ [−1, 1] for m1 ∼> 0.06 eV. This can be understood since the tree-
level term for cos δ is positive for GRA mixing and the dominant contribution to δ(cos δ)
comes from the correction due to δθ12, which is negative. A similar argument holds also for
HG mixing.

For TBM and GRB the tree-level term is negative and the corrections further decrease
the value. The plots for the allowed parameter regions can be found in Fig. 3.

For BM mixing the tree-level term of cos δ is ruled out for the best fit values of the angles
since cos δtree < −1. The dominant contribution to the correction is due to δθ13, which is
positive for the maximal correction. Since f13 is also positive in BM mixing, the value of
cos δ increases. Hence, the RG corrections have shifted cos δ to allowed values. The allowed
banana-shaped parameter regions are displayed in Fig. 4. For too large values of tanβ the
corrections overshoot cos δ = 1 and the points are excluded.

Note that in this example we have only employed the constraint on δ from eq. (2.9) at the
high-energy scale. This corresponds to the scheme where θe23 6= 0. To fulfil the sum rule, θ12
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Figure 2: Allowed regions for tanβ and mlightest for the NO and IO spectra in the cases of
minimal (blue) and maximal (pink) corrections for cos δ in the GRA mixing scheme (upper
plots) and the HG mixing scheme (lower plots). We used the best fit values for the mixing
angles. The high-energy scale is set to 1013 GeV.
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Figure 3: Allowed regions for tanβ and mlightest for the NO and IO spectra in the cases of
minimal (blue) and maximal (pink) corrections for cos δ in the TBM mixing scheme (upper
plots) and the GRB mixing scheme (lower plots). We used the best fit values for the mixing
angles. The high-energy scale is set to 1013 GeV.
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Figure 4: Allowed regions for tanβ and mlightest for the NO and IO spectra in the case of
maximal corrections for cos δ in the BM mixing scheme. We used the best fit values of the
mixing angles. For the minimal corrections there is no allowed parameter region which is
compatible with | cos δ| ≤ 1. We set the high-energy scale to 1013 GeV.

is allowed to run weakly. In the case of the SM running, the RG effects are already small. In
the case of the MSSM running, they are relatively small if the Majorana phases satisfy the
relation α2 ≈ α1 + π. The restrictions on the Majorana phases in the case of θe23 = 0 from
eq. (2.7) are rather weak.

3.3 Implications of α2 − α1 = 0 and π and Small tanβ

In this subsection we show how the specific values of the difference of the Majorana phases,
namely, α2 − α1 = 0 and π, contribute to the total likelihood profile obtained after the RG
corrections are taken into account. These values might seem to be very special at a first
glance but in fact many symmetric matrices belong at leading order to one of the two cases.
The CP-violating effects of the requisite corrections from Ũe then might be controlled using,
for instance, spontaneous CP violation with the discrete vacuum alignment method proposed
in [40].

As can be understood from eq. (3.1), in the case of equal Majorana phases, the running of
θ12 is maximal, while for α2 − α1 = π it is maximally suppressed. Since for the TBM, GRA,
GRB and HG symmetry forms the correction to the tree-level value of cos δ is dominated by
the running of θ12 (see subsection 3.2), we consider as example the case of TBM and θe23 6= 0
with the values of α2 − α1 specified above. The results we obtain in the GRA, GRB and HG
cases are very similar.

It is interesting to see, in particular, what is the quantitative relation between the correc-
tions obtained in the setup with relatively large tanβ, e.g., tanβ = 30, and suppression of
θ12 running due to α2 − α1 = π, and the setup with relatively small tanβ, e.g., tanβ = 5 or
10, but enhancement due to α2 = α1.

To answer this question, we employ a simplified one-step integration procedure (linearised
running), in which the high-energy values of the mixing parameters entering the sum rule
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are obtained using one-step integration of the exact one-loop beta functions for the mixing
parameters from [20]. We set θ13, θ23, ∆m2

21, ∆m2
31(23) to their best fit values and impose

i) α2 = α1, and ii) α2 = α1 + π. For each set of these low-energy values, we solve the
high-energy sum rule for the low-energy value of θ12.

In order to perform a statistical analysis of the low-energy data after RG corrections we
construct the χ2 function as

χ2(~x) =
6∑
i=1

χ2
i (xi) , (3.5)

where ~x = (sin2 θ12, sin
2 θ13, sin

2 θ23, δ,∆m
2
21,∆m

2
31(23)) for the NO (IO) spectrum, and χ2

i are

one-dimensional projections taken from [7]. In order to obtain the one-dimensional projection
χ2(δ) from the constructed χ2(~x) function we need to minimise the latter with respect to all
other parameters (sin2 θij , ∆m2

21 and ∆m2
31(23)), i.e., we need to find a minimum of χ2(~x) for

a fixed value of δ:
χ2(δ) = min

[
χ2(~x)|δ=const

]
. (3.6)

The likelihood function L, which represents the most probable values of δ in each of the
considered cases, reads

L(δ) = exp

(
−χ

2(δ)

2

)
. (3.7)

We will present the results in terms of the likelihood functions, considering three values for
the absolute mass scale, mlightest = 0.005, 0.01 and 0.05 eV, and four values of tanβ = 5, 10,
30 and 50.

It is worth noting here that, as shown in ref. [20] (see eq. (26) therein), for the running of
the difference α1 − α2 we have up to O(θ13) terms:

d

d ln(µ/µ0)
(α1 − α2) ∝ sin(α1 − α2) . (3.8)

This implies that if the phases are equal (different by π) at some scale to a good approximation,
they remain equal (differ by π) at another scale. Thus, the relation imposed by us at the low
scale holds also at the high scale (up to O(θ13) corrections).

We present graphically the results obtained for the TBM symmetry form in Figs. 5 and 6
for the NO and IO neutrino mass spectra, respectively. The dotted black line stands for
likelihood extracted from the global analysis [7]. The blue, orange, green and red lines are for
tanβ = 5, 10, 30 and 50, respectively. The left panels in each of the two figures correspond
to α2 = α1, while the right panels are for α2 = α1 + π.

Several comments are in order. As expected, the results for α2 − α1 = π and small tanβ,
tanβ = 5 and 10 (blue and orange lines, respectively), are quantitatively very similar to the
result without running (this is why we do not present the latter in the plots) for all three mass
scales considered and both orderings due to the supression of the running of θ12 discussed
above. However, this is not the case for the large values of tanβ = 30 and 50 (green and red
lines, respectively) and the NO spectrum with m1 = 0.05 eV, and for all three values of m3

considered in the case of the IO spectrum. Clearly, the enhancement due to tanβ prevails
over the suppression due to the Majorana phases in these cases.

The next interesting point to note is that for the IO spectrum, the corrections in the case
of tanβ = 5 and α2 = α1 (blue line) are comparable with the corrections for tanβ = 30 and
α2 = α1 +π (green line) for all three mass scales considered. A similar observation holds also
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Figure 5: Likelihood function vs. δ in the case of non-zero θe23 for the TBM symmetry form
of the matrix Ũν and the NO spectrum. The dotted black line stands for likelihood extracted
from the global analysis in [7]. The blue, orange, green and red lines are for the running within
MSSM with tanβ = 5, 10, 30 and 50, respectively. The left panels correspond to α2 = α1,
while the right panels are for α2 = α1 + π.

12



0.2

0.4

0.6

0.8

1.0

L

α2 - α1 = 0

m3 = 0.005 eV

α2 - α1 = π

m3 = 0.005 eV

0.2

0.4

0.6

0.8

L

m3 = 0.01 eV m3 = 0.01 eV

0 90 180 270
0.0

0.2

0.4

0.6

0.8

δ [°]

L

m3 = 0.05 eV

90 180 270 360

δ [°]

m3 = 0.05 eV

θ23
e
≠ 0, TBM, IO

Figure 6: Likelihood function vs. δ in the case of non-zero θe23 for the TBM symmetry form
of the matrix Ũν and the IO spectrum. The dotted black line stands for likelihood extracted
from the global analysis in [7]. The blue, orange, green and red lines are for the running within
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Figure 7: Likelihood function vs. δ in the case of non-zero θe23 for the BM symmetry form of
the matrix Ũν . The dotted black line stands for likelihood extracted from the global analysis
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for the NO spectrum if m1 = 0.05 eV: the corrections for tanβ = 10 and α2 = α1 (orange
line) are similar in magnitude to those for tanβ = 30 and α2 − α1 = π (green line).

Further, we note also that the absence of the green and red lines, corresponding to tanβ =
30 and 50 and equal Majorana phases, in all cases, except for NO with m1 = 0.005 eV and
m1 = 0.01 eV, reflects the fact that the RG corrections lead, in particular, to a low-energy
value of θ12, which is outside of the current 3σ range. For the IO spectrum with m3 = 0.05 eV
and α2 = α1, even for tanβ = 10 (orange line) the RG corrections are quite large, such that
only a small region of values of δ around π is allowed, with the likelihood of these values being
suppressed.

For the BM symmetry form the results we obtain are quite different. In this case we
consider values of mlightest = 0.01, 0.05 and 0.1 eV, and tanβ = 5, 10, 30 and 50. We find
that the small values of tanβ considered, tanβ = 5, 10, cannot provide the RG corrections
which allow one to have cos δ ∈ [−1, 1] and low-energy values of the mixing angles compatible
with the current data (except for the small range of values of δ close to π allowed without
running). For the large values of tanβ and the NO spectrum, we get significant RG corrections
compatible with all constraints, as can be seen from Fig. 7, i) for α2−α1 = π (dashed lines),
provided m1 ∼> 0.05 eV, and ii) for α2 = α1 (solid line) if m1

∼= 0.10 eV and tanβ = 50. For
the IO spectrum and m3 ∼> 0.05 eV, the predictions are compatible with the data for α2 = α1

provided tanβ = 50. If m3 = 0.1 eV, α2 − α1 = π also contributes to the final likelihood
profile for tanβ = 50, although this contribution is less favoured.

As already discussed above, the running of θ12 is suppressed if the difference of the Majo-
rana phases is equal to π, otherwise the running of θ12 is always the dominant correction to
cos δ. If the running of θ12 is minimal, the running of θ23 and θ13 is dominant (for a maximal
running of θ13 we need additionally to have δ = α2). Then δθ13 and δθ23 are roughly two
orders of magnitude larger then δθ12. This implies that the correction to cos δ in the HG,
GRA, GRB and TBM mixing schemes is not longer determined by the running of θ12 but by
the running of θ23 and θ13. For BM mixing the contribution of δθ13 is still dominant. The
sign and size of the correction to cos δ depends on δ because the size of δθ13 depends on δ
and the contributions to δ(cos δ) by the running of θ23 and θ13 are approximately equal.

Finally, we would like to note that the cases studied in the present subsection were analysed
rather qualitatively in [26], considering only the running of θ12. Our analysis goes beyond
the discussion in [26], since we present explicitly in graphic form the impact of the RG effects
on the likelihood functions (Figs. 5 – 7). In particular, as was discussed above, the results
depend strongly on the symmetry form considered – the TBM, GRA, GRB and HG forms
on the one hand and the BM form on the other – and this distinction was not discussed
in [26]. Furthermore, in our quantitative results we find a region of parameter space where
their conclusions are not fully correct. Although this region seems somewhat tuned, it is
actually motivated, as we mentioned above, in setups with spontaneous CP violation. We
find that, e.g., in the case of the TBM symmetry form, for m3 = 0.01 eV (IO), tanβ = 30
and α2 − α1 = π (green line in the corresponding panel of Fig. 6) the RG corrections are
noticeable, in contrast to the conclusion in [26] that the RG corrections can be neglected for
tanβ ∼< 35 if the spectrum is not quasi-degenerate.

3.4 Notes on the θe
23 = 0 Case

Before we turn to the numerical results we want to make a few more remarks on the case of
θe23 = 0, i.e., imposing also the sum rule from eq. (2.7) at the high scale. This will help to
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understand the numerical results in the next section. In eq. (2.10) we can replace θ12(MS) by
θ12(MZ) plus the small RG correction δθ12 in which we expand. Since θ13 and δθ13 are small
we can neglect the latter (θ13(MS) ≈ θ13(MZ)) and expand the correction in the first to end
up with

cos δ(MS) ≈ cos δ(MZ) +
1− cos 2θ12 cos 2θν12

θ13 sin2 2θ12
δθ12 . (3.9)

In the case of BM mixing cos δ(MZ) is smaller than −1 for the best fit values of the angles
and the correction is always negative since the running of θ12 has a fixed sign. Note, that
the value of cos δ(MZ) could be adjusted by θe23 6= 0 to a value larger than −1, cf. eq. (2.9).
So, from that estimate we expect the BM mixing scheme not to be valid in the case of
θe23 = 0. This is confirmed in our extensive numerical scan, where we employed the exact
sum rules from eqs. (2.7, 2.10) and the full 1-loop β functions for all parameters but did not
find any physically acceptable points as well. Nevertheless, our estimate is a bit rough and a
numerical scan cannot cover the whole parameter space such that a tiny, highly tuned region
of parameter space might still be allowed.

Let us now turn to the other mixing cases. There the absolute value of cos δ(MZ) in our
estimate eq. (3.9) is always smaller than one. For TBM and GRB it is still negative, but for
TBM mixing, for instance, we get

cos δ(MZ) ≈ −0.21 , (3.10)

which allows for a sizeable correction of θ12 up to −6.5◦, so that these two scenarios are not
disfavoured by our estimate. For GRA and HG mixing the first term is even positive such
that we can account for even more sizeable RG corrections in these cases.

4 Numerical Results

In the present section we will first describe our numerical approach before we show the results
we obtain for the δ likelihood functions in the TBM, GRA, GRB, BM and HG mixing schemes
in the cases of θe23 6= 0 and θe23 = 0.

4.1 Numerical Approach

To obtain the low-energy predictions for δ from the high-scale mixing sum rule, eq. (2.9) in
the case of θe23 6= 0 (eq. (2.10) in the case of θe23 = 0), we employ the running of the parameters
using the REAP package [39]. For the running we set the low-energy scale to be MZ and the
high-energy scale to be equal to the seesaw scale MS ≈ 1013 GeV. Since the dependence on
the scales is only logarithmic a mild change of the high-energy or low-energy scale would not
change our results significantly.

In our scans we present the results for the SM and MSSM extended minimally by the
Weinberg operator. We have fixed the scale where we switch from the SM to MSSM RGEs
to 1 TeV. Again the dependence on the scale is only logarithmic and hence weak. The exact
supersymmetric (SUSY) particle spectrum plays only a minor role since we have neglected
the SUSY threshold corrections [41].

In the MSSM we consider as benchmarks tanβ = 30 and tanβ = 50. In the SM the
running is relatively small and hence the results are very similar to the results without running.
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In fact the SM results look like the results obtained in [13] apart from relatively small changes
due to the different global fit results [8] used therein. For a given mass scale and a given
model (SM or MSSM with a given tanβ), we employ the mixing sum rules at the high scale
to determine δ (and θ23 for θe23 = 0) at the low scale depending on the other parameters. For a
given mass scale and a given model (SM or MSSM with a given tanβ), we determine the low-
scale parameters (the angles, mass squared differences and the Majorana phases) such that
the mixing sum rule eq. (2.9) (and eq. (2.10) for θe23 = 0) at the high scale is fulfilled and their
likelihood function is maximal. We choose a “small” neutrino mass scale, mlightest = 0.01 eV,
a “medium” mass scale, mlightest = 0.05 eV, and a “large” mass scale, mlightest = 0.1 eV. The
“large” neutrino mass scale is still compatible with the cosmological bound on the sum of the
neutrino masses [42] ∑

mν < 0.49 eV. (4.1)

Note that for very small neutrino mass scales, mlightest � 0.01 eV and sufficiently small tanβ,
the RG effects are negligibly small even in the MSSM. We present the results for different
cases considered in the present study in terms of the likelihood functions defined in eq. (3.7).

4.2 Results for Different Mixing Schemes in the Case of Non-zero θe
23

We begin our discussion of the numerical results with the case of non-zero θe23. In Figs. 8 – 11
we show the likelihood functions versus δ for the TBM, GRA, GRB and HG symmetry forms
of the matrix Ũν in all setups. The blue line in these figures represents the SM running result,
the green and red lines are for the MSSM running with tanβ = 30 and tanβ = 50, respectively.
The SM line practically coincides with the line corresponding to the result without running, as
expected. For this reason we do not show the latter in the plots. The dotted black line stands
for the likelihood extracted from the global analysis [7] which corresponds to the likelihood
for δ without imposing any sum rule. We note that the whole procedure is numerically very
demanding and hence there are some tiny wiggles in the likelihoods which do not have any
physical meaning. Note also that the mixing sum rule has two solutions but the solution
δ ≈ 90◦ has a small likelihood and is therefore barely visible in the plots.

As we have already indicated, the SM results are very similar to the results obtained
in [13] without running. This implies that, as was concluded in [13] (see also [12]), using
the data on neutrino mixing angles and a sufficiently precise measurement of cos δ it will be
possible to distinguish between the three groups of schemes: the TBM and GRB group, the
GRA and HG group, and the BM scheme. Distinguishing between the GRA and HG schemes
is experimentally very demanding, but not impossible, while distinguishing between the TBM
and GRB seems practically extremely difficult (if not impossible) to achieve (see [13, 14] for
further details).

In the MSSM, the results depend on the value of the lightest neutrino mass, the type of
spectrum – NO or IO – the neutrino masses obey, on the value of tanβ as well as on the
uncertainties in the measured values of the neutrino oscillation parameters. As expected, for
increasing tanβ and increasing absolute neutrino mass scale, the difference with the predic-
tions without running increases. The allowed regions for δ start to broaden and, e.g., for the
largest value of tanβ = 50 and m1 = 0.05 eV and 0.10 eV (m3 = 0.01 eV, 0.05 eV and 0.10
eV) in the case of NO (IO) spectrum, the likelihood profile in the cases of the TBM, GRA,
GRB and HG mixing schemes practically coincides with the likelihood for δ obtained without
imposing the sum rule constraint, the difference between the two profiles being noticeable only
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Figure 8: Likelihood function vs. δ in the case of non-zero θe23 for the TBM symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running, while the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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Figure 9: Likelihood function vs. δ in the case of non-zero θe23 for the GRA symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running; the green and red lines
are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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Figure 10: Likelihood function vs. δ in the case of non-zero θe23 for the GRB symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running, while the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.

20



Global analysis

SM

MSSM tan β = 30

MSSM tan β = 50

0.2

0.4

0.6

0.8

1.0

L

NO

m1 = 0.01 eV

IO

m3 = 0.01 eV

0.2

0.4

0.6

0.8

L

m1 = 0.05 eV m3 = 0.05 eV

0 90 180 270
0.0

0.2

0.4

0.6

0.8

δ [°]

L

m1 = 0.1 eV

90 180 270 360

δ [°]

m3 = 0.1 eV

θ23
e ≠ 0, HG

Figure 11: Likelihood function vs. δ in the case of non-zero θe23 for the HG symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running; the green and red lines
are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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Figure 12: Likelihood function vs. δ in the case of non-zero θe23 for the BM symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running, while the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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for values of δ lying approximately in the interval δ ∼ (270◦ − 360◦). As already discussed in
the previous section, the running of cos δ in the TBM, GRA, GRB and HG mixing schemes is
mainly influenced by the running of θ12 which has a fixed negative sign and hence has a ten-
dency to shift δ to values smaller than 270◦. For NO spectrum, m1 ≤ 0.01 eV and tanβ = 30,
a measured value of δ ∼< 260◦ would favor the TBM and GRB schemes. For m1 = 0.05 eV (or
m1 = 0.01 eV) and the same value of tanβ = 30, a measurement of δ ∼> 290◦ would make the
GRA and HG schemes more probable. For tanβ = 50, m1 = 0.05 eV (or m1 = 0.10 eV), and
given the current uncertainties in the measured values of the neutrino oscillation parameters,
the TBM, GRA, GRB and HG schemes lead to very similar predictions for δ.

For the IO spectrum the RG effects are larger and therefore the broadening happens in the
four schemes under discussion – TBM, GRA, GRB and HG – already for the “small” neutrino
mass scale. Since the likelihood profiles are so broad and nearly identical even for the “small”
and “medium” mass scales, except for certain differences in the interval δ ∼= (270◦−360◦), and
given the current uncertainties in the measured values of the neutrino oscillation parameters,
it will be difficult in the MSSM with tanβ ∼> 30 to distinguish between any of the four schemes
considered using only a determination of δ.

For the BM mixing scheme the results are very different. This scheme is strongly dis-
favoured for the currently allowed ranges of the mixing parameters without considering RG
effects. Therefore, the maximal value of the likelihood in the SM running case is relatively
small. In the MSSM the running increases the value of cos δ to physical values, as explained in
the previous section. In addition both the maximal value of the likelihood function increases
and the position of the likelihood maximum shifts from δ ∼= 180◦ towards δ = 270◦ (see
Fig. 12). Again the likelihood profile broadens with increasing of the absolute neutrino mass
scale and tanβ and at δ ∼< 270◦ for NO spectrum tends to approach the likelihood function
for δ obtained without imposing the sum rule. In the case of IO spectrum, the BM scheme is
strongly disfavoured for m3 ∼< 0.05 eV even for tanβ = 50.

4.3 Results for Different Mixing Schemes in the Case of Zero θe
23

In Figs. 13 – 16 we present the results in the case of θe23 = 0. Again, the blue line in these
figures represents the SM running result, the green and red lines are for the MSSM running
with tanβ = 30 and tanβ = 50, respectively. The dotted black line stands for the likelihood
extracted from the global analysis [7] which corresponds to the likelihood for δ without impos-
ing any sum rule. Similar to the case of non-zero θe23, the SM line practically coincides with
the line corresponding to the result without running, as expected. Therefore we do not show
the latter in the plots. Note again that the small wiggles in the likelihoods are of numerical
origin and not physical.

For the TBM, GRA, GRB and HG mixing schemes we observe similar to the case of non-
zero θe23 broadening of the likelihood with increasing tanβ and increasing absolute neutrino
mass scale. But in contrast to the case of θe23 6= 0, the likelihood does not reach the likelihood
for δ without imposing the sum rule considered. The major difference with respect to the
results obtained in the case of θe23 6= 0 is that due to the constraint on θ23 from eq. (2.7) at the
high scale, the low-scale mixing parameters are more severely constrained and not necessarily
close to their respective best fit values.

As Figs. 13 – 16 show, for the values of min(mj) and tanβ considered, the NO spectrum
is less favored (i.e., has a smaller likelihood for any given δ and smaller maximum likelihood)
than the IO spectrum. The sum rule, eq. (2.7), restricts θ23 to be slightly smaller than
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Figure 13: Likelihood function vs. δ in the case of zero θe23 for the TBM symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running. Finally, the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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Figure 14: Likelihood function vs. δ in the case of zero θe23 for the GRA symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running. Finally, the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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Figure 15: Likelihood function vs. δ in the case of zero θe23 for the GRB symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running. Finally, the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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Figure 16: Likelihood function vs. δ in the case of zero θe23 for the HG symmetry form of the
matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from
the global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines
are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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maximal at the high scale. Since the running of this angle has a fixed negative sign for NO
spectrum, its low-scale value is larger than its high scale value and pushed outside of the NO
1σ region. On the other hand, for IO spectrum the low-scale value of θ23 is always smaller
than 45◦ due to the running and the sum rule. However, in this case there is a second 1σ
region below maximal mixing besides the region around the best fit value which is larger than
45◦.

In the case of the TBM and GRB schemes, the case of min(mj) = 0.10 eV and tanβ = 50
is strongly disfavored for both NO and IO spectra, while for the GRA and HG schemes it is
less favored than the min(mj) = 0.10 eV and tanβ = 30 case.

As explained in subsection 3.4, in order to satisfy the sum rule eq. (2.10) for zero θe23, θ12

is not allowed to run strongly. This leads to the relatively small likelihood for tanβ = 50
and mlightest = 0.1 eV seen in Figs. 13 – 16. For TBM and GRB mixing the constraint on the
running of θ12 is even more severe than for GRA and HG mixing and the likelihood in these
schemes is hence even smaller for tanβ = 50 and mlightest = 0.1 eV.

For BM mixing our analytical estimates have indicated that this scheme is not valid due
to the severe constraint on the running of θ12. In our extensive numerical scans we did not
find any valid, i.e., physically acceptable, parameter points as well.

5 Summary and Conclusions

We presented a systematic study of the effects of RG corrections on sum rules for the Dirac
CPV phase, eqs. (2.9) and (2.10). These corrections are present in every high-energy model,
when running down to the low scale where experiments take place. We answered the question
how stable the predictions from the sum rules are in the cases of charged lepton corrections
characterised by i) θe12 6= 0, θe23 6= 0, θe13 = 0 and ii) θe12 6= 0, θe23 = 0, θe13 = 0 to TBM, BM,
GRA, GRB or HG mixing in the neutrino sector.

To this aim we first reviewed the framework in which we obtain the mixing sum rules. Then
we presented analytical estimates of the allowed parameter space if we take RG corrections
into account. These estimates were subsequently verified numerically. To obtain the numerical
results for the allowed ranges of δ we used as three benchmark cases the SM running (where the
running effects are small) and the MSSM running with tanβ = 30 and tanβ = 50 (where the
running effects become larger with increasing tanβ). Furthermore, we considered three mass
scales: a “small” mass scale (mlightest = 0.01 eV), a “medium” mass scale (mlightest = 0.05 eV)
and a “large” mass scale (mlightest = 0.1 eV), where the RG effects increase with the mass
scale. We presented the results in terms of the likelihood functions for each case (SM or
MSSM with a given tanβ, and a given mass scale). Our numerical results are obtained using
the current best fit values and uncertainties on the neutrino oscillation parameters derived in
the global analysis of the neutrino oscillation data performed in [7].

Our results have shown that the RG effects can change significantly the allowed low-energy
ranges for δ, especially when we employ the MSSM running with the “medium” and “large”
mass scale. In the case of θe23 6= 0 the allowed regions for δ broaden and the likelihood profiles
approach the likelihood for δ extracted from the global analysis (without imposing the sum
rules considered). For the TBM, GRA, GRB and HG symmetry forms we found the allowed
ranges of values of δ to be shifted from values close to (somewhat larger than) 270◦ to values
somewhat smaller than (close to) 270◦. For BM mixing, which is strongly disfavoured by the
current data without taking into account the running of the neutrino parameters, we found

28



that the RG corrections partially reconstitute compatibility of this symmetry form with the
data. With the increasing of min(mj) and tanβ, the values of δ in this case shift from δ ∼ 180◦

towards 270◦. In the case of θe23 = 0 and for the TBM, GRA, GRB and HG mixing schemes
the likelihood profiles broaden with increasing tanβ and increasing mass scale, similarly to
the case of non-zero θe23. The main difference is that now they do not reach the likelihood for
δ obtained without imposing the sum rule. The reason for that is the constraint on θ23 from
eq. (2.7) at the high scale, due to which the low-scale mixing parameters are more severely
constrained and not necessarily close to their respective best fit values. Finally, we found that
in this case the RG corrections are not sufficient to restore even partial compatibility of BM
mixing with the current data.

In conclusion, our results show that the RG effects on the mixing sum rules in SUSY
models with min(mj) ∼> 0.01 eV and tanβ ∼> 30 have to be taken into account to realistically
probe the predictions from the sum rules in concrete models.
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A Likelihood Functions for cos δ

In the past there have been already extensive studies on the likelihoods for the Dirac CP
violation phase derived from mixing sum rules. In [13–15, 26], in particular, results for the
TBM, GRA, GRB, HG and BM mixing schemes were presented neglecting the RG corrections.
However, in the indicated publications the likelihoods for cos δ and not for δ have been derived.
For better comparison with these results we include in the present Appendix Figs. 17 – 21
(Figs. 22 – 25) with the likelihood functions for cos δ in the case of θe23 6= 0 (θe23 = 0).
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form of the matrix Ũν in all the setups considered. The dotted line stands for likelihood
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Figure 22: Likelihood function vs. cos δ in the case of zero θe23 for the TBM symmetry form
of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running. Finally, the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
from the global analysis in [7]. The blue line is for the SM running. Finally, the green and red
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of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted
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