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Abstract: We present analytical results for the N4
f and N3

f terms of the five-loop Beta function, for

a general gauge group. While the former term agrees with results available from large-Nf studies, the

latter is new and extends the value known for SU(3) from an independent calculation.
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1 Introduction

The Beta function of Quantum Chromodynamics (QCD) governs the behavior of the strong interac-

tions, as the energy scale is varied. As such, it plays a central role in the Standard Model of elementary

particle physics, and indeed in quantum field theory, establishing an example of an asymptotically free

theory. Of utmost present importance, on the phenomenological side, high-precision QCD results are

needed in order to take full advantage of the experimental program being undertaken at the LHC.

Given this importance, much effort has been spent on evaluating the fundamental building blocks

of our theories with the best possible precision. The QCD Beta function has been calculated at the

one- [1, 2], two- [3, 4], three- [5, 6] and four-loop [7, 8] levels in the past; first 5-loop results have started

to appear, such as for the QED case [9–11]; at 6 loops, presently only scalar theory is accessible [12].

The QCD Beta function can be evaluated from a variety of field and vertex renormalization

constants. A simple choice that we shall adopt here are the ghost propagator and -vertex, as well as

the gluon propagator. This amounts to computing the three renormalization constants Zcc, Zccg and

Zgg, the latter one being by far the most complicated to evaluate, due to the number of terms in the

bare gluon vertices (and, if considering a general covariant gauge with gauge parameter ξ, in the bare

gluon propagator) as compared to bare ghost and fermion couplings and -propagators.

The paper is structured as follows. In Sec. 2, we start by explaining our computational setup and

by discussing classes of Feynman diagrams that contribute to different color structures. Using some

notation defined in Sec. 3, we then present and discuss results in Sec. 4, before concluding in Sec. 5.
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(a) (b) (c)

Figure 1. Sample 5-loop diagrams that contribute to different color structures at N4

f . Straight (red) and

curly (black) lines denote quarks and gluons, respectively. We did not draw arrows on the fermion lines, since

all combinations occur.

2 Setup

Let us now give some details on our setup, and make some technical remarks. As mandatory for a high-

order perturbative calculation, we employ a highly automatized setup based on the diagram generator

qgraf [13, 14] and several own FORM [15–17] programs. After applying projectors and performing

the color algebra using the color package [18], we introduce a common mass into all propagators,

and expand deep enough in the external momenta [7, 19, 20] – this step is justified, since we are

interested in ultraviolet (UV) divergences only, which allows us to regularize the small-momentum

behavior of each Feynman diagram at will, at the minor cost of one new (gluon mass) counterterm.

Keeping all potentially UV divergent structures and nullifying the external momenta, the resulting

expansion coefficients can then be mapped onto a set of vacuum integral families, which at 5-loop

level are labelled by 15 indices [21]. Let us note that, while the maximum number of positive indices

(lines) is 12 in the highest integral sector, for the present calculation we need a maximum of 11 only.

The resulting sum of fully massive scalar 5-loop vacuum integrals is then reduced to master integrals

by systematic use of integration-by-parts (IBP) identities [22] using a Laporta-type algorithm [23] as

implemented in crusher [24].

The required set of 110 master integrals has been evaluated at 5 loops previously, using a highly

optimized and parallelized setup [21, 25] based on IBP reduction and difference equations [23], im-

plemented in C++ and using Fermat [26] for fast polynomial algebra. While all difference equations

and recurrence relations have been obtained exactly in the space-time dimension d, a high-precision

numerical solution of the required integrals around d = 4 − 2ε dimensions allows to access (by far)

sufficiently high orders in ε for our masters. These results satisfy a number of nontrivial internal

checks, and correctly reproduce all lower-order results as well as (the few) previously known 5-loop

coefficients. In addition, we have used the integer-relation finding algorithm PSLQ [27] to find the

analytic content of some of these numerical results, and to discover linear relations among others.

This final step allows us to express our result in terms of Zeta values only.

Turning now to the diagrammatic content of our calculation, at order N4
f , there are three distinct

color structures that potentially contribute to the 5-loop Beta function. For the precise definition of

these factors (such as cf , d0 etc.), we refer to the next section. Taking the gluon propagator as an

example, Fig. 2 lists one representative Feynman diagram for each of these color structures. Diagrams

(a) and (b) contribute to cf and 1 of Eq. (4.3), respectively. Diagrams of type (c) are proportional to

d0 individually; however, they cancel in the sum of diagrams, due to the structure of the two fermion

loops making up d33FF (note that for the same reason, d0 did not occur in the 3- and 4-loop Beta

function coefficients either).
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(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 2. Sample 5-loop diagrams that contribute to different color structures at N3

f . The notation is as in

Fig. 1. Only the the diagram classes whose representatives are depicted in the first line need to be considered

in practice. For details, see the main text.

In the same spirit, Fig. 2 depicts representatives that contribute to distinct color structures at

order N3
f . Diagrams (d-g) contribute to c2f , cf , 1 and d1 of Eq. (4.3), respectively. Diagrams of

class (h) actually vanish individually after performing the color sums, while diagrams of class (i) are

proportional to d4 individually, but cancel in the sum. The last two classes of Fig. 2 again vanish after

summing over all fermion loop orientations; in fact, both contain d0: class (j) is proportional to cfd0,

while (k) give d0.

3 Notation

To fix our notation: T a are hermitian generators of a simple Lie algebra, with real and totally an-

tisymmetric structure constants fabc defined by the commutation relation [T a, T b] = ifabcT c. The

Casimir operators of the fundamental and adjoint representations are defined as T aT a = CF11 and

facdf bcd = CAδ
ab. We normalize fundamental traces as Tr(T aT b) = TFδ

ab, denote the number of

group generators (gluons) with NA, and the number of quark flavors with Nf . Let us define the

following normalized combinations:

nf =
Nf TF

CA
, cf =

CF

CA
. (3.1)

Higher-order group invariants will enter via traces [18]. Denoting the generators of the adjoint

representation as [F a]bc = −ifabc, it is useful to define traces over combinations of symmetric tensors

for our discussion below:

d0 =
[sTr(T aT bT c)]2

NAT 2
FCA

, d1 =
[sTr(T aT bT cT d)]2

NAT 2
FC

2
A

, d2 =
sTr(T aT bT cT d) sTr(F aF bF cF d)

NATFC3
A

, (3.2)

d3 =
[sTr(F aF bF cF d)]2

NAC4
A

, d4 =
sTr(T aT bT cT d) sTr(T aT bT e) sTr(T cT dT e)

NAT 3
FC

2
A

, (3.3)

where sTr is a fully symmetrized trace (such that sTr(ABC) = 1
2Tr(ABC +ACB) etc.).
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Choosing SU(N) as gauge group1 (TF = 1
2 , CA = N), some of these normalized invariants read

[18]

nf =
Nf

2N
, cf =

N2
− 1

2N2
, d1 =

N4
− 6N2 + 18

24N4
, d2 =

N2 + 6

24N2
, d3 =

N2 + 36

24N2
. (3.4)

From here, e.g. the SU(3) values, corresponding to physical QCD, can be obtained easily.

4 Results

We define the coefficients bi of the Beta function as

∂lnµ2 a = −a
[

ε+ b0 a+ b1 a
2 + b2 a

3 + b3 a
4 + b4 a

5 + . . .
]

, a ≡
CA g2(µ)

16π2
, (4.1)

where g(µ) is the QCD gauge coupling constant, depending on the regularization scale µ, and we are

working in the MS scheme, in d = 4 − 2ε dimensions. Note that our coupling a is simply a rescaled

version of the conventional strong coupling constant αs = g2(µ)
4π , and that b4 corresponds to 5-loops.

In terms of the normalized color factors introduced in the previous section, we obtain the following

result:

31 b0 = 11− 4nf , . . . , (4.2)

35 b4 = n4
f

[

c1 cf + c2

]

+ n3
f

[

c3 c
2
f + c4 cf + c5 + c6 d1

]

+ . . . (4.3)

c1 = −8(107 + 144ζ3) , c2 = 4(229− 480ζ3) (4.4)

c3 = −6(4961− 11424ζ3 + 4752ζ4) (4.5)

c4 = −48(46 + 1065ζ3 − 378ζ4) (4.6)

c5 = −3(6231 + 9736ζ3 − 3024ζ4 − 2880ζ5) (4.7)

c6 = 1728(55− 123ζ3 + 36ζ4 + 60ζ5) , (4.8)

where ζs = ζ(s) =
∑

n>0 n
−s are values of the Riemann Zeta function.

For practical reasons, we have performed most of our calculations in Feynman gauge; hence we

cannot (yet) claim gauge-parameter cancellation as a check on the result. There are, however, a

number of other strong checks, as we shall explain now. First, the coefficients b0 to b3 agree perfectly

with the corresponding evaluations up to 4 loops [7, 8], serving as a validation of our whole setup.

Second, already 20 years ago2, the leading-order coefficients of the QCD Beta function have been

computed in a large Nf expansion [29]. In this limit, QCD is equivalent to the non-abelian Thirring

model, whose anomalous dimension of (F a
µν)

2 at the d-dimensional fixed point gives a result in terms

of Gamma functions η(ε) = (2ε−3)Γ(4−2ε)
16Γ2(2−ε)Γ(3−ε)Γ(ε) . The all-order expression for the large-Nf QCD β-

function, written in terms of the coupling af = NfTFg
2(µ)

12π2 , reads [29]

∂lnµ2af = −afε+ a2f +
a2f
nf

(

−
11

4
+
∑

j>0

fj a
j
f

j

)

+O

( 1

n2
f

)

, (4.9)

f(ε) = −η(ε)
{

4(1 + ε)(1− 2ε)cf +
4ε4 − 14ε3 + 32ε2 − 43ε+ 20

(1− ε)(3− 2ε)

}

(4.10)

= f1ε+ f2ε
2 + f3ε

3 + f4ε
4 + . . . . (4.11)

1For the group U(1) (QED), one simply sets CA = sTr(F aF bF cF d) = 0 and CF = TF = NA = sTr(TaT bT cT d) = 1.
2The cf term of Eq. (4.10) has been known even longer, from QED [28].
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Performing the ε expansion, f1 to f4 agree with the leading-Nf terms of b1 to b4, constituting a first

non-trivial check at 5 loops.

As a third check, the full 5-loop Beta QCD function has recently been obtained for the gauge

group SU(3) [30]. Reducing our Eq. (4.3) to this special case using Eq. (3.4) at N = 3 (ie., nf = Nf/6,

cf = 4/9 and d1 = 5/216), we get

35 b4
SU(3)
=

[1205

2916
−

152

81
ζ3

]

N4
f +

[

−
630559

5832
−

48722

243
ζ3 +

1618

27
ζ4 +

460

9
ζ5

]

N3
f + . . . , (4.12)

which can be seen to be in full agreement with [30].

5 Conclusions

We have presented new results for the N3
f contribution to the 5-loop QCD Beta function, for the case

of a general gauge group. Our methods are highly automated and well suited to evaluate anomalous

dimensions and other quantities that can be mapped onto 5-loop massive tadpoles, for which we have

high-precision numerical (and partly analytical) results available. Our main result is given in Eq. (4.3).

It agrees favorably with an independent recent calculation [30] that has been performed in parallel to

our investigation.

For the special case of the Beta function, an evaluation of the remaining coefficients (proportional

to N2
f , N

1
f and N0

f ) is under way. While conceptually completely under control, the required computer

resources, in particular for the contributions from the gluon propagator, are significantly larger than

what was required for the partial result reported here.

Finally, besides the three renormalization coefficients that we have chosen to derive the Beta

function, the complete set of anomalous dimensions is within reach. A next logical step would be the

quark mass anomalous dimension, which is gauge invariant. It is known at 4-loop order for a general

gauge group [31, 32], and at 5-loop order for SU(3) [33]. It would also be interesting to keep the gauge

parameter (or, at least, linear terms) in the calculations, in order to provide an additional strong

check.
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[33] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Quark Mass and Field Anomalous Dimensions to

O(α5
s), JHEP 1410 (2014) 076 [arXiv:1402.6611].

[34] J. A. M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45.

[35] J. C. Collins and J. A. M. Vermaseren, Axodraw Version 2, arXiv:1606.01177.

– 7 –


	1 Introduction
	2 Setup
	3 Notation
	4 Results
	5 Conclusions

