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Analytic three-loop static potential
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We present analytic results for the three-loop static potential of two heavy quarks. The analytic
calculation of the missing ingredients is outlined and results for the singlet and octet potential are
provided.

PACS numbers: 12.38.Bx, 14.65.Dw, 14.65.Fy, 14.65.Ha

I. INTRODUCTION

The static potential between two heavy quarks belongs to the fundamental quantities of QCD. In lowest order it is
described by the Coulomb potential adapted to QCD. Such an approach has already been used more than 40 years
ago [1] to describe the bound state of heavy quarks. Shortly afterwards the one-loop corrections were computed [2, 3]
and the two-loop terms were added towards the end of the nineties [4–6]. Light quark mass effects at two loops can be
found in Ref. [7]. About eight years ago the three-loop corrections have been computed by two groups in Refs. [8–10].
However, in contrast to the lower-order expressions, the three-loop results could only be presented in numerical form.
In fact, in Refs. [8, 9] three coefficients in the expansion of the master integrals around d = 4, where d is the space-time
dimension, could only be evaluated numerically (see also below). The evaluation of one of them is described in detail
in Ref. [11] (in a broader context) and the remaining two coefficients are considered in Section II of this paper. We
are thus in the position to present analytic results at three loops. The corresponding expressions can be found in
Section III.
A generalization of the three-loop singlet potential has been considered in Ref. [12]. It is still assumed that the

heavy colour sources form a singlet state, however, the colour representation is kept general.
The new results can also be used to present analytic expressions for the so-called octet potential which describes the

situation where the quark and anti-quark do not form a colour-singlet but a colour-octet state. Two- and (numerical)
three-loop results have been obtained in Refs. [13, 14] and [15], respectively. Analytic results for the octet potential
are presented in Section IV.
In order to fix the notation we write the momentum space potential in the form

V [c](|~q |) = −4πC [c]αs(|~q |)

~q 2

[

1 +
αs(|~q |)

4π
a
[c]
1 +

(

αs(|~q |)

4π

)2

a
[c]
2 +

(

αs(|~q |)

4π

)3(

a
[c]
3 + 8π2C3

A ln
µ2

~q 2

)

+ · · ·

]

, (1)

with C [1] = CF for the colour-singlet and C [8] = CF − CA/2 for the colour-octet case. Here, CA = Nc and CF =
(N2

c −1)/(2Nc) are the eigenvalues of the quadratic Casimir operators of the adjoint and fundamental representations
of the SU(Nc) colour gauge group, respectively. The strong coupling αs is defined in the MS scheme and for the
renormalization scale we choose µ = |~q | in order to suppress the corresponding logarithms. The general results, both
in momentum and coordinate space, can, e.g., be found in Appendix A of Ref. [15].
The logarithmic term in Eq. (1) has its origin in an infra-red divergence which is present for the first time at three

loops as has been pointed out on Ref. [16]. The corresponding pole has been subtracted minimally. Its presence can
be understood in the context of methods of regions and potential non-relativistic QCD [17–21] where V [c] appears
as a matching coefficients. Thus, the infrared divergence cancels against ultraviolet divergences of the ultrasoft
contributions. The latter have been studied in Refs. [20, 22, 23]. For the resummation of leading and next-to-leading
ultrasoft logarithms we refer to [24–26].
For later convenience we decompose the three-loop corrections according to the number of closed fermion loops

a
[c]
3 = a

[c],(3)
3 n3

l + a
[c],(2)
3 n2

l + a
[c],(1)
3 nl + a

[c],(0)
3 , (2)

where nl is the number of light (massless) quarks. We furthermore consider the difference between the singlet and
octet contributions and write (i = 0, 1, 2, 3)

a
[8],(i)
3 = a

[1],(i)
3 + δa

[8],(i)
3 . (3)
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FIG. 1: (a)-(c): Master integrals entering a
[c]
3 which were only known numerically. Solid lines denote relativistic scalar

propagators and wavy lines refer to static propagators. For the latter the causality prescription is given explicitly where ±i0
indicates a propagator of the form 1/(−k0 ± i0) with k0 being the zeroth component of the momentum flowing through the
corresponding line. The square in I18 indicates a convenient choice for the numerator which is specified in Ref. [11]. I18 is

finite and only the O(ǫ0) term is needed. For I11 and I16 also the O(ǫ1) terms enter a
[c]
3 . (d): Master integral which is needed

for the computation of the integrals in (b) and (c). The integral I15 belongs to the same integral family as I14, however, has
an additional dot on the lower line.

In Section IV we provide analytical results for δa
[8],(i)
3 .

The three-loop coefficient of the colour singlet potential, a
[1]
3 , has entered a number of physical applications as

building block (see also Ref. [27] for a recent review on applications of non-relativistic QCD to high-energy processes).
To name a few of them we want to mention the next-to-next-to-next-to-leading order corrections to the leptonic decay
width of the Υ(1S) meson [28] and the top quark threshold production in electron positron colliders [29]. Furthermore,
a3 has entered analyses to determine precise values for the charm and bottom quark masses [30–33] and the strong
coupling constant [34].

II. CALCULATION OF I11 AND I16

The calculation of a
[1]
3 as performed in [9] requires the evaluation of 41 master integrals which can be sub-divided

into three different classes: There are ten integrals which do not have any static line and are thus known since long.
Furthermore, we have 14 integrals with a massless one-loop insertion. They can easily be integrated in terms of
Γ functions using standard techniques. The corresponding results have been presented in Ref. [35]. Results for 16
more complicated integrals can be found in Ref. [36] as expansions in ǫ = (4− d)/2 to the necessary order except for

two integrals (I11 and I16 of Ref. [36], see also Fig. 1(a) and (b)). Their O(ǫ) terms enter a
[1]
3 , however, they were

only known numerically. The evaluation of these coefficients will be described in the remainder of this section. For
completeness we want to mention that the third numerical ingredient required in [9] comes from the finite diagram in
Fig. 1(c) (the 41th master integral) which has been computed in a parallel article [11].
Let us also mention that techniques which have been used to compute master integrals in [10] can be found in

Ref. [37], see also [38] for a more recent summary of the status.
The method which is used to compute I11 and I16 is based on the dimensional recurrence relation and analyticity

with respect to space-time dimensionality d (the so-called “DRA method”) and has been developed in Ref. [39]. In
Ref. [40] this method has been applied for the first time to the case with more than one master integral in a sector.
Some integrals taken from families of integrals for the three-loop static quark potential and denoted in [40] by I14
and I15 (see Fig. 1(d)) have been calculated. Note that I14 and I15 are the only nontrivial integrals entering the
right-hand side of the dimensional recurrence relation for I16. Therefore, in principle, the results of Ref. [40] make
the calculation of I16 straightforward.
However, the numerical issues related to the calculation of contributions to the inhomogeneous terms proportional to

I14 and I15 in the right-hand side of dimensional recurrence relations for I16 are quite involved. The most complicated
part of this contribution has the form

T (ν) =

∞
∑

k=0

vT (ν + k)

∞
∑

n=k

(

n
∏

l=k

M(ν + l)

)

u(ν + n) , (4)

where ν = d/2, vT (x), M(x), and u(x) are a row-vector, a 2 × 2 matrix and a column-vector, respectively. Their
components are rational functions of the variable x. In order to calculate the sums in Eq. (4) without nested loops,
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we apply the standard trick of the DRA method, see Ref. [41]. Namely, let us denote

F (k) =

∞
∑

n=k

P(k, n)u(ν + n) , (5)

where P(k, n) =
∏n

l=k M(ν + l). Then

T (ν) =

∞
∑

k=0

vT (ν + k)F (k) . (6)

Using Eq. (5), the function F (k) can be calculated for given k in one loop if one takes into account the recurrence
relation P(k, n+ 1) = P(k, n)M(ν + n+ 1). Now we note that F (k) satisfies the recurrence relation

F (k + 1) = M−1(ν + k)F (k)− u(ν + k) . (7)

Therefore, in order to calculate consecutive terms of the sum in Eq. (6) we need to use Eq. (5) only once, and then use
the recurrence relation (7). However, the price we have to pay is much higher than for scalar sums. This is connected
with the multiplication by the inverse matrix M−1(ν + k). For x → ∞ the elements of M(x) are of order unity, while
its determinant tends to 1/1024. Due to this fact, the multiplication by M−1 involves large cancellations which result
in rapid precision loss. For example, using a precision of 7000 digits in the initial expression we obtain only about
370 digits in the final result.
Besides, it appears that the sum over n in the definition of F (k) converges very slowly, with the summand behaving

as n−α (α > 1) at large n. So, in order to obtain the high-precision numerical result suitable for using PSLQ [42],
one has to apply the matrix analog of the convergence acceleration algorithm described in Ref. [43]. In particular,
one needs to know the exponent α of the power-like decay. This appears to be possible thanks to Ref. [44], where a
method for finding the asymptotic behaviour of the solutions of recurrence relations was developed. Once we dealt
with these numerical issues, we have obtained the result

I16 = −
56π4

135ǫ
−

(

112π4

135
+

16π2ζ(3)

9
+

8ζ(5)

3

)

+

(

968ζ(5)

3
− 16π4l2 +

136ζ(3)2

3
+

400π2ζ(3)

9
−

838π6

2835

+
1792π4

135

)

ǫ+

(

6144s6l2
7

−
6144s7a

7
+

15360s7b
7

+ 1536α4ζ(3) + 1024π2α5 − 256π2α4 −
64

9
π4l32

− 2976ζ(5)l22 − 64π2ζ(3)l22 −
112

3
π4l22 −

7680ζ(3)2l2
7

−
544π6l2
315

+ 128π4l2 +
306202ζ(7)

21
−

12182π2ζ(5)

7

+
64ζ(5)

3
−

1168ζ(3)2

3
−

11828π4ζ(3)

945
+

1664π2ζ(3)

9
+

1376π6

135
−

12544π4

135
+ 768s6

)

ǫ2 +O
(

ǫ3
)

, (8)

where ζ(n) is Riemann’s zeta function evaluated at n and

l2 = log(2) ,

αn = Lin(1/2) +
(− log 2)n

n!
,

s6 = ζ(−5,−1) + ζ(6) ,

s7a = ζ(−5, 1, 1) + ζ(−6, 1) + ζ(−5, 2) + ζ(−7) ,

s7b = ζ(7) + ζ(5, 2) + ζ(−6,−1) + ζ(5,−1,−1) . (9)

ζ(m1, . . . ,mk) are multiple zeta values given by

ζ(m1, . . . ,mk) =

∞
∑

i1=1

i1−1
∑

i2=1

· · ·

ik−1−1
∑

ik=1

k
∏

j=1

sgn(mj)
ij

i
|mj|
j

. (10)

In order to apply the DRA method to I11, one has to take into account that the dimensional recurrence relation
for I11 contains now two non-trivial integrals denoted in [40] by I9 and I10. So, in a first step one has to apply the
DRA method to these two integrals. Fortunately, they can be calculated along the same lines as I14 and I15 from
which they differ only by the ±i0 prescription in one of the linear denominators. In particular, the summing factor
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has the same form as in Ref. [40] (see Eq. (4.14) of that paper). Plugging the results for I9 and I10 in the dimensional
recurrence relation for I11 and applying the DRA method, we obtain

I11 =
64π4

135ǫ
+

(

128π4

135
+

32π2ζ(3)

9
−

8ζ(5)

3

)

+

(

16π4l2 +
968ζ(5)

3
+

136ζ(3)2

3
−

800π2ζ(3)

9
+

548π6

2835
−

2048π4

135

)

ǫ

+

(

6144s6l2
7

−
6144s7a

7
+

15360s7b
7

+ 1536α4ζ(3)− 2048π2α5 + 512π2α4 −
64

9
π4l32 − 2976ζ(5)l22

− 64π2ζ(3)l22 +
80

3
π4l22 −

7680ζ(3)2l2
7

−
208π6l2
315

− 128π4l2 +
306202ζ(7)

21
+

1482π2ζ(5)

7
+

64ζ(5)

3

−
1168ζ(3)2

3
−

70208π4ζ(3)

945
−

3328π2ζ(3)

9
−

1504π6

135
+

14336π4

135
+ 768s6

)

ǫ2 +O
(

ǫ3
)

. (11)

Note that the O(ǫ2) terms of I16 and I11 in Eqs. (8) and (11) are not needed for a
[c]
3 . We nevertheless provide these

results to demonstrate the powerfulness of the DRA method.
In principle, the DRA method is also applicable to the calculation of I18. However, the difficulties related to the

slow convergence of certain matrix sums and the corresponding precision loss appear to be overwhelming. For this
reason, the method of differential equations has been applied to I18, see Ref. [11].

III. SINGLET POTENTIAL

In this Section we present analytic expressions for a
[1]
3 . One- and two-loop results using the same notation can be

found in Ref. [15]. Analytic results for the coefficients of n3
l and n2

l have already been presented in Ref. [8]. Here,
they are repeated for completeness

a
[1],(3)
3 = −

(

20

9

)3

T 3
F ,

a
[1],(2)
3 =

(

12541

243
+

368ζ(3)

3
+

64π4

135

)

CAT
2
F +

(

14002

81
−

416ζ(3)

3

)

CFT
2
F . (12)

Let us now turn to the n1
l and n0

l term. Expressed in terms of the eigenvalues of the Casimir operators we obtain
for the linear-nl term the analytic result

a
[1],(1)
3 =

dabcdF dabcdF

NA

{

π2

(

1264

9
−

976ζ(3)

3
+ l2 (64 + 672ζ(3))

)

+ π4

(

−
184

3
+

32l2
3

− 32l22

)

+
10π6

3

}

+ TF

{

C2
F

(

286

9
+

296ζ(3)

3
− 160ζ(5)

)

+ CACF

(

−
71281

162
+ 264ζ(3) + 80ζ(5)

)

+ C2
A

[

−
58747

486
+ π2

(

17

27
− 32α4 + l2

(

−
4

3
− 14ζ(3)

)

−
19ζ(3)

3

)

− 356ζ(3)

+ π4

(

−
157

54
−

5l2
9

+ l22

)

+
1091ζ(5)

6
+

57(ζ(3))2

2
+

761π6

2520
− 48s6

]

}

, (13)

and the gluonic part is given by

a
[1],(0)
3 =

dabcdF dabcdA

NA

{

π2

[

7432

9
− 4736α4 + l2

(

14752

3
− 3472ζ(3)

)

−
6616ζ(3)

3

]

+ π4

(

−156 +
560l2
3

+
496l22
3

)

+
1511π6

45

}

+ C3
A

{

385645

2916
+ π2

[

−
953

54
+

584α4

3
+

175ζ(3)

2

+ l2

(

−
922

9
+

217ζ(3)

3

)]

+
584ζ(3)

3
+ π4

(

1349

270
−

20l2
9

−
40l22
9

)

−
1927ζ(5)

6
−

143(ζ(3))2

2

−
4621π6

3024
+ 144s6

}

. (14)
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The numerical evaluation of the analytic results is in full agreement (including all digits) with [8, 9].
It is interesting to note that the contributions proportional to dabcdF dabcdF and dabcdF dabcdA only involve π2, π4 and π6

terms. Note that these colour structures appear for the first time at three-loop order. On the other hand, the other
colour structures basically involve all constants one expects up to transcendentality weight six. Note, however, that
the constant s6 is only present in the most non-abelian parts, i.e., TFC

2
A and C3

A. Let us also mention that log(2)
terms are present to first, second and fourth power but there are no cubic terms.
In a next step we specify to SU(Nc) and replace the colour factors by

CA = Nc , CF =
N2

c − 1

2Nc

, TF =
1

2
, NA = N2

c − 1 ,

dabcdF dabcdF

NA

=
18− 6N2

c +N4
c

96N2
c

,
dabcdF dabcdA

NA

=
Nc(N

2
c + 6)

48
. (15)

This leads to

a
[1],(1)
3 =

66133

648
+ π2

(

−
79

9
+ l2 (−4− 42ζ(3)) +

61ζ(3)

3

)

−
272ζ(3)

3
+ π4

(

23

6
−

2l2
3

+ 2l22

)

+ 20ζ(5)−
5π6

24

+
1

N2
c

{

143

36
+ π2

[

79

3
− 61ζ(3) + l2 (12 + 126ζ(3))

]

+
37ζ(3)

3
+ π4

(

−
23

2
+ 2l2 − 6l22

)

− 20ζ(5)

+
5π6

8

}

+N2
c

{

−
323615

1944
+ π2

(

16

9
− 16α4 −

59ζ(3)

9

)

−
299ζ(3)

3
+ π4

(

−
113

54
−

l2
6
+

l22
6

)

+
1091ζ(5)

12
+

57(ζ(3))2

4
+

13π6

70
− 24s6

}

,

a
[1],(0)
3 = Nc

{

π2

[

929

9
− 592α4 + l2

(

1844

3
− 434ζ(3)

)

−
827ζ(3)

3

]

+ π4

(

−
39

2
+

70l2
3

+
62l22
3

)

+
1511π6

360

}

+N3
c

{

385645

2916
+ π2

(

−
4

9
+ 96α4 +

374ζ(3)

9

)

+
584ζ(3)

3
+ π4

(

943

540
+

5l2
3

− l22

)

−
1927ζ(5)

6
−

143(ζ(3))2

2
−

29π6

35
+ 144s6

}

. (16)

Finally, for Nc = 3 we have

a
[1],(1)
3 = −

452213

324
+ π2

[

274

27
−

409ζ(3)

9
− 144α4 + l2

(

−
8

3
− 28ζ(3)

)]

−
26630ζ(3)

27

+ π4

(

−
293

18
−

35l2
18

+
17l22
6

)

+
30097ζ(5)

36
+

1931π6

1260
+

513(ζ(3))2

4
− 216s6 , (17)

a
[1],(0)
3 =

385645

108
+ π2

[

893

3
+ 816α4 + l2 (1844− 1302ζ(3)) + 295ζ(3)

]

+ 5256ζ(3)

+ π4

(

−
227

20
+ 115l2 + 35l22

)

−
17343ζ(5)

2
−

1643π6

168
−

3861(ζ(3))2

2
+ 3888s6 , (18)

which in numerical form is given by

a
[1]
3 = 13432.5648565− 3289.9052968nl+ 185.9900266n2

l − 1.3717421n3
l . (19)

IV. OCTET POTENTIAL

In this Section we proceed similar to the previous one and present results for δa
[8],(i)
3 defined in Eq. (3). We refrain

from presenting results in terms of CA, CF , etc. and immediately use Eq. (15) to obtain expressions in terms of Nc.



6

We have δa
[8],(i)
3 = 0 for i = 2 and i = 3 and for the linear-nl and nl-independent terms we get

δa
[8],(1)
3 = π2

[

−
11

3
− 31ζ(3) + l2 (4 + 42ζ(3))

]

+ π4

(

−
7

6
+

2l2
3

− 2l22

)

+
5π6

24

+N2
c

[

π2

(

8

9
+ 48α4 + 25ζ(3)

)

+ π4

(

2

3
+

2l2
3

)

−
13π6

20

]

,

δa
[8],(0)
3 = N3

c

{

π2

[

139

9
+ 304α4 + 15ζ(3) + l2

(

−
1844

3
+ 434ζ(3)

)]

+ π4

(

295

6
− 30l2 −

62l22
3

)

−
1187π6

360

}

, (20)

which for Nc = 3 leads to

δa
[8],(1)
3 = −

677π6

120
+ π4

(

29

6
+

20l2
3

− 2l22

)

+ π2

[

13

3
+ 432α4 + 194ζ(3) + l2 (4 + 42ζ(3))

]

,

δa
[8],(0)
3 = π2 [417 + 8208α4 + 405ζ(3) + l2 (−16596+ 11718ζ(3))] + π4

(

2655

2
− 810l2 − 558l22

)

−
3561π6

40
. (21)

It is interesting to note that δa
[8],(0)
3 and δa

[8],(1)
3 have an overall factor π2 which was predicted in Ref. [15] on the

basis of the involved master integrals. Although they could not be computed analytically it was possible to show
that there is an overall factor π2, a feature which is also observed at two-loop order in QCD [13, 14] and in N = 4
supersymmetric Yang Mills theories [45].
In numerical form we obtain for the complete three-loop coefficient

δa
[8]
3 = −2634.7351731+ 367.9626044nl . (22)

V. CONCLUSIONS

The interaction of a slowly moving heavy quark-anti-quark pair can be described with the help of a static potential,
a concept which is familiar from ordinary quantum mechanics. Its perturbative part is obtained from the exchange
of soft gluons which are conveniently considered in the framework of non-relativistic QCD. Numerical results for the
three-loop potential, which have entered a number of physical observables, have been obtained eight years ago by two
independent groups [8–10]. The obtained precision has been sufficient for all physical applications where a3 entered
as a building block. However, from the aesthetic point of view it is important to obtain analytic results for higher
order quantum corrections. This has been achieved in this paper. We have obtained analytic results for the three-loop
corrections to the singlet and octet potential which are presented in Sections III and IV, respectively.

Acknowledgements

We thank Alexander Penin for carefully reading the manuscript. R.L. acknowledges support through RFBR grant
No. 15-02-07893.

[1] T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34 (1975) 43.
[2] W. Fischler, Nucl. Phys. B 129 (1977) 157.
[3] A. Billoire, Phys. Lett. B 92 (1980) 343.
[4] M. Peter, Phys. Rev. Lett. 78 (1997) 602 [arXiv:hep-ph/9610209].
[5] M. Peter, Nucl. Phys. B 501 (1997) 471 [arXiv:hep-ph/9702245].
[6] Y. Schroder, Phys. Lett. B 447 (1999) 321 [arXiv:hep-ph/9812205].

http://arxiv.org/abs/hep-ph/9610209
http://arxiv.org/abs/hep-ph/9702245
http://arxiv.org/abs/hep-ph/9812205


7

[7] M. Melles, Phys. Rev. D 62 (2000) 074019 doi:10.1103/PhysRevD.62.074019 [hep-ph/0001295].
[8] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Lett. B 668 (2008) 293 [arXiv:0809.1927 [hep-ph]].
[9] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Rev. Lett. 104 (2010) 112002

doi:10.1103/PhysRevLett.104.112002 [arXiv:0911.4742 [hep-ph]].
[10] C. Anzai, Y. Kiyo and Y. Sumino, Phys. Rev. Lett. 104 (2010) 112003 doi:10.1103/PhysRevLett.104.112003

[arXiv:0911.4335 [hep-ph]].
[11] R. Lee and V. A. Smirnov, “Evaluating the last missing ingredient for the three-loop quark static potential by differential

equations”.
[12] C. Anzai, Y. Kiyo and Y. Sumino, Nucl. Phys. B 838 (2010) 28 Erratum: [Nucl. Phys. B 890 (2015) 569]

doi:10.1016/j.nuclphysb.2010.05.012, 10.1016/j.nuclphysb.2014.11.025 [arXiv:1004.1562 [hep-ph]].
[13] B. A. Kniehl, A. A. Penin, Y. Schroder, V. A. Smirnov and M. Steinhauser, Phys. Lett. B 607 (2005) 96

[arXiv:hep-ph/0412083].
[14] T. Collet and M. Steinhauser, Phys. Lett. B 704 (2011) 163 doi:10.1016/j.physletb.2011.08.034 [arXiv:1107.0530 [hep-ph]].
[15] C. Anzai, M. Prausa, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Rev. D 88 (2013) no.5, 054030

doi:10.1103/PhysRevD.88.054030 [arXiv:1308.1202 [hep-ph]].
[16] T. Appelquist, M. Dine and I. J. Muzinich, Phys. Rev. D 17 (1978) 2074.
[17] A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64 (1998) 428 doi:10.1016/S0920-5632(97)01102-X [hep-ph/9707481].
[18] M. Beneke and V. A. Smirnov, Nucl. Phys. B 522 (1998) 321 doi:10.1016/S0550-3213(98)00138-2 [hep-ph/9711391].
[19] M. Beneke, hep-ph/9806429.
[20] B. A. Kniehl and A. A. Penin, Nucl. Phys. B 563 (1999) 200 [arXiv:hep-ph/9907489].
[21] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Nucl. Phys. B 566 (2000) 275 [arXiv:hep-ph/9907240].
[22] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Phys. Rev. D 60 (1999) 091502 [arXiv:hep-ph/9903355].
[23] B. A. Kniehl, A. A. Penin, V. A. Smirnov and M. Steinhauser, Nucl. Phys. B 635 (2002) 357 [arXiv:hep-ph/0203166].
[24] A. Pineda and J. Soto, Phys. Lett. B 495 (2000) 323 [arXiv:hep-ph/0007197].
[25] N. Brambilla, A. Vairo, X. Garcia i Tormo and J. Soto, Phys. Rev. D 80 (2009) 034016 [arXiv:0906.1390 [hep-ph]].
[26] A. Pineda and M. Stahlhofen, Phys. Rev. D 84 (2011) 034016 doi:10.1103/PhysRevD.84.034016 [arXiv:1105.4356 [hep-ph]].
[27] M. Beneke and M. Steinhauser, Nucl. Part. Phys. Proc. 261-262 (2015) 378 doi:10.1016/j.nuclphysbps.2015.03.024

[arXiv:1506.07962 [hep-ph]].
[28] M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum, D. Seidel and M. Steinhauser, Phys. Rev. Lett. 112 (2014) no.15,

151801 doi:10.1103/PhysRevLett.112.151801 [arXiv:1401.3005 [hep-ph]].
[29] M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser, Phys. Rev. Lett. 115 (2015) no.19, 192001

doi:10.1103/PhysRevLett.115.192001 [arXiv:1506.06864 [hep-ph]].
[30] A. A. Penin and N. Zerf, JHEP 1404 (2014) 120 doi:10.1007/JHEP04(2014)120 [arXiv:1401.7035 [hep-ph]].
[31] C. Ayala, G. Cveti and A. Pineda, JHEP 1409 (2014) 045 doi:10.1007/JHEP09(2014)045 [arXiv:1407.2128 [hep-ph]].
[32] M. Beneke, A. Maier, J. Piclum and T. Rauh, Nucl. Phys. B 891 (2015) 42 doi:10.1016/j.nuclphysb.2014.12.001

[arXiv:1411.3132 [hep-ph]].
[33] Y. Kiyo, G. Mishima and Y. Sumino, Phys. Lett. B 752 (2016) 122 doi:10.1016/j.physletb.2015.11.040 [arXiv:1510.07072

[hep-ph]].
[34] A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo, Phys. Rev. D 90 (2014) no.7, 074038

doi:10.1103/PhysRevD.90.074038 [arXiv:1407.8437 [hep-ph]].
[35] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Nucl. Phys. Proc. Suppl. 205-206 (2010) 320

doi:10.1016/j.nuclphysbps.2010.09.013 [arXiv:1006.5513 [hep-ph]].
[36] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, PoS RADCOR 2009 (2010) 075 [arXiv:1001.2668 [hep-ph]].
[37] C. Anzai and Y. Sumino, J. Math. Phys. 54 (2013) 033514 doi:10.1063/1.4795288 [arXiv:1211.5204 [hep-th]].
[38] Y. Sumino, arXiv:1607.03469 [hep-ph].
[39] R. N. Lee, Nucl. Phys. B 830 (2010) 474 doi:10.1016/j.nuclphysb.2009.12.025 [arXiv:0911.0252 [hep-ph]].
[40] R. N. Lee and V. A. Smirnov, JHEP 1212 (2012) 104 doi:10.1007/JHEP12(2012)104 [arXiv:1209.0339 [hep-ph]].
[41] R. N. Lee, J. Phys. Conf. Ser. 368 (2012) 012050 doi:10.1088/1742-6596/368/1/012050 [arXiv:1203.4868 [hep-ph]].
[42] H. R. P. Ferguson and D. H. Bailey, “A Polynomial Time, Numerically Stable Integer Relation Algorithm”, RNR Technical

Report RNR-91-032, July 14, 1992.
[43] R. N. Lee and K. T. Mingulov, Comput. Phys. Commun. 203 (2016) 255 [arXiv:1507.04256].
[44] D. Tulyakov2011, Proc. Steklov Inst. Math. 272 (2011) S162
[45] M. Prausa and M. Steinhauser, Phys. Rev. D 88 (2013) no.2, 025029 doi:10.1103/PhysRevD.88.025029 [arXiv:1306.5566

[hep-th]].

http://arxiv.org/abs/hep-ph/0001295
http://arxiv.org/abs/0809.1927
http://arxiv.org/abs/0911.4742
http://arxiv.org/abs/0911.4335
http://arxiv.org/abs/1004.1562
http://arxiv.org/abs/hep-ph/0412083
http://arxiv.org/abs/1107.0530
http://arxiv.org/abs/1308.1202
http://arxiv.org/abs/hep-ph/9707481
http://arxiv.org/abs/hep-ph/9711391
http://arxiv.org/abs/hep-ph/9806429
http://arxiv.org/abs/hep-ph/9907489
http://arxiv.org/abs/hep-ph/9907240
http://arxiv.org/abs/hep-ph/9903355
http://arxiv.org/abs/hep-ph/0203166
http://arxiv.org/abs/hep-ph/0007197
http://arxiv.org/abs/0906.1390
http://arxiv.org/abs/1105.4356
http://arxiv.org/abs/1506.07962
http://arxiv.org/abs/1401.3005
http://arxiv.org/abs/1506.06864
http://arxiv.org/abs/1401.7035
http://arxiv.org/abs/1407.2128
http://arxiv.org/abs/1411.3132
http://arxiv.org/abs/1510.07072
http://arxiv.org/abs/1407.8437
http://arxiv.org/abs/1006.5513
http://arxiv.org/abs/1001.2668
http://arxiv.org/abs/1211.5204
http://arxiv.org/abs/1607.03469
http://arxiv.org/abs/0911.0252
http://arxiv.org/abs/1209.0339
http://arxiv.org/abs/1203.4868
http://arxiv.org/abs/1507.04256
http://arxiv.org/abs/1306.5566

	I Introduction
	II Calculation of I11 and I16
	III Singlet potential
	IV Octet potential
	V Conclusions
	 Acknowledgements
	 References

