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1. Introduction

The anomalous magnetic moment of the muon is among the most precisely known quantities
in particle physics. At the same time there is a long-standing deviation between the experimental
measurement and the theory prediction which amounts to about three standard deviations. On the
experimental side there are upcoming new experiments whicheither use the same method as in the
E821 experiment at BNL [1, 2] but reduce the uncertainties byabout a factor four, or even use a
completely different technique which would eliminate doubts on possible systematic effects (for
details see, e.g., Ref. [3]).

On the theory side it is certainly necessary to improve on thehadronic contributions, both
from the vacuum polarization and from light-by-light-typediagrams. Furthermore, it is mandatory
to cross check the four-loop QED contribution since the fullresult has only been obtained by one
group [4, 5, 6]. In a series of works [7, 8, 9] the fermionic pieces have been confirmed. The cross
check of the purely photonic part is still missing. In this contribution we report on the calculation
and results of the diagrams involving closed electron loops[9].

2. The method

It is convenient to sub-divide the contributing four-loop diagrams in twelve classes [6] which
are introduced in Fig. 1 with the help of sample Feyman diagrams.

The approach used for the computation of the four-loop diagrams differs from the one applied
in Ref. [6] in many ways. In [9] we generate in a first step amplitudes for each individual vertex

I(a) I(b) I(c) I(d)

II(a) II(b) II(c) III

IV(d) IV(a) IV(b) IV(c)

Figure 1: Four-loop diagram classes foraµ containing at least one closed electron loop. The external solid
lines represent muons, the solid loops denote electrons, muons or taus, and the wavy lines represent photons.
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diagram which contain both the electron (me) and the muon mass (mµ). At this point we exploit the
fact thatme ≪ mµ and apply an asymptotic expansion which expresses each amplitude into a sum
of so-called sub-diagrams. Each sub-diagram is written as aproduct of one-scale integrals which
are much easier to compute.

The various sub-diagrams involve different types of integrals which have to be treated sepa-
rately. Most of them are well studied in the literature and analytic results can be obtained. However,
there are two types where this is not the case: four-loop on-shell integrals and four-loop integrals
involving propagators of the form 1/(2ℓ ·q) whereq is the external momentum withq2 = m2

µ , in
the following called “linear integrals”.

At this point we apply an appropriate projector to the magnetic form factor and expand af-
terwards in the photon momentum to obtain the static limit. Then we perform the traces and
decompose each amplitude into a sum of scalar integrals. Forsimple integral types (like two-loop
vacuum integrals) we can directly insert the analytic results for the integrals. The more compli-
cated ones are reduced to so-called master integrals using the program packagesFIRE [10] and
crusher [11]. In this way we obtain an analytic result for the muon anomalous magnetic moment
in term of a relatively small number [O(100)] of master integrals. This is the case for all coeffi-
cients of(me/mµ)

n (we expanded up ton= 3). Note that as far as the four-loop master integrals
are concerned the odd powers ofme/mµ only involve linear integrals while the even powers get
contributions from on-shell and linear integrals.

It is only at this point when we pass on to numerical methods since to date not all master
integrals are available in analytic form. This is the originof the uncertainty in our final results, see
below.

The numerical evaluation of the four-loop on-shell master integrals is described in detail in
Ref.[12]. A similar approach has also been used for the linear integrals, see also Ref. [9].

3. Results for (g−2)µ

In this section we present results for the anomalous magnetic moment of the muon. We cast
the perturbative expansion in the form

(g−2)µ

2
= aµ =

∞

∑
n=1

a(2n)
µ

(α
π

)n
, (3.1)

wheren counts the number of loops.a(2n)
µ is conveniently split into several pieces according to the

particles present in the loop. In particular, we have for thefour-loop term

a(8)µ = A(8)
1 +A(8)

2 (mµ/me)+A(8)
2 (mµ/mτ)+A(8)

3 (mµ/me,mµ/mτ) , (3.2)

whereA(8)
1 denotes the universal part which includes the pure photoniccorrections and closed muon

loops.A(8)
2 (mµ/me) (A(8)

2 (mµ/mτ)) contains in addition at least one closed electron (tau) loop and

A(8)
3 (mµ/me,mµ/mτ) contains at least one electron and one tau loop.

In Table 1 the results from the individual diagram classes contributing to A(8)
2 (mµ/me) are

shown. For practical reasons only the sum is presented for the classes I(b)+I(c) and II(b)+II(c) and
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A(8)
2 (mµ/me) [9, 8] literature

I(a0) 7.223076 7.223077±0.000029 [4]
7.223076 [13]

I(a1) 0.494072 0.494075±0.000006 [4]
0.494072 [13]

I(a2) 0.027988 0.027988±0.000001 [4]
0.027988 [13]

I(a) 7.745136 7.74547±0.00042 [6]

I(bc0) 8.56876±0.00001 8.56874±0.00005 [4]
I(bc1) 0.1411±0.0060 0.141184±0.000003 [4]
I(bc2) 0.4956±0.0004 0.49565±0.00001 [4]
I(bc) 9.2054±0.0060 9.20632±0.00071 [6]

I(d) − 0.2303±0.0024 − 0.22982±0.00037 [6]
− 0.230362±0.000005 [14]

II(a) − 2.77885 − 2.77888±0.00038 [6]
− 2.77885 [13]

II(bc0) −12.212631 −12.21247±0.00045 [4]
II(bc1) − 1.683165±0.000013 − 1.68319±0.00014 [4]
II(bc) −13.895796±0.000013 −13.89457±0.00088 [6]

III 10.800±0.022 10.7934±0.0027 [6]

IV(a0) 116.76±0.02 116.759183±0.000292 [4]
111.1±8.1 [15]
117.4±0.5 [16]

IV(a1) 2.69±0.14 2.697443±0.000142 [4]
IV(a2) 4.33±0.17 4.328885±0.000293 [4]
IV(a) 123.78±0.22 123.78551±0.00044 [6]

IV(b) − 0.38±0.08 − 0.4170±0.0037 [6]
IV(c) 2.94±0.30 2.9072±0.0044 [6]

IV(d) − 4.32±0.30 − 4.43243±0.00058 [6]

Table 1: Final results for the different classes and comparison withthe literature.

a further splitting is carried out in case more than one electron loop is present (see Ref. [9] for a
detailed discussion.)

It is interesting to note that in some cases our coefficients have smaller uncertainties (e.g.
II(bc)) whereas for others we have obtained an uncertainty which is much worse than the one of [6]
(e.g. IV(c) or IV(d)). This can be traced back to complicatedmaster integrals which at the moment
can only be evaluated with a few-digit precision. Let us stress that, if necessary, the precision of
our result can be improved systematically.

Our final result forA(8)
2 (mµ/me) is given by

A(8)
2 = 126.34(38)+6.53(30) = 132.86(48) , (3.3)
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where the first number after the first equality sign originates from the light-by-light-type diagrams
IV(a), IV(b) and IV(c). Our final numerical uncertainty amounts to approximately 0.5× (α/π)4 ≈

1.5× 10−11. It is larger than the uncertainty in Ref. [6]. Neverthelessit is sufficiently accurate
as can be seen by the comparison to the difference between theexperimental result and theory
prediction which is given by [6]

aµ(exp)−aµ(SM) ≈ 249(87)×10−11 . (3.4)

Note that the uncertainty in Eq. (3.4) receives approximately the same amount from experiment
and theory (i.e. essentially from the hadronic contribution). Even after a projected reduction of the
uncertainty by a factor four both inaµ(exp) andaµ(SM) our numerical precision is a factor ten
below the uncertainty of the difference.

4. Conclusions

In this contribution we reported on the calculation of the four-loop QED corrections toaµ

which involve closed electron loops [9, 8] [seeA(8)
2 (mµ/me) in Eq. (3.2)]. In Ref. [9] also the

contributionA(8)
3 (mµ/me,mµ/mτ) with at least one electron and one tau loop have been computed

and the results forA(8)
2 (mµ/mτ) can be found in Ref. [7]. For all contributions perfect agreement

with the results of Ref. [6] have been obtained. The only missing four-loop contribution which still
has to be cross-checked is the universal partA(8)

1 .
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