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1. Four-loop corrections to the MS-on-shell relation

Quark masses enter the Standard Model of particle physics as fundamental parameters. Hence,
on the one hand, it is important to determine their numerical values as precise as possible. On the
other hand, it is necessary to have precise relations among the various renormalization schemes
available, in particular between the MS and on-shell scheme.

The on-shell renormalization constant is introduced as a multiplicative factor

m0 = ZOS
m M , (1.1)

where m0 is the bare and M the on-shell (or pole) mass. Note that m0 and M are -independent and
ZOS

m contains s() and log( / M) terms. To determine Z OS
m one requires that the inverse quark

propagator has a zero for q2 = M2 which leads to the formula

ZOS
m = 1 + S + V , (1.2)

where S and V are the scalar and vector parts of the quark two-point function which have to be
evaluated on-shell, i.e. for q2 = M2 (q is the external momentum). This requires the evaluation of
n-loop on-shell integrals to obtain ZOS

m to n-loop accuracy.
One-, two- and three-loop QCD results to Z OS

m have been computed in Refs. [1], [2] and [3,
4, 5, 6], respectively, and four-loop corrections have been reported in Refs. [7, 8, 9]. Whereas
in [8] an uncertainty of the four-loop coefficient of 3% was reported it could be reduced to about
0.2% in [9]. Furthermore, the explicit dependence on the number of (massless) fermions and the
breakdown to SU(Nc) colour factors are given. Light-quark mass effects are known to two [2] and
three loops [10].

In the following we present results for

zm() =
m()

M
=

ZOS
m

ZMS
m

, (1.3)

which is finite. For Nc = 3 it reads in numerical form (the one-, two- and three-loop expressions
are known analytically)

zm( = M) = 1 − 1.333
s


+

s


2
(− 15.374+ 1.041n f )

+
s


3
(− 226.283+ 28.229n f − 0.653n2

f )

+
s


4
[− 4455.25 ± 1.64 + (845.941 ± 0.040)n f − 45.517n2

f + 0.678n3
f ] ,

(1.4)

where n f is the total number of active quarks. Note that the four-loop corrections to z m given in
Section 3.1 of Ref. [9] are parametrized in terms of nl = n f − 1, i.e. the number of massless quarks.
The strong coupling constant in Eq. (1.4) is defined in the n f -flavour theory and evaluated at the
scale  = M.
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For many applications the inverted relation, which can be used to compute the on-shell from
the MS mass, is needed. It is given by cm() = M/ m() which reads for  = m(m)

cm( = m(m)) = 1 − 1.333
s


+

s


2
(14.485 − 1.041n f )

+
s


3
(217.903− 27.961+ 0.653n2

f )

+
s


4
[4357.40 ± 1.64 − (834.548 ± 0.040)n f + 45.431n2

f − 0.678n3
f ] ,

(1.5)

where s ≡  (n f )
s (m(m)) .

It is interesting to apply Eq. (1.5) to the case of the top and bottom quark which leads to

Mt = mt(mt) 1 + 0.4244s + 0.83452
s + 2.3753

s + (8.615± 0.017) 4
s

= 163.508+ 7.529 + 1.606 + 0.496+ (0.195± 0.0004) GeV , (1.6)

Mb = mb(mb) 1 + 0.4244s + 0.94012
s + 3.0453

s + (12.685± 0.025) 4
s

= 4.163 + 0.398+ 0.199 + 0.145+ (0.136 ± 0.0003) GeV , (1.7)

where in the second lines of these equations  (6)
s (mt) = 0.1085 and  (5)

s (mb) = 0.2253 have been
used. Equation (1.6) shows a nice convergence behaviour leading to a four-loop contribution of
about 200 MeV which is about a factor 2.5 smaller than the three-loop term. On the other hand, no
convergence is observed for the bottom quark where the two-, three- and four-loop contributions
are of the same order of magnitude.

2. MS-threshold mass relation

It is interesting to use the new four-loop result discussed in the previous section to construct
precise relations between the MS and properly chosen threshold masses. The latter are used to
parametrize quantum corrections to physical quantities related to the particle threshold like bound-
state effects or threshold cross sections. Often such quantities are used to determine the numerical
values of the quark masses by comparison with experimental measurements. In a first step the
threshold mass value is obtained which in a second step is transformed to the MS mass. It has been
shown in Refs. [8, 9] that the conversion is known to high accuracy after including the four-loop
term of the MS-on-shell relation.

In Refs. [8, 9] the potential subtracted (PS) [11], 1S [12, 13, 14] and renormalon subtracted (RS
and RS0) [15] masses have been considered and detailed results for numerical effects are presented
in Section 4 of Ref. [9]. In the following we want to provide compact formulae which allows for
the computation of the MS quark mass for given threshold mass. We restrict ourselves to the top
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and bottom case and assume that the threshold masses are given by

mPS
t = 168.049 ± 0.100 GeV , for  f = 80 GeV ,

m1S
t = 172.060 ± 0.100 GeV ,

mRS
t = 166.290 ± 0.100 GeV , for  f = 80 GeV , (2.1)

mPS
b = 4.481± 0.020 GeV , for  f = 2 GeV ,

m1S
b = 4.668± 0.020 GeV ,

mRS
b = 4.364± 0.020 GeV , for  f = 2 GeV . (2.2)

This leads to the formulae

PS mt (mt ) = 163.508± 0.008 + 0.051s − 0.095PS
mt

GeV ,

1S mt (mt ) = 163.508± 0.005 + 0.090s − 0.0961S
mt

GeV ,

RS mt (mt ) = 163.508± 0.009 + 0.029s − 0.095RS
mt

GeV ,

PS mb(mb) = 4.163± 0.001 + 0.009s − 0.018PS
mb

GeV ,

1S mb(mb) = 4.163± 0.004 + 0.010s − 0.0191S
mb

GeV ,

RS mb(mb) = 4.163± 0.002 + 0.005s − 0.018RS
mb

GeV , (2.3)

where (X  ∈ {PS,1S,RS})

s =
0.1181− s(MZ)

0.0013
,

X
mt

=
mX

t
from Eq. (2.1)

− mX
t

0.1 GeV
,

X
mb

=
mX

b
from Eq. (2.2)

− mX
b

0.02 GeV
, (2.4)

parametrize the deviation from the central values s(MZ) = 0.1181 and the threshold masses in
Eqs. (2.1) and (2.2). The first uncertainty in Eq. (2.3) is obtained from the quadratic combination
of 50% of the four-loop contribution1 and the numerical uncertainty of the four-loop coefficient in
the MS-on-shell relation. Note that the latter is basically negligible.

Formulae like (2.1) and (2.2) are easily derived with the help ofRunDec [16] andCRunDec [17]
where all mass relations obtained in Refs. [8, 9] are implemented.

3. Uncertainty of the top quark pole mass

As a further application of the four-loop corrections to the MS-on-shell relation we discuss in
this section the renormalon contribution to the top quark pole mass. The basis for this analysis is
the all-order calculation of the leading infrared renormalon contribution which has been computed
in Refs. [18, 19] up to an overall normalization constant N. In Ref. [20] the Nc and nl dependence

1which is a very conservative estimate of the higher order corrections considering the rapid convergence of the
perturbative series, see Ref. [9]
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Figure 1: (a) 34, which shows the consistency of N extracted with three- and four-loop accuracy, as a
function of Nc and nl , for  = m = m(m). The cross corresponds to the case relevant for top, i.e. Nc = 3
and nl = 5. (b) N as a function of  and m.

of cm has been used to obtain N together with an estimate of the uncertainty which is based on
the independent variation of the renormalization scale of the MS top quark mass ( m) and strong
coupling constant ().

In Fig. 1(a) the Nc and nl dependence of the quantity34 (see Ref. [20] for a precise definition)
is shown. 34 is an estimate of how close is the third order coefficient to the asymptotic value. It
is likely to be an overestimate of the deviation of the fourth order coefficient from the asymptotic
formula and should not be taken as an error on the normalization N. Still, from Fig. 1(a) one finds
that generically 34 < 0.1 and thus the four-loop coefficient indeed matches the asymptotic formula
in the expected range of N c and n l values, including those of physical interest. An exception is
the region where the one-loop coefficient of the beta function is small and the renormalon is not
dominant, see lower-right corner of Fig. 1(a).

In Fig. 1(b) the normalization N is shown for N c = 3 and n l = 5 as a function of m and  .
Both scales are varied by a factor two around the central value m =  = m(m) ≡ m; the maximal
and minimal values are used to define the (asymmetric) uncertainty, see Ref. [20].

In this contribution we refrain from providing more details on intermediate quantities (which
can be found in Ref. [20]) and immediately present the final result for the pole mass as computed by
the MS mass. To obtain this relation we follow two approaches. The first one sums the asymptotic
series up to the point where the expansion coefficients start to grow (see also Tab. 2 of [20]). This
leads to the relation

M
m(m)

= 1.06177+ 0.00010
− 0.00025 (N) ± 0.00001(c4) ± 0.00087(s) ± 0.00041 (ambiguity), (3.1)

where the uncertainties are due to the normalization constant, the numerical precision of the four-
loop MS-on-shell coefficient, the strong coupling constant and the irreducible ambiguity which is
obtained from the first omitted term in the perturbative series.
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The second method is based on the Borel transform of the asymptotic series coefficients and
the subsequent computation of the Borel sum using principal value prescription. The ambiguity is
estimated by the imaginary part of the corresponding integral when the contour is deformed into
the upper complex plane, divided by Pi (see, e.g., [21], section 5.2). Our final result for the mass
relation reads

M
m(m)

= 1.06164+ 0.00009
− 0.00023 (N) ± 0.00001(c4) ± 0.00086(s) ± 0.00043 (ambiguity), (3.2)

in good agreement with Eq. (3.1).
Let us mention that the contribution in Eq. (3.2) from beyond four loops amounts to about

250 MeV. Furthermore, note that for a given MS mass, the top quark pole mass is determined
from relations (3.1) and (3.2) with an accuracy of 0.92 per mil which is obtained by adding all
uncertainties in quadrature. The irreducible uncertainty amounts to 0.41 per mil which corresponds
to about 70 MeV, an uncertainty far below the accuracy that can be achieved at the Large Hadron
Collider. Thus, the top quark pole mass is a useful concept in this context. This is different for
the mass determination from a scan of the top pair production threshold at a high-energy e + e−

collider [22, 23] where uncertainties below 100 MeV can be reached.
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