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Abstract. We renormalize the SU(N) Gross-Neveu model in the modified minimal subtraction
(MS) scheme at four loops and determine the β-function at this order. The theory ceases
to be multiplicatively renormalizable when dimensionally regularized due to the generation of
evanescent 4-fermi operators. The first of these appears at three loops and we correctly take
their effect into account in deriving the renormalization group functions. We use the results to
provide estimates of critical exponents relevant to phase transitions in graphene.
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1 Introduction

The Gross-Neveu model with an O(N) or SU(N) symmetry is a quantum field theory of spin-1
2

fields which interact quartically, [1]. It is also known as the Ashkin-Teller model, [2]. Aside from
being perturbatively renormalizable in two dimensions rather than four it has many properties
which are in common with Quantum Chromodynamics (QCD). For instance, it is asymptotically
free and has dynamical symmetry breaking whereby the classically massless fermions become
massive in the true vacuum, [1]. These together with other properties such as the existence of
an exact S-matrix, [3], which provides the full bound state spectrum of the quantum theory,
mean that the Gross-Neveu model has been used for many years as a laboratory to examine
ideas which are harder to gain insight into in higher dimensional theories such as QCD.

The theory is also of interest due to its connections with problems in condensed matter theory.
For example, it has been shown that in the so-called replica limit, N → 0, the SU(N) theory
describes the physics of the random bond Ising model, [4]. See [5], for instance, for a review
article. More recently, the Gross-Neveu model has been found to be connected to problems in
conformal field theory (CFT) in dimensions greater than two. Specifically it lies in the same
universality class at the Wilson-Fisher fixed point in d-dimensions as the Gross-Neveu-Yukawa
theory whose critical dimension is four.

Aside from the Ising model connection, [4], which has been explored recently in the CFT
context using the conformal bootstrap programme, [6], the Gross-Neveu model has connections
with recent developments in AdS/CFT theories. For example, see [7] for a recent review on the
background to this area. Given this particular relation to current problems in higher dimensional
quantum field theories, it is worth noting that that analysis rests on performing computations
with the large N or 1/N expansion. This expansion parameter, which is an alternative to
conventional perturbation theory, is another feature which the Gross-Neveu model shares with
QCD. In the latter case one can perform large Nc or large Nf expansions where Nc and Nf are
the number of colours or (massless) quark flavours respectively. One advantage of an analysis
using the large N expansion in the Gross-Neveu model, or large Nf in the case of QCD, is that
each theory is renormalizable away from the critical dimension of either quantum field theory.

Given the centrality of the Gross-Neveu model to a wide range of applications since its
introduction, [1], it is worth noting that it has not been renormalized in perturbation theory to
as high a loop order as several of the other basic theories such as O(N) scalar φ4 theory or QCD
itself. For instance, after the one loop results of [1] the two loop renormalization was carried
out in [8] and verified in [9]. Subsequently, the three loop renormalization was performed in
[10] with the β-function appearing independently in [11, 12]. At four loops the wave function
and mass anomalous dimensions were determined in [13]. However, from the point of view of
determining critical exponents in the replica limit, say, the information in these four loop terms
is of no use until the β-function is known to that order too as it contains the location of the
critical point to the same precision. This is the purpose of the article where we will complete the
full four loop renormalization of the SU(N) Gross-Neveu model by determining the coupling
constant renormalization constant in the modified minimal subtraction (MS) scheme. In terms
of time lines this is a quarter of a century since the three loop β-function of [11, 12]. While
relatively long this is not dissimilar to the other basic theories mentioned already. For instance,
the step from five, [14, 15], to six loops, [16, 17, 18], for the scalar φ4 theory in four dimensions
also took twenty-five years. Similarly from the appearance of the four loop MS QCD β-function,
[19], and its verification [20], until the recent MS evaluation for SU(3), [21], the time interval
was nearly a score of years. The seven loop wave function renormalization of φ4 theory has also
been determined recently with an indication that the β-function could be available soon outside
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the normal waiting period, [17].

What is central to all these recent increases in the loop order of the β-functions has been the
advance in computational technology. This does not solely mean computer hardware and speed.
More crucial has been the creation, for instance, of an overall algorithm to handle the inordinate
amount of integration by parts of the exponentially large number of Feynman diagrams which
occur at successive loop orders, [22]. A consequence of this algorithm is the need to determine
explicitly the value of a relatively small subset of integrals, termed masters, which cannot be
computed using integration by parts. One such approach has been to evaluate these numerically
to very high precision using difference relations, [23]. Then analytic values can be adduced using
the integer finding method of [24] and a basis of transcendentals, such as multiple zeta values
(MZV). Alternatively these difficult master integrals can in certain situations be determined
directly by algebraic methods. For instance, high level mathematics, such as algebraic geometry
and the development of the theory and properties of hyperlogarithms and MZVs, have crystal-
lized into an algorithm such that all the parameter integrations in the Schwinger representation
of certain master Feynman integrals can be found. For instance, this approach has been encoded
in the Hyperint package, [25].

Given this background we have applied the latest machinery to tackle the four loop MS eval-
uation of the Gross-Neveu β-function. It transpires that this is not as straightforward as for the
parallel computation in scalar field theories and to a lesser extent than for QCD. This is because
in dimensionally regularizing the Gross-Neveu model, as is the usual regularization for multiloop
renormalization of such theories, one loses multiplicative renormalizability, [26, 27, 28], which
was observed in detail in [29, 30]. In essence, as with the treatment of 4-fermi operators in
effective field theories in four dimensions, evanescent operators are generated. These are op-
erators which exist in d-dimensions but are absent in the critical dimension of the actual field
theory being renormalized. Their presence in the regularized theory cannot be ignored, as has
been noted in the Gross-Neveu context, [29, 30, 13], since they have an effect on the determi-
nation of the renormalization group functions in the lifting of the regularization. However, in
the Gross-Neveu model the effect of these evanescent operators on the renormalization group
functions does not become manifest until four loops. This was recognized in [28, 29, 30] and
implemented in the construction of the four loop mass anomalous dimension in [13]. Useful
in this respect was the formalism developed to account for the effect the evanescence has on
the renormalization group functions given in [26, 27]. Like scalar φ4 theory the wave function
anomalous dimension has no one loop term. So the effect of the evanescent operators will not be
apparent before five loops for that particular renormalization group function. Given our interest
in the four loop β-function here we will be careful in computing the underlying 4-point function
which determines the coupling constant renormalization and in the same instance find the new

evanescent operators which are generated at four loops. These will be required for any future
five loop renormalization.

The article is organized as follows. Section 2 is devoted to reviewing the formalism required
to renormalize two dimensional theories with a 4-fermi interaction via the projection method of
[26, 27]. The technical details of how we evaluated the four loop Feynman graphs contributing
to the renormalization of the 4-point function are given in section 3. The main result for the
β-function is given in section 4 and applications to problems in condensed matter theory are
given in section 5. We provide brief concluding remarks in section 6. There are two appendices
which respectively detail the tensor reduction construction and the numerical and analytic form
of the master integrals up to and including four loops.
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2 Preliminaries

We begin by summarizing the essential ingredients required to renormalize the SU(N) Gross-
Neveu model to four loops in the MS scheme. The technical details as to how the computations
are performed will be devolved to a later section. We have chosen to consider the SU(N) theory
rather than the O(N) model because the former formulation has fewer terms in the vertex
Feynman rule. Hence it minimizes the number of algebraic manipulations in the computations.
The O(N) renormalization group functions can be reconstructed from the final SU(N) results.

The bare SU(N) Gross-Neveu Lagrangian is, [1],

L = iψ̄i0∂/ψ
i
0 − m0ψ̄

i
0ψ

i
0 +

1

2
g0(ψ̄

i
0ψ

i
0)

2 (2.1)

where we use 0 to denote a bare field or parameter and g is the coupling constant. In general
terms (2.1) is renormalizable in two dimensions, [1]. We have included a mass for the fermion here
partly to be complete but also because we wish to avoid potential infrared issues when we come to
computing the relevant Feynman diagrams. When one takes traces over γ-matrices the Feynman
integrals will have propagators similar to those of a bosonic field. It is well known that in two
dimensions a bosonic propagator is infrared divergent. So including a mass for the fermion will
ensure that all emerging divergences are ultraviolet in nature. The technical problem which arises
is that when one considers the theory in higher dimensions it ceases to be renormalizable since
the interaction produces a dimensionful coupling constant. This observation has implications
when one dimensionally regularizes (2.1) to initiate its renormalization. Specifically (2.1) ceases
to be multiplicatively renormalizable, [26, 27]. Instead evanescent operators are generated in
d-dimensions whose presence affects the derivation of the true renormalization group functions.
This has been recognized in the earlier work of [26, 27, 28, 29, 30]. Moreover, a procedure has
been developed to account for the effect of these evanescent operators, [26, 27], which we will
use and extend to the case of the β-function computation here. To appreciate the issue in more
depth it is instructive to recall the properties of the γ-algebra. In strictly integer dimensions
the γ-matrices satisfy the Clifford algebra

{γµ, γν} = 2ηµν . (2.2)

However when the spacetime dimension d becomes a continuous variable the matrices γµ cease
to span the spinor space. Instead the basis of γ-matrices needs to be expanded to a new set
of matrices denoted by Γµ1...µn(n) for all integers n ≥ 0. We have chosen to use the basis and

definition of [26, 30, 31, 32, 33] and they are defined by

Γµ1µ2...µn(n) = γ[µ1γµ2 . . . γµn] (2.3)

where a factor of 1/n! is understood within the total antisymmetrization on the right hand side.
To clarify when d is an integer dimension D, say, then the basis of Γ-matrices is finite. This is
because Γµ1µ2...µn(n) = 0 for n > D due to the antisymmetrization. Although we are considering

the non-chiral Gross-Neveu model, (2.1), it is worth noting that Γµ1µ2µ3µ4µ5(5) has no relation to

the usual γ5 matrix. The renormalization of the chiral Gross-Neveu model is more involved,
[26, 27], and beyond our present considerations.

With these generalized γ-matrices the dimensionally regularized Gross-Neveu model can be
regarded as a special case of the more general d-dimensional Lagrangian, [26, 27],

L = iψ̄i0∂/ψ
i
0 − m0ψ̄

i
0ψ

i
0 +

1

2

∞
∑

n=0

g(n) 0 ψ̄
i
0Γ

µ1...µn
(n) ψi0 ψ̄

i
0Γ(n) µ1...µnψ

i
0 (2.4)
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where g(n) are generalized couplings. Although we will always use g = g(0) which is not to be
confused with the bare coupling constant. The additional couplings g(n) fall into two classes.
For (2.1) g(1) and g(2) would correspond to renormalizable interactions in strictly two dimensions
and are not couplings associated with evanescent interactions. The former coupling corresponds
to the Thirring model while the latter is related to the interaction 1

2(ψ̄
iγ5ψi)2 which is part of

the chiral Gross-Neveu model. We do not consider either of these theories here. Although the
projection formalism of [26, 27] applies equally to their renormalization. The couplings g(n) with
n ≥ 3 label the set of evanescent operators, defined by

On = 1

2
ψ̄iΓµ1...µn(n) ψi ψ̄iΓ(n) µ1...µnψ

i , (2.5)

which are necessary to ensure (2.1) is renormalizable. These operators will be generated in the
renormalization of (2.1) itself. For (2.4) such operators are generated but in the sense that this
is hidden as their divergences are removed by the renormalization constants associated with g(n).
For (2.1), [29, 30], the first new operator, O3, emerges first at three loops. In other words there
was a term in the 4-point function of (2.1) at three loops of the form

a(3)

ǫ
Γµνσ(3) ⊗ Γ(3)µνσ (2.6)

where a(3) is the residue of the simple pole in the regularizing parameter ǫ with d = 2 − 2ǫ.
The tensor product notation is understood to mean the different spinor channels into which the
operator O(n) can be decomposed in the 4-point function. While the operator O(3) is non-existent
in strictly two dimensions its generation in dimensional regularization cannot be overlooked as
its presence will affect the extraction of the true renormalization group functions.

There are several ways of considering (2.4) from the practical point of renormalizing the
SU(N) Gross-Neveu model, (2.1). One could take a general approach beginning with the most
general extension of (2.1) which is (2.4) with g(1) = g(2) = 0 at the outset and then compute all
the renormalization constants for the field, mass and the coupling constants g(n) with n 6= 1 and
2, to four loops. From the resultant renormalization group functions then the β-function for g
can be extracted. An alternative approach would be to ignore the full set of couplings and instead
include the g-dependent renormalization constants for the various evanescent operators as and
when they are generated. The true β-function for g can then be determined using the projection
formalism. The generated operators, such as (2.6), have a hidden effect on the renormalization
at the first loop order beyond that of when they appear. This has to be accounted for in
extracting the renormalization group functions which one would find if the regularization of the
two dimensional Lagrangian was not in fact dimensional.

To summarize [26, 27] there are three essential aspects to the construction of the renormaliza-
tion group functions. The first is the determination of what are called the naive renormalization
group functions which are denoted by γ̃(g), γ̃m(g) and β̃(g) for the wave function, mass and
coupling constant renormalizations respectively, [26, 27]. They are constructed in the standard
way of renormalizing a quantum field theory with the proviso that when an evanescent operator
is generated, it is included in the Feynman rules for the renormalization at all subsequent higher
orders. Associated with the evanescent operator generation is its own β-function, denoted by
βk(g), which is the second aspect of the construction where we will use the label k to refer to the
strictly evanescent quantities and thus k ≥ 3 in two dimensions. For the case of (2.6) the residue
a(3) is in effect the first term of β3(g) which was computed in [29, 30, 13]. We concentrate here
on the formalism and give explicit details later. However, in the context of the interpretation of
(2.4) in terms of generated operators without the generalized couplings g(k) then to three loops
the dimensionally regularized Lagrangian which is used to determine the renormalization group
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functions of the strictly two dimensional theory is, [28, 29, 30, 13],

L = iZψψ̄
i∂/ψi − mZψZmψ̄

iψi +
1

2
gµ2ǫZgZ

2
ψ(ψ̄

iψi)2 +
1

2
gµ2ǫZ33Z

2
ψ

(

ψ̄iΓµνσ(3) ψ
i
)2

. (2.7)

Here Z33 is the counterterm for (2.6) and µ is the scale introduced to ensure that the coupling
constants are dimensionless in d-dimensions. In (2.7) we have used the standard definitions of
the renormalization constants which connect bare with renormalized quantities which are

ψ0 = ψ
√

Zψ , m0 = mZm , g0 = gZgµ
2ǫ . (2.8)

In the context of (2.4) Z33 would correspond to the renormalization of the coupling g(3) as
would Znn be the obvious generalization for the other couplings g(n). Moreover, all these renor-
malization constants would be functions of the complete set of couplings. However, when one
considers the reduced non-multiplicatively renormalizable Lagrangian (2.1) then only the neces-
sary evanescent operator coupling constants are included and they will depend only on g. This
means that the first term of Z33, for instance, does not begin with unity like Zg.

The final part of the projection formalism is the computation of the underlying projection

functions for the wave function, mass and coupling constant and denoted by ρ(k)(g), ρ
(k)
m (g) and

C(k)(g) respectively. They are defined and computed through the projection formula, [26, 27],
∫

ddxN [Ok]

∣

∣

∣

∣

g(i)=0 , d=2

=

∫

ddx
(

ρ(k)(g)N [iψ̄∂/ψ − mψ̄ψ + 2gO0]

− ρ(k)m (g)N [mψ̄ψ] + C(k)(g)N [O0]
)∣

∣

∣

g(i)=0 , d=2
(2.9)

where N [Ok] denotes the normal ordering of the evanescent operator Ok, k ≥ 3. While we will
follow the method of [26, 27] we note that a similar projection method for evanescent 4-fermi
operators was provided in [34]. In practical terms the relation (2.9) is to be regarded as having
meaning only inside a Green’s function. For our purposes these will be 2- and 4-point functions.
One evaluates the insertion of N [Ok] in either n-point function to a certain order in perturbation
theory. Then the operators on the right hand side are inserted in the same n-point function to
the same order. After the usual operator renormalization the evanescent couplings are set to
zero and the Green’s function determined in strictly two dimensions which is the meaning of
the restriction g(i) = 0 , d = 2, [26, 27]. The final task is to deduce the perturbative expansions

of the three projection functions with ρ(k)(g) and ρ
(k)
m (g) being determined from insertion in a

2-point function and C(k)(g) from the 4-point function. Finally, once the naive renormalization
group functions, evanescent operator β-functions and projection functions are known to the
loop order necessary for the order the true two dimensional renormalization group functions are
needed then these are given by evaluating, [26, 27],

β(g) = β̃(g) +

∞
∑

k=3

C(k)(g)βk(g)

γ(g) = γ̃(g) +

∞
∑

k=3

ρ(k)(g)βk(g)

γm(g) = γ̃m(g) +

∞
∑

k=3

ρ(k)m (g)βk(g) . (2.10)

In (2.10) the naive renormalization group functions are derived in the standard fashion through

γ̃(g) = µ
∂

∂µ
lnZψ , γ̃m(g) = − β̃(g)

∂

∂g
lnZm

β̃(g) = (d− 2)g − gβ̃(g)
∂

∂g
lnZg (2.11)
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once all the renormalization constants have been computed. In [28, 29, 30, 13] the three pro-
jection functions were evaluated explicitly to the requisite loop order to be able to deduce
the renormalization group functions to four loops. Although in the case of the wave function
renormalization for (2.1) the leading term of ρ(3)(g) is not required since there is no one loop
correction to γ(g). In the determination of γm(g) at four loops an error was discovered in the
original evaluation of β3(g), [28], and in a later article [35]. Both these articles were three loop
analyses and β3(g) had not been used or tested in the application of the projection formalism
to a four loop computation. While both these articles agreed on the rational part of β3(g) they
differed in the irrational term. This was resolved in [13] when γm(g) was computed to four
loops. To achieve this it was first required to extract the correct value for the irrational part of
β3(g). With the incorrect value of β3(g) the mass anomalous dimension does not vanish when
N = 1

2
as it ought to since there is no interaction for this value of N . The appearance of this

rational value for N can be understood best if one converts the SU(N) theory, (2.1), to the case
with Majorana fields whence there is an O(2N) symmetry. Thus when N = 1

2
here the 4-fermi

interaction vanishes due to the Grassmann property. Likewise we expect the true β-function of
(2.1) to be zero when N = 1. This is because in that case one can use a two dimensional Fierz
identity to show that

(ψ̄ψ)2 = − 1

2
(ψ̄γµψ)2 . (2.12)

This means that the N = 1 Lagrangian is equivalent to the abelian Thirring model whose β-
function is known to be zero, [26, 27]. The presence of a factor of (N − 1) in each term of
the three loop MS β-function of (2.1) is already established. However, to this order there is no
contribution from β3(g) to the true β-function which will first occur at four loops. The emergence
of another factor of (N − 1) at four loops will be an important check on our computations and
the use of the projection formalism.

3 Computational technicalities

We devote this section to the technical issues surrounding the evaluation of the Feynman dia-
grams and the organization of the renormalization. In lower loop renormalization of (2.1) several
renormalization group functions were determined in the massless Lagrangian. For instance, the
wave function anomalous dimension was derived at three loops in this way, [10]. That was
possible since no infrared problems were introduced in the 2-point function in the massless case
and there are no exceptional momentum configurations in this Green’s function. By contrast
the computation of the three loop β-function was carried out in several different ways. In [12]
the interaction of (2.1) was first rewritten in terms of an auxiliary field, σ, before the massive
Lagrangian with two couplings was renormalized and the three loop effective potential for σ was
computed. Independently in [11] the Lagrangian (2.1) was renormalized without introducing
an auxiliary field. Later the three loop renormalization was revisited in [28, 29, 30] where the
generation of the evanescent operator O3 was noted.

While this summarizes the previous higher order loop computations in the Gross-Neveu
model to proceed to four loops we have followed a more systematic algorithm. We will renor-
malize the 2- and 4-point functions of (2.1) using the vacuum bubble approach of [36, 37] which
was developed in order to simplify the renormalization of four dimensional theories. In this
method one expands the massive propagators of (2.1) using the identity

1

[(k − p)2 +m2]
=

1

[k2 +m2]
+

[2kp − p2]

[k2 +m2][(k − p)2 +m2]
. (3.1)
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The repeated use of this identity systematically replaces propagators involving an external mo-
mentum, p, with propagators involving purely internal loop momenta k. One terminates the
expansion using Weinberg’s theorem, [38]. The algorithm was introduced in [37] for massless
gauge theories. However, applying it to (2.1) with the particle mass already present means that
an intermediate infrared regularizing mass does not need to be introduced in this application
unlike [37]. In using this method for (2.1) it is virtually a trivial application. It is only in the
case of the 2-point function when it is multiplied by p/ and the spinor trace taken that one has
to iterate the identity more than once to the termination point. For the extraction of the mass
renormalization taking a spinor trace of the 2-point function the first application of (3.1) in effect
sets the external momentum to zero. A similar situation applies in part for the 4-point function
where in effect all external momenta are nullified at the outset. As part of the vacuum bubble
algorithm described in [36, 37] the next stage is the evaluation of the resultant vacuum bubble
graphs which emerge. The standard approach nowadays is to use the Laporta algorithm, [22].
This is a method which first constructs relations between Feynman integrals using identities es-
tablished by integration by parts. These algebraic relations can then be solved by linear algebra
in such a way that all integrals can be expressed in terms of a relatively small set of what are
called master integrals. The ǫ expansion of these integrals are determined by non-integration
by parts methods which completes the evaluation of all constituent integrals lurking within a
Feynman graph of a Green’s function.

We have described the background to the approach of [36, 37] as a reference for the Gross-
Neveu model renormalization here partly as we will make use of it but mainly because we have
had to adapt it given the complication with the generation of On. First, what is evident from
(3.1) is that the Feynman integrals have scalar products of the internal and external momenta in
the numerators. As the first part of the Laporta technique these are replaced by combinations
involving the propagators themselves. If there is an irreducible scalar product the integral is
what is termed completed by the inclusion of a propagator not associated with the original
topology. This additional propagator contains the irreducible scalar product. One feature of
the Laporta algorithm’s power is that it can handle such irreducible propagators. While this is
the standard procedure there is a complication when we consider the 4-point function of (2.1).
If one did not have to account for the evanescent operator generation one would take a spinor
projection of the Green’s function to access one channel of the Feynman rule and evaluate the
resultant Feynman graphs. Instead we have to be more systematic and not take any spinor
traces for the 4-point function. This means that before we can evaluate any 4-point function
graph we first disentangle the internal momenta from contractions within γ-matrix strings. This
leaves Feynman integrals which involve Lorentz tensors of the internal momenta up to rank 2L
at L loops. These internal momenta arise from the fermionic propagator. However, only an even
number of internal momenta arise since we have already applied the vacuum bubble expansion
and a vacuum bubble integral with an odd number of Lorentz indices is automatically zero.
What remains to be done is to rewrite these Lorentz tensor integrals in terms of scalar products
whence the earlier algorithm can be applied. It transpires that there is a large number of different
combinations of internal momenta in the tensor integrals. Rather than develop a result for all
possible cases we were able to construct a general tensor decomposition up to rank 8 for all
combinations of internal momenta. This is more appropriate given how large a number occur
at four loops. More details on the tensor decomposition is provided in appendix A.

As all the graphs can now be expanded in terms of completely massive scalar vacuum bubbles
the next task is to reduce these to the set of masters. We have used theReduze package, [39, 40],
which is a C++ coding of the Laporta algorithm. It systematically constructs a database of
the relations between all the required integrals and the final masters. One advantage of our
approach is that we have needed only one integral family at each loop order to cover all possible
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integrals which arise. To three loops this is effectively trivial since the number of propagators in
each integral family exactly matches the number of independent scalar products of the internal
momenta. At four loops there are 10 possible scalar products but since we have a single quartic
interaction then at most there are eight propagators in a Feynman graph. So for the four loop
integral family we have chosen the ordered propagators

{

1

[k21 +m2]
,

1

[k22 +m2]
,

1

[k23 +m2]
,

1

[k24 +m2]
,

1

[(k1 − k4)2 +m2]
,

1

[(k2 − k4)2 +m2]
,

1

[(k3 − k4)2 +m2]
,

1

[(k1 − k2)2 +m2]
,

1

[(k1 − k3)2 +m2]
,

1

[(k1 − k2 − k3)2 +m2]

}

(3.2)

as the integral family. One of the propagator choices to complete the family has been chosen to
ensure a non-planar topology is covered. The application of Reduze produces a relatively small
set of master integrals to be evaluated and substituted for the evaluation. These are illustrated
in Figures 1 and 2. In Figure 2 each dot on a line represents an increase in the power of the
original propagator by unity. Although we have only illustrated the pure masters in the sense
that beyond one loop one can have have products of lower loop order masters. For instance,
one can have a product of L one loop vacuum bubble graphs at each loop order L or at four
loops the product of the two loop master shown in Figure 1 emerges as a master in Reduze at
four loops. We note that the master integral labelled 1011.1.2 in Figure 2 is the only one which
differs from the master basis choice in [41].

The final step is the determination of the ǫ expansion of the integrals in Figures 1 and 2.
Aside from the simple one loop massive vacuum integral which is trivial to evaluate, at low loop
order the leading term of the expansion of various integrals has already been found as well as a
few simple ones at four loops, [13]. However, the known values are not sufficient to determine
the divergence of the 4-point function to the simple pole in ǫ. This is partly because a subset
of the full four loop masters were needed for the mass anomalous dimension computation and
partly due to spurious poles which emerge when the integration by parts reduction is effected.
In other words one has sometimes to evaluate a master to several finite orders in the ǫ expansion
to ensure that the correct simple pole is found for the renormalization constant. Although it
transpires that the higher orders in ǫ are ordinarily only required for those masters with a small
number of propagators.

1 7 51 62 63

Figure 1: One, two and three loop master vacuum bubble integrals.

To find the values of the required terms in the ǫ expansion of the masters we have used the
numerical method described in [22, 23]. Basically master integrals are evaluated numerically
to very high precision by solving difference equations. The algorithm is not sensitive to the
dimension of spacetime but needs to be applied separately for each integer. Originally, four
loop massive vacuum bubbles were numerically determined in four space-time dimensions in
[42]. Subsequently in [41] the analogous three dimensional set of masters was also determined
to four loops to very high precision for applications to QCD at finite temperature. In repeating
this exercise here at four loops for two dimensions, using algorithms developed in [44] as well as
[45], we are providing the equivalent machinery which can be applied to parallel renormalization
calculations in two dimensions.

However, the ultimate goal is to have renormalization group functions in terms of rationals
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as well as the Riemann ζ-function. To four loops we do not expect any numbers other than those
in keeping with our knowledge of the renormalization group functions in other theories to the
same order in the MS scheme. This is a key observation mainly because in some of the low loop
masters numbers other than (Riemann) zeta values appear in the the ǫ expansion. For instance,
for the two loop master in Figure 1 it is known that special values of the Clausen function such
as Cl2(

π

3
) contribute (see, for instance, [43, 13]). In [10, 13] the cancellation of this value in the

evaluation of the renormalization constants was checked to three loops. A similar feature should
emerge here. However, one first has to identify the presence of this and other such irrationals
lurking within the numerical evaluation. This is possible through the application of the PSLQ
algorithm of [24]. Fed with a basis of transcendentals that are expected to be contained in the
numerical value, the algorithm tries to determine the actual linear combination of those basis
numbers with rational coefficients. The robustness of the resulting explicit relation is tested
against a more precise numerical evaluation of the coefficient in the ǫ expansion. With this
approach we were able to determine all the necessary terms in the ǫ expansion of the masters
of Figures 1 and 2 in order to be able to renormalize the 4-point function of (2.1) to four loops,
see appendix B.

The re-evaluation of the wave function and mass renormalization constants with the masters
here was a check on the earlier computations of [10, 11, 12, 13] as well as being a partial check
on certain values of the four loop masters we determined here. It transpired that for the simple
pole associated with the generation of the new operator O4 at four loops a certain combination
of higher order coefficients in the ǫ expansion of the masters was required. While each individual
coefficient inevitably will contain rationals and irrationals aside from ζn we used PSLQ on the
specific combination which emerged and searched successfully for a linear combination using
the basis of {1, ζ3, ζ4, ζ5}. This is consistent with our expectations of the basis of numbers
which appears in an MS renormalization group function at five loops, and the emerging linear
relation can indeed be used to fix one expansion parameter, see (B.42). The effect the four loop
generation of O4 has will become manifest at the next loop order similar to the effect O3 has
in the four loop mass anomalous dimension in [13] and the β-function here. In appendix B we
have recorded the ǫ expansion of the masters of Figures 1 and 2 to the various orders needed for
our computations, both numerically and analytically, as well as more details of how the master
values were found.

Running parallel to the treatment of the masters is the organization of the γ-matrices which
had been stripped off to leave tensor integrals. In order to extract the naive coupling constant
renormalization the γ-matrix strings have to be written in terms of the generalized matrices
Γµ1...µn(n) . To do this we exploit the algebraic properties of these matrices which was discussed at

length in [28, 29, 30]. Products of n γ-matrices can be decomposed into linear combinations of
Γµ1...µr(r) where r is even or odd depending on whether n is even or odd. The range of r begins with
0 or 1, depending on whether n is even or odd respectively, and ends at n. One can construct
the decomposition iteratively through the basic identities, [28, 29, 30],

Γµ1...µn(n) γν = Γµ1...µnν(n+1) +
n
∑

r=1

(−1)n−r ηµrν Γ
µ1...µr−1µr+1...µn
(n−1) (3.3)

γνΓµ1...µn(n) = Γνµ1...µn(n+1) +

n
∑

r=1

(−1)r−1 ηµrν Γ
µ1...µr−1µr+1...µn
(n−1) . (3.4)

The process begins with the simple case of n = 1 which can be written in the more familiar way

γµγν =
1

2
[γµγν − γνγµ] + ηµνI (3.5)
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841 993 952 1016 1010

1009 1020 1011 1022 511

841.1.3 1009.1.2 1011.1.2

Figure 2: Four loop master vacuum bubble integrals. We label them by their sector identifier
number, whose binary representation corresponds to the propagators (out of the set listed in
(3.2)) that are present.

where I is the unit matrix in spinor space. This is a simple example of (3.4) and the first term
clearly corresponds to Γµν

(2)
. With these relations we have constructed the decomposition of the

product of up to 4 γ-matrices into the generalized γ-matrices. This is the highest number of γ-
matrices which can appear in a string at four loops using (2.1) after the tensor decomposition of
the associated integral has been carried out. There may be longer strings of γ-matrices but there
will be contractions of at least one pair of Lorentz indices within that string. These contractions
are removed by the systematic application of the Clifford algebra. Then the mapping of the
γ-matrix string to the matrices Γµ1...µn(n) is performed. The totally antisymmetric property of the
latter is exploited at this stage as the Lorentz index contractions arising from the second terms
in (3.4) means that only products of γ-matrices of the form Γµ1...µn(n) ⊗Γ(n)µ1...µn will remain. The
coefficients of these tensor products will be d-dependent due to contractions with the ηµν tensor
and these will therefore impact upon the divergence structure of the overall Feynman graph. This
is not a trivial point. One has to recall that we are dealing with a renormalizable quantum field
theory which is not multiplicatively renormalizable within dimensional regularization. Therefore
in the decomposition of the overall γ-algebra to produce the basis of On operators those labelled
by 1 and 2 cannot emerge with poles in ǫ. These are not evanescent and ultimately they have to
be absent by renormalizability. This is guaranteed in effect by factors of (d − 2) which emerge
as factors of the various n = 1 and 2 matrices in the γ-matrix decomposition.

We have now described the technical ingredients of the various aspects of the computation
we have had to perform to renormalize (2.1). From a practical point of view the implementation
of the procedure and the minimization of the significant amounts of algebra could not have been
possible without Form, [46, 47]. However, at the outset we have used Qgraf, [48], to generate
all the Feynman graphs for the 2- and 4-point Green’s functions. As we are using a massive
version of the Lagrangian and applying the vacuum bubble expansion we have to include the
snail graphs in Qgraf. In other words we exclude the nosnail option in the qgraf.dat set-
up file. Ordinarily we would not highlight such a subtlety. However, it is crucial to ensuring
the cancellation of the non-rational and non-Riemann ζ numbers in the final renormalization
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group functions. The presence of a graph with a snail is to match the mass counterterm in a
graph at a lower loop order with a similar topology. This was observed in earlier work, [10, 13].
One consequence of this is that there is a larger number of graphs to determine than, say, the
equivalent computation in scalar O(N) φ4 theory. There a massless computation can proceed
without the potential difficulty of infrared problems. In Table 1 we have listed the numbers of
graphs for the Green’s function we evaluated at each loop order. Once the graphs have been
generated using the Fortran coded Qgraf package, the output is passed to the various Form
modules which add Lorentz, spinor and group indices, apply the Feynman rules and prepares
the mapping to the integral family notation of Reduze. The various integrals needed from the
Reduze database are included in a Form module before the substitution of the ǫ expansion
of the masters and the d-dependent factors appearing after the integration by parts. The final
stage is the automatic renormalization of the field and parameters. We have followed the method
of [49] where the whole computation proceeds with bare parameters throughout. Only at the
end are renormalized quantities introduced via (2.8) which supplies the necessary counterterms.
A caveat to this procedure is that the renormalization constants for the generated evanescent
operators have to be included as discussed earlier after the effect of O3 itself has been allowed
for in the one loop 4-point graphs.

Green’s function 1 loop 2 loop 3 loop 4 loop Total

ψiψ̄j 1 2 7 36 46
(ψ̄iψi)2 3 18 138 1190 1349

Total 4 20 145 1226 1395

Table 1. Number of Feynman diagrams for each 2- and 4-point function.

4 Results

Having described the technicalities of the computation we now discuss the results. First, we have
reproduced the naive wave function and mass anomalous dimensions to check with previous work,
[1, 8, 9, 10, 11, 12, 13]. We have verified that (see section 2 for definitions)

γ̃(g) = (2N − 1)
g2

8π2
− (N − 1)(2N − 1)

g3

16π3
+ (4N2 − 14N + 7)(2N − 1)

g4

128π4

+ O(g5)

γ̃m(g) = − (2N − 1)
g

2π
+ (2N − 1)

g2

8π2
+ (4N − 3)(2N − 1)

g3

32π3

+
[

−40N3 − 72N2 + 160N − 81 + (48N3 − 384N2 + 492N − 138)ζ3
] g4

384π4

+ O(g5) . (4.1)

Equally we have reproduced∗

ρ(3)(g) = O(g) , ρ(3)m (g) = − 1

π
+ O(g) (4.2)

which together with

β3(g) = [3ζ3 − 4]
g4

64π3
+ O(g5) (4.3)

∗We have corrected the powers of g in our expressions for β3(g), ρ
(3)
m (g) and C(3)(g) which were not correct in

[13, 35].
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which has the corrected irrational term, [13], means we have rederived

γ(g) = (2N − 1)
g2

8π2
− (N − 1)(2N − 1)

g3

16π3
+ (4N2 − 14N + 7)(2N − 1)

g4

128π4

+ O(g5)

γm(g) = − (2N − 1)
g

2π
+ (2N − 1)

g2

8π2
+ (4N − 3)(2N − 1)

g3

32π3

+ (2N − 1)
[

−20N2 − 46N + 57 + 12(N − 1)(2N − 13)ζ3
] g4

384π4
+ O(g5) . (4.4)

It is important to appreciate that these have been derived with the methods described in this
article using four loop massive vacuum bubbles and the Laporta algorithm. In [50] the four
loop wave function was evaluated in the completely massless theory, and verified in [51], while
the mass anomalous dimension was derived with massive vacuum bubbles but did not use the
Laporta algorithm. Instead the necessary terms of the ǫ expansion of the various masters, which
were fewer than those required for the β-function at four loops, could be derived from known
four dimensional ones and related to those in two dimensions using Tarasov’s method, [52, 53].
For completeness we have computed the next term in the series for β3(g) and found

β3(g) = [3ζ3 − 4]
g4

64π3
+ [−24Nζ3 − 18Nζ4 + 56N − 24ζ3 + 9ζ4 + 2]

g5

384π4
+ O(g6) . (4.5)

Equally we find that

β4(g) = [108ζ3 + 18ζ4 − 30ζ5 − 107]
g5

1536π4
+ O(g6) (4.6)

for the generated O4 operator at four loop. The O(g5) terms of each of these β-functions will be
required for the five loop mass and β-function computations and are consistent with expectations
that ζ4 can only appear first at five loops in the renormalization group functions.

For the similar derivation of the true β-function we note that the naive version which we
have calculated here is

β̃(g) = (d− 2)g − (N − 1)
g2

π
+ (N − 1)

g3

2π2
+ (N − 1)(2N − 7)

g4

16π3

+
[

−4N3 − 34N2 + 86N − 60− (132N2 − 336N + 195)ζ3
] g5

96π4
+ O(g6) (4.7)

where it is clear that there is no (N − 1) factor at four loops. Though it is worth noting that at
N = 1 the four loop coefficient is proportional to [4−3ζ3]

1
32π4 . The emergence of this combination

of rational and irrational numbers which is proportional to the coefficient of the leading term of
β3(g) is indicative that the naive β-function is not incorrect. With the evaluation of

C(3)(g) = − 2

π
g + O(g2) (4.8)

we finally find our main result that

β(g) = (d− 2)g − (N − 1)
g2

π
+ (N − 1)

g3

2π2
+ (N − 1)(2N − 7)

g4

16π3

+ (N − 1)
[

−2N2 − 19N + 24− 6ζ3(11N − 17)
] g5

48π4
+ O(g6) (4.9)

to four loops in the MS scheme.
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Aside from the correct appearance of (N−1) in each term there are several other independent
checks. One of these is the correct value of the residue of the poles in ǫ beyond the simple one
in Zg. These non-simple pole residues are already determined from the values of the residues
of all the poles of the lower loop order parts of Zg from the renormalization group equation.
The other main check is through the large N expansion. This is an alternative but complemen-
tary way of determining the coefficients in the perturbative series of a renormalization group
function. Briefly the method of computing large N information relies on the renormalization
group equation considered at the Wilson-Fisher fixed point in d-dimensions. In [54, 55, 56] a
method was developed to evaluate the critical exponents in the fixed point universal theory in
the 1/N expansion where N is large. The information encoded in the various critical expo-
nents can be extracted and have a direct relation to the coefficients of the polynomials in N
of the corresponding renormalization group function at each loop order. In other words before
we had computed (4.9) from the application of the method of [54, 55, 56] to the case of (2.1),
[57, 58, 59, 60, 61, 62, 63], the coefficients of the cubic and quadratic terms in N had already
been predicted. We made no assumption at the outset as to what these values would be in this
computation. Their emergence from the full evaluation consistent with the critical exponent
corresponding to the β-function slope at O(1/N2) is a non-trivial check on (4.9).

5 Applications

We now turn to several applications of the results and examine the critical exponents derived
from the renormalization group functions in various cases as we can now deduce the Wilson-
Fisher fixed point location at four loops. The first situation we consider is when N = 4 which
lies in the chiral Ising universality class, [64], and is related to a particular electronic phase
transition in the honeycomb lattice of graphene. Indeed it is noted in [64] that this transition
from semi-metal to a Mott insulator could be a mimic of spontaneous symmetry breaking in the
Standard Model and moreover can be studied in principle in the laboratory. In [64] estimates
for the exponents ηψ and ν as well as that denoted by ηφ were given in three dimensions using
functional renormalization group methods, by summing the ǫ expansion of the Gross-Neveu
model above two dimensions, the Gross-Neveu-Yukawa model below four dimensions as well
as the three dimensional large N exponents, [64]. As only three loop renormalization group
functions were available for the Gross-Neveu case it is appropriate to extend that analysis here.
The critical exponents are defined in terms of our renormalization group functions at criticality,
[64], by

ηψ = γ(gc) , ηφ = d + 2γm(gc) ,
1

ν
= − β′(gc) . (5.1)

In order to make the comparison with the notation of [64] easier we set d = 2 + ε for the moment
and find

ηψ =
7

72
ε2 − 7

432
ε3 +

7

10368
ε4 + O(ε5)

ηφ = 2 − 4

3
ε − 7

36
ε2 +

7

54
ε3 +

91[12ζ3 + 1]

5184
ε4 + O(ε5)

1

ν
= ε − 1

6
ε2 − 5

72
ε3 +

[81ζ3 + 35]

216
ε4 + O(ε5) (5.2)

where
gc
π

=
1

3
ε +

1

18
ε2 +

1

48
ε3 + [−108ζ3 − 31]

ε4

2592
+ O(ε5) . (5.3)

We note that we have evaluated our renormalization group functions with N = 4 rather than
N = 2 as in [64] since we have used TrI = 2 for our γ-matrix trace normalization in contrast to
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the rank 4 γ-matrices used in [64]. The spinor trace always appears within graphs with a closed
fermion loop which has a factor of N deriving from the SU(N) symmetry. Numerically we have

ηψ = 0.097222ε2 − 0.016204ε3 + 0.000675ε4 + O(ε5)

ηφ = 2 − 1.333333ε − 0.194444ε2 + 0.129630ε3 + 0.270765ε4 + O(ε5)

1

ν
= ε − 0.166667ε2 − 0.069444ε3 + 0.612808ε4 + O(ε5) . (5.4)

Aside from ηψ the four loop corrections are larger (at ε = 1) than the three loop ones. To
gain estimates of these exponents in three dimensions we have used Padé approximants and
noted the results in Table 2. There we used the leading value for the two loop estimate of
ηψ since there is no one loop term. The estimates for ηφ are from an [0, L] approximant at L
loops and those for 1/ν are deduced from summing ǫν and then inverting. As the four loop
correction to ηψ is virtually zero the estimate is stable. However, the value is twice that of the
functional renormalization group analysis of [64]. For the other two exponents the three loop
estimates differ from those quoted in Table I of [64]. This is because as far as we can tell those
values seem to be determined by setting ε = 1 explicitly in the expansion rather than using an
approximant as was the case for the large N estimates, [64]. In our situation the three loop
estimate for ηφ is in keeping with the large N and functional renormalization group values of
0.760-0.776. Although our four loop value is closer to the Monte-Carlo simulation of 0.745(8)
of [65] it appears that convergence has not been reached unlike ηψ. There seems to be a similar
situation for 1/ν since our estimates are oscillating although the four loop value is competitive
with the range 0.949-0.995 given in Table I of [64] and the Monte-Carlo estimate of 1.00(4) of
[65]. A more comprehensive fixed point analysis of extended Gross-Neveu type models has been
provided recently for spinless fermions on a honeycomb lattice in [66].

Exponent 2 loop 3 loop 4 loop MC estimate

ηψ 0.097 0.083 0.082 –
ηφ 0.906 0.778 0.745 0.745(8) [65]
1/ν 0.857 0.784 0.931 1.00(4) [65]

Table 2. Estimates for critical exponents when N = 4 using Padé approximants, compared
with Monte-Carlo results from the literature.

A second application is to the case of the replica limit N → 0 which has been examined in
[67, 68, 69] for other graphene related problems but is also relevant to the random bond Ising
model problem, [4]. For example, the three dimensional theory in the replica limit describes the
transition from a relativistic semi-metal to a diffusive metallic phase. From (4.4) and (4.9) we
find that

β(g)|N=0 = (d− 2)g +
g2

π
− g3

2π2
+

7g4

16π3
+

[−17ζ3 − 4]

8π4
g5 + O(g6)

γ(g)|N=0 = − g2

8π2
− g3

16π3
− 7g4

128π4
+ O(g5)

γm(g)|N=0 =
g

2π
− g2

8π2
+

3g3

32π3
+

[−52ζ3 − 19]

128π4
g4 + O(g5) . (5.5)

Solving for gc from β(gc) = 0, and reverting to d = 2 − 2ǫ again, leads to

γ(gc)|N=0 = − 1

2
ǫ2 − 3

2
ǫ3 − 25

8
ǫ4 + O(ǫ5)

γm(gc)|N=0 = ǫ +
1

2
ǫ2 +

1

8
[84ζ3 − 5]ǫ4 + O(ǫ5)

β′(gc)
∣

∣

N=0
= 2ǫ − 2ǫ2 + 3ǫ3 − 6[17ζ3 + 1]ǫ4 + O(ǫ5) (5.6)
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or, in numerical form,

γ(gc)|N=0 = − 0.500000ǫ2 − 1.500000ǫ3 − 3.125000ǫ4 + O(ǫ5)

γm(gc)|N=0 = ǫ + 0.500000ǫ2 + 11.996597ǫ4 + O(ǫ5)

β′(gc)
∣

∣

N=0
= 2.000000ǫ − 2.000000ǫ2 + 3.000000ǫ3 − 128.609804ǫ4 + O(ǫ5) . (5.7)

While there is no O(ǫ) term for the wave function exponent since γ(g) begins at one loop it is
unusual that there is no O(ǫ3) term in γm(gc).

In principle we could repeat our N = 4 exercise of summing each series. However from (5.6)
it turns out that each four loop coefficient is rather large in comparison with the three loop term,
unlike the previous application, and indicates that even setting ǫ = − 1

2
will lead to diverging

series. We have tried various resummation methods, such as Padé approximants, in order to
improve convergence but have not found any credible exponent estimates. While this appears to
be disappointing and different from the situation where summing ǫ expansions in other theories,
or N = 4 here, has led to reliable exponent estimates it is in accord with recent observations
in [69]. In [69] it was noted that in trying to apply the perturbative ǫ expansion results to
three dimensions there may be contributions from some or all of the evanescent operators On

to the value of the exponents when ǫ = − 1

2
. For instance, near two dimensions omitting the

contribution from O3 would have led to an inconsistency with the symmetry of the theory.
However, in three dimensions this operator is not excluded and is not unrelated to the pseudo-
tensor ǫµνσ. By contrast O4 would remain evanescent. A possible resolution for the application
of the ǫ expansion to the three dimensional replica limit problem would be to consider another
theory in the same universality class to obtain reliable estimates such as the four dimensional
Gross-Neveu-Yukawa theory, [67, 68, 69]. An alternative would be to extend our analysis here to
renormalize (2.4) and determine the β-functions of all the couplings up to a certain loop order.
From these the fixed point structure could be analysed to see if O3, for example, influenced the
convergence of the ǫ expansion of the exponents in the approach to three dimensions. That is
clearly beyond the scope of the present article. However, if there is an evanescent operator issue
in estimating exponents in the ǫ expansion it is not immediately apparent in the N = 4 case.
Although the four loop corrections in (2.1) are larger then the three loop ones we were able to
find estimates in reasonable agreement with other methods. For N = 4 any breakdown may not
become apparent until O(ǫ5).

6 Discussion

We conclude with brief remarks. The article represents the completion of the four loop renor-
malization of the two-dimensional SU(N) Gross-Neveu model. It has been a technical exercise
due to the need to handle the problem of the generation of evanescent 4-fermi operators in the
dimensional regularization of the Lagrangian. What has been reassuring is that the formalism
of [26, 27] has been robust and we were able to extract the β-function as our main result in (4.9),
consistent with the vanishing of the β-function for the abelian Thirring model. Not properly
taking into account the effect of the evanescent operators would have led to an inconsistent
result.

We have also provided the β-function for the new evanescent operator O4 which will be
necessary for any future five loop renormalization. Such a computation is now viable in principle
in part since the approach provided here can clearly be extended to the next order. Also because
the calculational technology, such as the Laporta algorithm to reduce Feynman integrals by
integration by parts and then evaluate masters numerically, is available. Indeed there has been
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substantial recent progress in evaluating five loop massive vacuum bubbles for renormalization
group functions of QCD, [45, 70]. Although there are potential obstacles such as the actual
computer programming and running times these are not insurmountable issues as is evident
from recent progress in β-function evaluation in similar models mentioned earlier.

Another issue which would be intriguing to investigate is the effect evanescent operators
have on the ǫ expansion of exponents. Given the interest in the connection of AdS/CFT with
simple O(N) scalar and Gross-Neveu models, [7], understanding how such extra operators are
manifest in the equivalence of theories in the same universality class at the Wilson-Fisher point
in d-dimensions may prove useful in conformal bootstrap studies such as that of [6]. Such a
study would not be an isolated investigation. For instance, given the functional renormalization
group analyses of more general Gross-Neveu models, [66], having the four loop perturbative
renormalization group functions for that generalization would be useful for refining the fixed
point structure.

Acknowledgements. This work was supported in part by the STFC Consolidated Grant num-
ber ST/L000431/1, DFG grant SCHR 993/2, FONDECYT project 1151281 and UBB project
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ical Physics for hospitality and the INFN for partial support during the completion of part of
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A Tensor reduction

We provide background concerning the tensor reduction required for the massive vacuum inte-
grals in this appendix. Lower rank examples have already been given in [13] and we made use
of these here. For instance,

∫

k
kµ1kµ2f1(k

2) =
ηµ1µ2

d

∫

k
k2f1(k

2)

∫

kl
kµ11 kµ22 kµ33 kµ44 f2(k, l)

=
1

d(d− 1)(d + 2)

∫

kl

{

[(d+ 1)k1.k2k3.k4 − k1.k3k2.k4 − k1.k4k2.k3] η
µ1µ2ηµ3µ4

+ [(d+ 1)k1.k3k2.k4 − k1.k2k3.k4 − k1.k4k2.k3] η
µ1µ3ηµ2µ4

+ [(d+ 1)k1.k4k2.k3 − k1.k2k3.k4 − k1.k3k2.k4] η
µ1µ4ηµ2µ3

}

f2(k, l)
∫

klq
kµ11 kµ22 kµ33 kµ44 kµ55 kµ66 f3(k, l, q)

=
ηµ1µ2ηµ3µ4ηµ5µ6

d(d− 1)(d − 2)(d + 2)(d + 4)
×

×
∫

klq

{

(d2 + 3d− 2)k1.k2k3.k4k5.k6 − (d+ 2)k1.k2k3.k5k6.k4 − (d+ 2)k1.k2k3.k6k4.k5

− (d+ 2)k1.k3k2.k4k5.k6 + 2k1.k3k2.k5k6.k4 + 2k1.k3k2.k6k4.k5

− (d+ 2)k1.k4k2.k3k5.k6 + 2k1.k4k2.k5k6.k3 + 2k1.k4k2.k6k3.k5

+ 2k1.k5k2.k3k4.k6 + 2k1.k5k2.k4k6.k3 − (d+ 2)k1.k5k2.k6k3.k4

+ 2k1.k6k2.k3k4.k5 + 2k1.k6k2.k4k5.k3 − (d+ 2)k1.k6k2.k5k3.k4

}

f3(k, l, q)
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+ 14 similar terms (A.1)

and we refrain from listing the rank 8 reduction. In each decomposition the internal momenta
ki are in the set of loop momenta defined by the subscript on the integral symbol and

∫

k
=

∫

ddk

(2π)d
. (A.2)

In this appendix we have indicated the scalar products between vectors by including the dot.
The functions fi(k1, . . . , ki) formally represent any integrand involving massive propagators of
the internal momenta. One feature which emerges in the rank 6 decomposition is the appearance
of a spurious pole in two dimensions. This is different from similar poles which emerge in the
integration by parts but has the same consequence which is that we require the master integrals
to higher order in ǫ than would naively be expected. There is also a factor of 1/(d − 2) in
the rank 8 decomposition. However as the expression for the decomposition which is used at
three loops is quite large we do not provide the explicit form which was required at four loops.
That involves 105 different combinations of four products of the ηµν tensor. This and the lower
rank decompositions were constructed by a projection method. The tensor integral is written
as a linear combination of all possible products of the metric tensor. Then the coefficients are
determined by inverting the matrix derived by systematically multiplying the integral by one of
the rank 2L product of metric tensors. At four loops this is a 105 × 105 matrix and each entry
is a power of d. Ultimately the coefficients in the decomposition involve scalar products of the
loop momenta as is evident in (A.1). One benefit in using the most general decomposition at
each even rank is that the lower rank ones are still applicable at higher loop order but more
importantly it simplifies the amount of effort required in the computation itself. In coding these
relations in Form, [46], and Tform, [47], we exploited the set facility of that language. In other
words the actual internal momenta k, l and q for instance are contained within a larger set of
declared momentum vectors which also include the wildcard internal momenta ki. With one
Form identification at each even rank then all possible combinations of tensor integrals which
can arise can be substituted immediately. The outcome is that the integrals are now all in the
scalar product form to which the Laporta algorithm can then be applied. It is worth recalling
that the presence of a mass at the outset ensures that we are in an infrared safe scenario in the
extraction of the poles in ǫ.

B Master integrals

In this appendix we record the explicit values of the various d = 2 − 2ǫ dimensional massive
master vacuum bubble integrals to four loops. These expressions are parallel to similar ǫ expan-
sion of master integrals in three, [41], and four, [42], dimensions. Although it is worth noting
that the master basis in those papers is not the same in each dimension. The first stage in
determining the integrals we require is their ǫ expansion in high precision numerical form, which
we obtain using algorithms developed in [44]. Using the notation Ii for each integral where i
corresponds to the label defining the graphs in Figures 1 and 2 then we have

I7 = + 2.3439072386894588906015622888722770690954030096358 ǫ2

− 4.0375761317658220051348256207336882506736789108211 ǫ3

+ 8.0425620153544679772236993285907591563591747215790 ǫ4

− 16.025786102703578704072144195119000589039259586708 ǫ5

+ 32.016942887378604993187557907045446315854486134669 ǫ6
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+ O(ǫ7) (B.1)

I51 = + 8.4143983221171599977981671305801499353549040463834 ǫ3

− 39.381582123122165624939809345086245359050066808606 ǫ4

+ 147.66098871791534853160710390728010530078749831966 ǫ5

− 503.10764699842011083276305336842813338479312345530 ǫ6

+ O(ǫ7) (B.2)

I62 = + 1.4691806594172819043774577529584388776016499128606 ǫ3

− 1.3063884197794647578841243370437552845041356582719 ǫ4

+ 2.0331116532991875366360222945013840018039180084787 ǫ5

− 2.9739730075270498775921859477377291738249043348203 ǫ6

+ O(ǫ7) (B.3)

I63 = + 0.4006856343865314284665793871704833302549954307801 ǫ3

+ 0.4835885331655307913305885127498895695285786668497 ǫ4

+ 0.0780252050755395162371825361501387815082130272829 ǫ5

+ 0.0375891517515336496720441119688792207019879946984 ǫ6

+ O(ǫ7) (B.4)

I841 = + 39.945588011996245698944028498423995891849782924769 ǫ4

− 348.30111814405516255151518000519957122301660173275 ǫ5

+ 2109.3709165841690773369924824477570911886774067257 ǫ6

+ O(ǫ7) (B.5)

I993 = + 4.3469994124634535378088800462728468761816547339772 ǫ4

− 13.577707070928288751118628100406503145199518907347 ǫ5

+ 37.127160597831325629352443903530938622368671294815 ǫ6

+ O(ǫ7) (B.6)

I952 = + 3.6061707094787828561992144845343499722949588770214 ǫ4

− 9.8138144306011662120436866789897530527489837499043 ǫ5

+ 24.411671104819532543287943944108057148529562577004 ǫ6

+ O(ǫ7) (B.7)

I1016 = + 1.1103912916056864445568224113958020118863386462471 ǫ4

− 0.5570931353458396260454773430999778874389836524579 ǫ5

+ 0.9538577567535969561534040876837052542479617978881 ǫ6

+ O(ǫ7) (B.8)

I1010 = + 1.0189569061909011214495005968296777382762004059847 ǫ4

− 0.3771202916485063542254503885080026978927612968436 ǫ5

+ 0.7375177343111526021741885922982090183281771921329 ǫ6

+ O(ǫ7) (B.9)

I1009 = + 0.8565905156509505479411015870020216902045909958594 ǫ4

− 0.1213313173697959016400906654647564495669736138643 ǫ5

+ 0.4842932258265766625264348872290029324911909578604 ǫ6

+ O(ǫ7) (B.10)

I1020 = + 0.3208023444820586600649990118869225971586777108797 ǫ4
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+ 0.4572462611421325605718900723432215797880749696720 ǫ5

+ 0.1586006061868626137523017429084224535466048502067 ǫ6

+ O(ǫ7) (B.11)

I1011 = + 0.2628085426500804665114416461835485085723719210284 ǫ4

+ 0.4576418734183239967463989327187398356783555081320 ǫ5

+ 0.2029039559648421469240439142252097171397779702214 ǫ6

+ O(ǫ7) (B.12)

I1022 = + 0.1117150037641884515592837802131386089989996846176 ǫ4

+ 0.3310065843046395535001459002764848158576544106555 ǫ5

+ 0.3408959619840503762721134319337008020593896711925 ǫ6

+ O(ǫ7) (B.13)

I511 = + 0.1009095634750077403668961034423758951141639097300 ǫ4

+ 0.3117547219541633763351461670518867617161781823227 ǫ5

+ 0.3428043862436104836764054879020396593614543308941 ǫ6

+ O(ǫ7) (B.14)

I841.1.3 = + 4.1419068549087621355895544541703994542221894809501 ǫ4

− 15.381626198423314746507150138351697129785646284184 ǫ5

+ 54.042164666976954209837796635081440969706812114375 ǫ6

+ O(ǫ7) (B.15)

I1009.1.2 = + 0.3837923103720091360393035310183704585295526060290 ǫ4

+ 0.4283089945260258814058416987982628549376441370368 ǫ5

+ 0.1315752149611743009149867241945017928167909016942 ǫ6

+ O(ǫ7) (B.16)

I1011.1.2 = + 0.1359328358563812618219896010403829566978061147319 ǫ4

+ 0.3665482868052929938485846650907631790435790974242 ǫ5

+ 0.3273097016981695842556322833204509862742255729220 ǫ6

+ O(ǫ7) . (B.17)

Our convention is that the L-loop master integral is normalized with respect to (I1)
L, where the

one loop vacuum bubble graph I1 is defined by

I1 =

∫

k

1

[k2 + 1]
(B.18)

where the propagator has unit mass. It is straightforward to restore the dependence on the
mass m in each of the above integrals using dimensional arguments. As I1 has a simple pole in ǫ
then it is clear that all these normalized master integrals are finite. However, the actual basis of
integrals is larger than those given in Figures 1 and 2. Some of the additional integrals at each
loop order will be ultraviolet divergent as they will be products of I1 with lower loop integrals.
We have not included these as their values are trivial to construct.

The next step is to determine the analytic form of these masters where we note that we
have much higher numerical precision available than those presented above. To find analytic
values we have used the PSLQ algorithm of [24]. Briefly the method involves trying to express
the integral as a linear combination of the numbers in a specific basis which a master integral
is expected to evaluate to at each order in ǫ, where the coefficients in the combination are
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rationals. Once a fit has been found then it is tested against a higher precision numerical value
of the integral to ensure the robustness of the final relation. Currently we have evaluated our
masters to a precision of 18000 digits. In our case the form of the number basis is driven
by experience with the corresponding known four dimensional vacuum bubble results, since
the latter can in principle be related to the two dimensional ones by dimensional recurrences,
[52, 53]. In [52, 53] it was shown how to relate any d-dimensional integrals to those with the
same topology in (d + 2)-dimensions. For instance, in [72] the number content of all possible
colourings of the three loop tetrahedron topology denoted by 63 in Figure 1 was investigated in
four dimensions. It was found that these integrals were related to evaluations of the Clausen
function Cl2(θ) =

∑

n≥1 sin(nθ)/n
2 = Im[Li2(e

iθ)] when θ was the argument of a sixth root of

unity such as θ = arg
(

1

2
[1 + i

√
3]
)

. Equally powers of ln 2 appear as well as the polylogarithm
function Lin(z) evaluated at z = 1

2
. As an example for the appearance of such numbers, let us

look at the first non-trivial master which is the two loop sunset topology labelled 7 in Figure 1.
It transpires that its ǫ expansion is known to all orders [73, 74] and is given by

I7 =
3

2

∞
∑

n=2

(−2)nHnǫ
n (B.19)

where

Hn = hn + h1Cn−1

(

1− 3ǫ/2Γ(1− ǫ)

Γ2(1− 1

2
ǫ)

)

(B.20)

with

hn = n+1Fn

(

1

2
, . . . ,

1

2
;
3

2
, . . . ,

3

2
;
3

4

)

=
∞
∑

k=0

Γ(k + 1

2
)

(2k + 1)nΓ(k + 1)Γ(1
2
)

(

3

4

)k

(B.21)

and Cn (f(ǫ)) is the coefficient of ǫn in the Taylor series of f(ǫ). For instance,

H1 = h1 =
2π

3
√
3

, H2 = h2 − h1
2

ln 3 , H3 = h3 − h1
8

(

ln2 3 + 2ζ2
)

H4 = h4 − h1
48

(

ln3 3 + 12ζ3 + 6ζ2 ln 3
)

, (B.22)

where the above mentioned Clausen values are included as 9H2 = 3
√
3Cl2(

2π

3
) = 2

√
3Cl2(

π

3
). It

is straightforward to check that the numerical evaluation of the Hn are in agreement with that
of I7. For the higher loop integrals a second sequence which we found useful in our basis set of
numbers was An where

An = an +
(−1)n

n!
lnn 2

[

1− n(n− 1)ζ2

2 ln2 2

]

(B.23)

with

an = Lin

(

1

2

)

=
∞
∑

k=1

1

2kkn
. (B.24)

Applying the PSLQ algorithm to the masters up to three loops we find

I7 = 6H2 ǫ
2 − 12H3 ǫ

3 + 24H4 ǫ
4 − 48H5 ǫ

5 + 96H6 ǫ
6 + O(ǫ7) (B.25)

I51 = 7ζ3 ǫ
3 + [48A4 − 51ζ4] ǫ

4 +

[

288A5 + 306ζ4 ln 2−
465ζ5
2

]

ǫ5 + c18 ǫ
6

+ O(ǫ7) (B.26)

I62 =
11ζ3
9

ǫ3 + c1 ǫ
4 + c7 ǫ

5 + c19 ǫ
6 + O(ǫ7) (B.27)

I63 =
ζ3
3
ǫ3 +

[

− 8A4 +
3c1
2

− 27H2
2 +

17ζ4
2

]

ǫ4 + c8 ǫ
5 + c20 ǫ

6 + O(ǫ7) (B.28)
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where the basis sequences Hn and An appear as well as the ζn series and logarithms. As noted
earlier the leading order terms of these finite integrals are not sufficient to access the coupling
constant renormalization constants due to spurious poles arising from the integration by parts.
Moreover, several of the next terms are required to resolve the same issue at four loops. In
this instance, we have included unknown coefficients ci. At three loops c1 appears in two of the
masters but we do not need to find its analytic form as it turns out that it cancels with similar
coefficients in various four loop masters when all the four loop Feynman graphs are computed for
the 4-point function. In fact it will become apparent below that three of the four loop masters
contain the coefficient c1 as well.

At four loops we have a larger number of undetermined coefficients but where coefficients of
ǫn have been found they lie within the {ζn,Hn, An} basis as at three loops. Beyond the orders
in ǫ we have computed we do not expect this basis to be complete. This is driven by our current
understanding of four loop vacuum diagrams in four dimensions. For instance, it is known that
evaluations of elliptic integrals are present in topology 841 [42] which is structurally one of the
simplest four loop topologies in our master basis. The outcome of applying PSLQ at four loops
is

I841 = c2 ǫ
4 + c9 ǫ

5 + c21 ǫ
6 + O(ǫ7) (B.29)

I993 = c4 ǫ
4 + c11 ǫ

5 + c23 ǫ
6 + O(ǫ7) (B.30)

I952 = 3ζ3 ǫ
4 + [48A4 + 30ζ3 − 57ζ4] ǫ

5

+

[

96A4 + 288A5 + 306ζ4 ln 2− 276ζ3 − 78ζ4 +
39ζ5
2

]

ǫ6 + O(ǫ7) (B.31)

I1016 = c5 ǫ
4 + c12 ǫ

5 + c24 ǫ
6 + O(ǫ7) (B.32)

I1010 =
[

−c2
3

+ 2c4 −
c5
3

+ 5ζ3

]

ǫ4 + c13 ǫ
5 + c25 ǫ

6 + O(ǫ7) (B.33)

I1009 =

[

2c2
9

− 10c4
9

− c5
6

− 5ζ3
2

]

ǫ4 + c14 ǫ
5 + c26 ǫ

6 + O(ǫ7) (B.34)

I1020 =

[

−4c2
9

+
20c4
9

+ 7ζ3

]

ǫ4 + c15 ǫ
5 + c28 ǫ

6 + O(ǫ7) (B.35)

I1011 =

[

17c2
15

− 5c3
3

− 40c4
9

− 5c5
9

− 4H2 −
373ζ3
27

]

ǫ4 + c16 ǫ
5 + c29 ǫ

6 + O(ǫ7) (B.36)

I1022 =

[

2c2
5

− 5c3 +
5c4
3

− c5
6

− 12H2 +
37ζ3
18

]

ǫ4

+

[

−90A4 +
7c1
16

− 35c10
4

− 4c11 −
3c12
16

+
c13
8

+
57c14
8

+
3c15
2

− 9c16
4

+
2243c2
240

+ 35c3 −
64c4
3

− 85c5
32

+
83c9
40

+ 9H2
2 + 84H2 + 42H3 +

1663ζ3
288

+ 81ζ4

]

ǫ5

+ c31 ǫ
6 + O(ǫ7) (B.37)

I511 =

[

4c2 − 20c4 − 2c5 −
176ζ3
3

]

ǫ4 + c17 ǫ
5 + c32 ǫ

6 + O(ǫ7) (B.38)

I841.1.3 = c3 ǫ
4 + c10 ǫ

5 + c22 ǫ
6 + O(ǫ7) (B.39)

I1009.1.2 =

[

−77c2
360

+
25c3
24

+
5c4
12

+
5H2

2
+

41ζ3
27

]

ǫ4

+

[

8A4

3
− c1

6
+

25c10
24

+
5c11
12

− 727c2
540

− 25c3
12

+
343c4
108

+
5c5
36

− 77c9
360

− 5H2

− 5H3 −
5ζ3
12

− 5ζ4
6

]

ǫ5 + c27 ǫ
6 + O(ǫ7) (B.40)
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I1011.1.2 =

[

167c2
540

+
25c3
36

− 37c4
18

− 5c5
27

+
5H2

3
− 445ζ3

81

]

ǫ4

+

[

40A4

3
− 5c1

18
+

65c10
36

+
11c11
18

− 2c13
9

− 2c14
3

+
2c16
3

− 479c2
270

− 85c3
18

+
17c4
6

+
11c5
36

− 67c9
180

+ 2H2
2 − 34H2

3
− 26H3

3
− 221ζ3

324
− 71ζ4

6

]

ǫ5 + c30 ǫ
6

+ O(ǫ7) . (B.41)

As is evident from the form of these expressions with the increase in loop order there are more
masters and hence more unknown coefficients in the ǫ expansion. While it would be interesting to
know their values explicitly the various combinations which appear at low ǫ order are such that
within the explicit renormalization to determine the naive coupling constant renormalization
constant the vast majority cancel. This was not the case for β4(g), (4.6), and we had to search
for a new linear relation using PSLQ. It involves c30 which can now be eliminated in I1011.1.2,
for instance, since

c30 =
1024A4

27
+

448A5

9
+

2c1
9

− 25c10
108

− 31c11
36

− 5c13
9

− 7c14
27

+
c16
3

+
13c2
18

+
103c21
3240

− 35c22
216

− 19c23
108

− 2c25
9

− 2c26
3

+
17c27
9

+
2c29
3

+
85c3
54

− 178c4
81

− 8c5
27

+
c7
27

+
427c9
1620

+ 4H2
2 − 8H2H3 +

34H2

9
+

10H3

9
− 14H4

9

+
476ζ4 ln 2

9
− 3988ζ3

81
− 1046ζ4

27
+

523ζ5
27

(B.42)

which has been verified to 18000 digits. It is worth stressing that such a relation would have been
hard to establish systematically without the input from the renormalizability of the underlying
quantum field theory.
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