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Abstract

Correlations between light neutrino observables are arguably the strongest predictions
of lepton flavour models based on (discrete) symmetries, except for the very few cases
which unambiguously predict the full set of leptonic mixing angles. A subclass of these
correlations are neutrino mass sum rules, which connect the three (complex) light neutrino
mass eigenvalues among each other. This connection constrains both the light neutrino
mass scale and the Majorana phases, so that mass sum rules generically lead to a non-
zero value of the lightest neutrino mass and to distinct predictions for the effective mass
probed in neutrinoless double beta decay. However, in nearly all cases known, the neutrino
mass sum rules are not exact and receive corrections from various sources. We introduce
a formalism to handle these corrections perturbatively in a model-independent manner,
which overcomes issues present in earlier approaches. Our ansatz allows us to quantify the
modification of the predictions derived from neutrino mass sum rules. We show that, in
most cases, the predictions are fairly stable: while small quantitative changes can appear,
they are generally rather mild. We therefore establish the predictivity of neutrino mass
sum rules on a level far more general than previously known.
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1 Introduction

Neutrinos keep on surprising us when it comes to experiments. We are still puzzled by their
curious properties which are experimentally established but which we still do not understand
on a fundamental level. For example, the neutrino mass is extremely small compared to any
other fermionic mass we know, namely below 1 eV (or possibly even 0.1 eV). This we know
from several experiments and observations, either in the lab by kinematical determinations
of the neutrino mass [1] and from the hunt for neutrinoless double beta decay [2], or in
space by the time-of-flight measurements of supernova neutrinos [3] or from cosmological
considerations [4]. Similarly, the leptonic mixing angles are a mystery to us, for we have
measured their values to be fairly large (see nu-fit.org [5]) but yet we have absolutely no
theoretical understanding of these numbers.

Although far from perfect, still the best idea we have to explain leptonic mixing is to
motivate the values of the mixing angles by relating them to discrete flavour symmetries,
see [6] for recent reviews.1 However, flavour models based on discrete symmetries generically
face one big problem: they often do not give us any testable prediction beyond fitting the
known mixing angles within their experimental ranges (note that, if a model did not, it would
in any case be discarded). On the other hand, at least some groups of flavour models are
more powerful than that, in the sense that they predict certain correlations between different
observable quantities. Among these correlations, the most popular ones discussed in the
literature are mixing angle sum rules [9]; but, when looking at the total mass matrix of
neutrinos, a second class of correlations arises, neutrino mass sum rules.

It is these mass sum rules (in the following referred to by “SRs”) that we will investigate in
this text. Basically, what they do is to connect the three complex neutrino mass eigenvalues m̃i

in a simple relation, where all three contributions sum to zero. For example, m̃1+m̃2−m̃3 = 0
would be a valid SR, as well as m̃−1

1 + m̃−1
2 − m̃−1

3 = 0. Several studies of SRs have been
presented earlier. Among the first works investigating SRs were Refs. [10–12]. However,
these actually did not mention the name “sum rules” at all. That term came up only later, in
Refs. [13–16]. The probably most comprehensive study of SRs, which includes all known cases
we are aware of, had been presented in Ref. [17]. Based on this study, Ref. [18] has shown
that, indeed, with realistic assumptions on the experimental side one could truly distinguish
at least some classes of models with near-future data – as long as our current understanding
of the nuclear physics aspects of neutrinoless double beta decay is not totally flawed.

However, it is clear in nearly all cases that sum rules, even though predicted, are in fact
not exact.2 These can arise, e.g., from higher-order correction terms arising from flavour
symmetry breaking, or from corrections transmitted from the charged lepton sector. A fur-
ther correction that we had investigated earlier are those arising from renormalisation group
running, see Ref. [20]. We have indeed been able to show that at least these corrections do
not change the predictions from SRs significantly, but we cannot claim that this particular
type of corrections would be the most general one.

In this manuscript we will try to close this gap by computing the effect of non-exact
SRs on the predictions in a very general framework, based on a perturbative approach. The
only attempt to investigate approximate sum rules that we are aware of had been presented
in Ref. [15], however, it had been pointed out [17, 20] that the approach in that reference

1For alternative ideas, one could for example consider anarchy [7] or radiative transmission [8].
2See Ref. [19] for a notable exception, where the SR at least holds to next-to-leading order.
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Parameter best-fit (±1σ) 3σ range

θ12 in ◦ 33.48+0.78
−0.75 31.29→ 35.91

θ13 in ◦ 8.50+0.20
−0.21 ⊕ 8.51+0.20

−0.21 7.85→ 9.10⊕ 7.87→ 9.11

θ23 in ◦ 42.3+3.0
−1.6 ⊕ 49.5+1.5

−2.2 38.2→ 53.3⊕ 38.6→ 53.3

δ in ◦ 251+67
−59 0→ 360

∆m2
21 in 10−5 eV2 7.50+0.19

−0.17 7.02→ 8.09

∆m2
31 in 10−3 eV2 (NO) 2.457+0.047

−0.047 2.317→ 2.607

∆m2
32 in 10−3 eV2 (IO) −2.449+0.048

−0.047 −2.590→ −2.307

Table 1: The best-fit values and the 3σ ranges for the parameters taken from [5], v2.0. The
two minima for both θ13 and θ23 correspond to normal and inverted mass ordering, respectively.

is likely to be insufficient because the corrections have been attributed to one particular
mass eigenvalue only, namely m3. However, this may create problems both due to measure-
dependence of the perturbations and due to the fact that m3 plays a very different role
for the two mass orderings. This is another shortcoming which we will at least partially
overcome with our approach, by describing a procedure by which the dependence on a choice
of mass eigenvalue can be minimised. Using the techniques developed, we will investigate the
predictions of all sum rules we found in the literature. As we will see, while the predictions
are of course changed for approximate SRs, in most cases these changes are comparatively
mild, thereby keeping the predictivity of the SRs alive. Only in one case, namely SR 10, a
qualitative change does happen which could in fact be visible in an experiment.

This work is organised as follows. We start in Sec. 2 by re-introducing the parametrisation
of SRs used by us, and we will also visualise how to interpret neutrino mass sum rules, no
matter if exact or not, in a geometrical manner. Sec. 3 is dedicated to a discussion of the
possible origins of the various corrections, to clarify which cases are covered by our formalism.
Our numerical results, along with detailed plots for each sum rule, are presented in Sec. 4. We
conclude in Sec. 5. Technical details on how to derive the physical leptonic mixing parameters
from the charged lepton and neutrino sectors are summarised in Appendix A.

2 Parametrisation and geometrical interpretation

To start off, let us define our conventions. First of all, we parametrise the leptonic mixing ma-
trix, the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, by using the standard
parametrisation suggested by the Particle Data Group (PDG) [21]

UPMNS = R23U13R12P0

=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


P0, (2.1)

where δ is the Dirac CP-phase and P0=diag(e−iφ1/2, e−iφ2/2, 1) is a diagonal matrix containing
the two Majorana phases φ1,2. However, note that our definition of the Majorana phases is
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Sum rule References c1 c2 d ∆χ13 ∆χ23

1 [12,15,26–32] 1 1 1 π π
2 [33] 1 2 1 π π
3 [14,15,27–31,34–36] 1 2 1 π 0
4 [37] 1/2 1/2 1 π π

5 [38] 2√
3+1

√
3−1√
3+1

1 0 π

6 [12,15,19,23,26,39] 1 1 −1 π π
7 [10,13–15,35,36,40] 1 2 −1 π 0
8 [41] 1 2 −1 0 π
9 [42] 1 2 −1 π π/2, 3π/2
10 [11,43] 1 2 1/2 π, 0, π/2 0, π, π/2
11 [16] 1/3 1 1/2 π 0
12 [44] 1/2 1/2 −1/2 π π

Table 2: Summary table of the SRs we will analyse in the following. The parameters
c1, c2, d,∆χ13, and ∆χ23 that characterise them are defined in Eq. (2.2). In SRs 9 and 10, two
possible signs appear which lead to two possible values of ∆χi3.

different compared to what the PDG uses [21] in their Eq. (14.78): φ1 = −α31 and φ2 =
α21 − α31. As for the mixing parameters, we have used the v2.0 version from nu-fit.org,
as reported in Tab. 1.3

With that said, let us next introduce our formalism to treat neutrino mass sum rules
(SRs). In [20] we have investigated the effect of renormalisation group corrections to neutrino
mass SRs. In this paper we want to examine the impact of next-to-leading order (NLO)
corrections to neutrino mass matrices on mass SRs.

A general exact SR can be parametrised according to [20]:

s(m1,m2,m3, φ1, φ2; c1, c2, d,∆χ13,∆χ23) ≡

c1

(
m1e−iφ1

)d
ei∆χ13 + c2

(
m2e−iφ2

)d
ei∆χ23 +md

3
!

= 0 , (2.2)

where φi, i = 1, 2 are the Majorana phases. The quantities c1, c2, d, ∆χ13, and ∆χ23

are parameters which characterise the SR, e.g., SR 1, m̃1 + m̃2 = m̃3, is characterised by
(c1, c2, d,∆χ13,∆χ23) = (1, 1, 1, π, π), while SR 7, m̃−1

1 = 2m̃−1
2 + m̃−1

3 , is characterised by
(c1, c2, d,∆χ13,∆χ23) = (1, 2,−1, π, 0), see Tab. 2 for a summary. Note that, in this notation,
m̃i are the complex mass eigenvalues, i.e., with the phase information included. In Tab. 2 we
have collected all the SRs we found in the literature with their parameters c1, c2, d, ∆χ13,
and ∆χ23.

A complex perturbation governed by the complex parameter δmi eiδφi to the neutrino
mass matrix shifts its complex eigenvalues to

m̃i = mie
−iφi = m

(0)
i e−iφ

(0)
i + δmi eiδφi . (2.3)

3Note that, just while this work was in its final stages, a new version of mixing parameters v2.1 was
released. We have verified that our results are not significantly changed for some example cases, however,
given the time-consuming numerics behind this manuscript we have decided against re-running all of our code
and have instead decided to consistently present the results obtained for v2.0.
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Thus, explicitly, the corrections are connected to the physical parameters as follows:

mi ≈ m(0)
i

(
1 +

δmi

m
(0)
i

cos(δφi − φ(0)
i )

)
, (2.4)

φi ≈ − arctan

(
−m(0)

i sin(φ
(0)
i ) + δmi sin(δφi)

m
(0)
i cos(φ

(0)
i ) + δmi cos(δφi)

)
. (2.5)

Thus, e.g. δφi is not the correction to the phase of the complex mass. We assume that, in
general, the correction to each mass can have a different phase δφi than that of the zeroth

order SR, i.e., δφi need not be a small number. We furthermore assume that δmi/m
(0)
i � 1,

with δmi > 0 without loss of generality. So we can expand Eq. (2.2) in the small parameters
δmi to obtain the deviation from the exact SR. This results in

0 6= s ≈ s(0) + δs , (2.6)

where

s(0) = c1

(
m

(0)
1 e−iφ

(0)
1

)d
ei∆χ13 + c2

(
m

(0)
2 e−iφ

(0)
2

)d
ei∆χ23 +

(
m

(0)
3

)d
(2.7)

and

δs = d
[
c1

(
m

(0)
1 e−iφ

(0)
1

)d
ei(∆χ13+φ

(0)
1 ) δm1eiδφ1

m
(0)
1

+ c2

(
m

(0)
2 e−iφ

(0)
2

)d
ei(∆χ23+φ

(0)
2 ) δm2eiδφ2

m
(0)
2

+
(
m

(0)
3

)d δm3eiδφ3

m
(0)
3

]
. (2.8)

With the leading-order (LO) expressions for the masses the SR is exactly fulfilled (i.e., s(0) =
0), in case the SR does allow for the mass ordering under consideration. Note that the SR is
complex and hence the correction δs will in general be complex as well.

Graphically the deviation from a SR corresponds to an “incomplete” triangle in the com-
plex plane, as illustrated in Fig. 1. Note that the parameters which appear in the triangle are
now the corrected masses and phases, which are complicated functions of the leading order
parameters and of the corrections. We will use the parameters δsr and δsi to measure the
effect of the perturbation, where δsr (δsi) corresponds to the real (imaginary) part of the
deviation.

At this point we also want to note that δs is a dimensionful quantity, and hence not well
suited to express corrections since the notion of small and big is not meaningful. We therefore
introduce the normalised hatted quantities

ŝ ≡ s

md
n

and δŝ ≡ δs

md
n

, (2.9)

where mn is chosen in such a way that the coefficients in front of δmi/m
(0)
i in Eq. (2.8) are

not artificially enhanced by mi/mj � 1. Explicitly, that is:

mn =





m3 for d > 0 and NO,

m2 for d > 0 and IO,

m1 for d < 0 and NO,

m3 for d < 0 and IO.

(2.10)
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δsi

δsr

c1
(
m1e

−iφ1
)d

ei∆χ13

c2
(
m2e

−iφ2
)d

ei∆χ23

−dφ2 +∆χ23 − π π + dφ1 −∆χ13

δs

md
3

Figure 1: Definition of the parameters δsr and δsi used to measure the corrections to the
SRs. Note that these parameters are dimensionful. We normalise δs according to Eq. (2.10)
such that we obtain dimensionless quantities. The parameters mi and φi are already corrected.

With this choice, |δŝ| should be much smaller than one – if we want to talk about small
corrections and one of the sides of the triangle in Fig. 1 has a length of O(1).

Before going on, it is important to realise that Eq. (2.10) implies that the quantity δŝ < b
can in fact have a slightly different meaning even for one and the same bound b, depending
on the mass ordering and on the sign of d. This is however not so much an inconsistency than
simply a convenient approach to use the same formalism for all cases considered. The decisive
point is that, in any case, the two mass orderings are physically different, and so are cases
with a different sign of d, so that it is simply impossible to put all SRs on the same footing
for all cases. Thus, a bound such as, e.g., δŝ < 0.1 may be more or less restrictive, depending
on the actual case under consideration. However, as we will see, the difference induced by
this subtlety is not really decisive and will thus not be a major concern for the remainder of
this manuscript.

3 Main origin of corrections

In this section, we will give examples for a possible origin of deviations from exact SRs. Note
that, in principle, no matter where the corrections arise from, they will always be covered by
our formalism, cf. section 2. However, the important restriction is that our Eq. (2.8) relies on

the assumption that one can expand the full SR s in the small quantities δmi/m
(0)
i . If this is

not possible for some reason, our formalism will not apply.
Keeping this in mind, we will now discuss three possible origins for deviations to SRs.

The first origin is higher-dimensional operators, Sec. 3.1, which typically arise from including
suppressed terms that ultimately arise from the flavour symmetry being broken. The next
possibility to modify SRs is to have corrections from the charged-lepton mass matrix. These
can arise if the mass matrix in the charged lepton sector is not diagonal, but has to be
diagonalised to arrive at the standard definition of leptonic mixing angles; this is discussed
in Sec. 3.2. Finally, as discussed in our earlier reference [20], renormalisation group evolution
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(RGE) corrections can also lead to modifications. This possibility, to be introduced in Sec. 3.3,
is discussed in some more detail in what follows, for the simple reason that we can give a
detailed comparison to the previous results.

3.1 Higher-dimensional operators

In many models the mass matrices have a leading order structure which is supposed here
to give one of the mass sum rules. But then due to some higher-dimensional operators this
leading structure gets disturbed. As an example for that we want to study the A5 × SU(5)
model proposed in [23,47,48] where a correction to the leading Yukawa matrix is introduced to
account for the observed baryon asymmetry of the universe via the leptogenesis mechanism.
In order to simplify the notation, we introduce the dimensionless matrices

ŷ =




1 0 0
0 0 1
0 1 0


 and δŷ =




0 1 0
−1 0 0
0 0 0


 . (3.1)

The neutrino Yukawa coupling in this model is then proportional to ŷ + c ei γδŷ, with c� 1
and γ being an arbitrary phase coming from a higher-dimensional operator.

The mass matrix for the right-handed neutrinos is proportional to (see also [19]):

m̂RR =




X√
6

+ Y eiχ√
30

−Y eiχ√
15

−Y eiχ√
15

−Y eiχ√
15

15X−
√

5Y eiχ

10
√

6
−5X−

√
5Y eiχ

10
√

6

−Y eiχ√
15

−5X−
√

5Y eiχ

10
√

6
15X−

√
5Y eiχ

10
√

6


 . (3.2)

The light neutrino mass matrix is then generated via the type I seesaw mechanism [24].
It is up to O(c) given by:

mν = −ŷ m̂−1
RR ŷ − c eiγ

(
δŷ m̂−1

RR ŷ + ŷ m̂−1
RR δŷ

)
, (3.3)

where we have absorbed all coefficients into c and m̂−1
RR, and we thus have only five effective

parameters. These are the dimensionful X, Y , the phases χ and γ, and the small parameter
c. One can easily map our simplified notation here to the original notation used in [47, 48],
by rewriting these parameters with the respective pre-factors.

Since the leading order neutrino mass matrix (c ≡ 0) depends only on two (complex)
parameters, we find a mass SR which corresponds to SR 6 from Tab. 2:

eiφ1

m
(0)
1

+
eiφ2

m
(0)
2

− 1

m
(0)
3

= 0 . (3.4)
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The corrections to the complex masses from Eq. (2.3) are up to order c

δm1 =

√
6(3 +

√
5)
Y sin γ

X cosχ

√
1

(X2 + Y 2 + 2XY cosχ)
c , (3.5)

δm2 =

√
6(3−

√
5)
Y sin γ

X cosχ

√
1

(X2 + Y 2 − 2XY cosχ)
c (3.6)

δm3 = 0 , (3.7)

δφ1 = arctan

(
1

tanχ
+
X

Y

1

sinχ

)
, (3.8)

δφ2 = arctan

(
1

tanχ
− X

Y

1

sinχ

)
, (3.9)

δφ3 = 0 . (3.10)

Note that for sin γ = 0, δm1 and δm2 get corrected only at O(c2) and m̃3 does not get a
correction at O(c). The correction is enhanced by the ratio Y/X and χ ≈ nπ/2 (n ∈ Z).

As an example parameter point we consider normal ordering with X = 24.0, Y =
185.3, χ = 0.4 so that, for c = 0.05 and γ = 0.2, we obtain δŝr ≈ −0.013 and δŝi ≈ 0.13,
which corresponds to δŝ ≈ 0.13.

3.2 Charged lepton sector

Despite the fact that the mass SR is a feature of the neutrino sector of a given model, it can
be influenced by a non-diagonal charged lepton mass matrix. The phases which appear in the
PMNS-matrix (i.e., the Dirac CP-phase and the two Majorana phases) depend on the phases

from the neutrino and the charged lepton mixing matrices, since UPMNS = U †eUν . This leads
to relations between the leptonic mixing angles and phases. In the derivation of the formulas,
however, some subtleties can arise, since all unphysical phases have to be correctly extracted.
In App. A we present a comprehensive derivation of relations between the parameters in the
PMNS matrix and the neutrino and charged lepton mixing parameters. Here we will quote
the results for the approximate expressions for the PMNS parameters in terms of SRs of
neutrino mixing angles and the charged lepton mixing angles. For θν13 ≈ 0 and θe23 ≈ θe13 ≈ 0,
they read:

cPMNS
13 cPMNS

12 ei(η1−φ1/2) = ce12c
ν
12eiων1 + cν23s

e
12s

ν
12ei(ων2+δν12−δe12) , (3.11)

sPMNS
12 cPMNS

13 ei(η1−φ2/2) = sν12c
e
12e−iδν12eiων1 − se12c

ν
23c

ν
12e−iδe12eiων2 , (3.12)

sPMNS
13 ei(η1−δ) = −se12s

ν
23e−i(δe12+δν23)eiων2 . (3.13)

The superscript ν denotes the neutrino mixing parameters, while the superscript e signifies the
charged lepton mixing parameters. The phases ηi and ωνi are unphysical, but they nevertheless
have to be treated with care in order to obtain the correct results for the phases. Together
with

cPMNS
12

(
cPMNS

13

)2
cPMNS

23 sPMNS
13

(
sPMNS

12 sPMNS
23 e−iδ − cPMNS

12 cPMNS
23 sPMNS

13

)
=

(
UPMNS

11

)∗
UPMNS

13 UPMNS
31

(
UPMNS

33

)∗
, (3.14)

7



which we get if we exploit the structure of the PMNS matrix, we can close the system
to solve the four equations (3.11) to (3.14) to determine the Majorana phases. In [49–51]
these expressions were also derived but their formulas apply directly to the case where the
unphysical phases are taken correctly into account and then subsequently absorbed. From
Eqs. (3.11, 3.12, 3.13) we see that the Majorana phases indeed depend on the charged lepton
phases.

As a concrete example, we consider again the A5 × SU(5) model proposed in [23, 47, 48],
which features a non-diagonal charged lepton mass matrix, a vanishing reactor angle, and a
maximal atmospheric neutrino mixing angle. We introduced only a small 1-2 mixing in the
charged lepton sector. The parameters in the neutrino mass matrix are complex, and hence
the δνij depend on these parameters. But, for simplicity, we take the neutrino mass matrix to
be real (χ = c = 0). Taking into account all phases in the PMNS matrix, we obtain for the
physical Majorana phases:

φ1 =

√
3 +
√

5θe12 sin δe12 and φ2 = π −
√

5− 1√
2

θe12 sin δe12 . (3.15)

This result tells us that δe12 ≈ π/2 leads to the maximal correction to the Majorana phases
and φ1 gets more affected by the charged lepton phases than φ2. We see that the physical
Majorana phases have a dependence on the charged lepton phases, and thus the Majorana
phases which appear in the SR are in general not equal to the physical Majorana phases one
obtains in a model with a non-diagonal charged lepton mass matrix. For this reason, a SR
can get destroyed in this type of models.

To demonstrate how powerful our formalism is, we will now express these corrections in
terms of δŝ for the given example. On leading order we find that

φ
(0)
1 = 0, φ

(0)
2 = π , (3.16)

m1 = m
(0)
1 +O(δm2

1), m2 = m
(0)
2 +O(δm2

2), m3 = m
(0)
3 +O(δm2

3) . (3.17)

Note that the physical neutrino masses will only get corrected at the order O(δm2
i ). With

δm1 = −
√

3 +
√

5 θe12m
(0)
1 sin δe12 , (3.18)

δφ1 = −1

2

(
π +

√
3 +
√

5 θe12 sin δe12

)
, (3.19)

δm2 = −
√

3−
√

5 θe12m
(0)
2 sin δe12 , (3.20)

δφ2 = −1

2

(
π − θe12

√
3−
√

5 sin δe12

)
, (3.21)

δm3 = 0 , (3.22)

we get from eq. (2.8) normalised to md
1 in leading order in θe12

δŝ ≈ −i

√
3−
√

5m1 −
√

3 +
√

5m2

m2
θe12 sin δe12 , (3.23)

where we have used that mi ≈ m(0)
i in this approximation. With θe12 ≈ 12◦ and δe12 = π/2 we

obtain as maximal correction δŝ ≈ 0.36 and the correction vanishes for δe12 = 0.
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3.3 RGE-corrections

Finally, a very generic correction to the mass SR are renormalisation group effects on the
masses and Majorana phases. In [20], we have already investigated the effect of such most
generic corrections on the predictions of SRs. Now we want to match the corrections to the
complex masses from Eq. (2.3) to the corrections coming from the RGEs, as far as possible.
We therefore extract the RGE-corrections from the absolute values of the masses and from
the phases, and we rewrite the corrected complex masses as

mie
−iφi =

(
m

(0)
i +mRGE

i

)
ei(−φ(0)i +φRGE

i ) , (3.24)

where the superscript (0) denotes the LO masses and Majorana phases, and the superscript
RGE labels the corrections from the renormalisation group running. The connection to
Eq. (2.3) is

δmi =

√
(
mRGE
i

)2
+
(
m

(0)
i

)2 (
φRGE
i

)2
, (3.25)

δφi = −φ(0)
i + arctan

(
m

(0)
i φRGE

i

mRGE
i

)
. (3.26)

Note that the index i in Eq. (3.25) runs from 1 to 3, whereas i in Eq. (3.26) is either 1 or 2.
The explicit formulas for φRGE

i and δmRGE
i can be found in [45]. The RGE-corrections to the

phases and masses have a dependence on the mass scale and in the minimal supersymmetric
Standard Model (MSSM) additionally on tanβ. For large mass scales and large tanβ, the
effect of the corrections is enhanced. The β functions of the Majorana phases also depend
on the phases themselves which leads to a dependence of δmi and δφi on both leading-order
Majorana phases. The RGE-correction to the masses are always positive in the MSSM and

negative in the Standard Model (SM), and hence the sign of the contribution to φ
(0)
i in

Eq. (3.26) is fixed. Except for φ
(0)
1 ≈ φ

(0)
2 , where the running of the phases is suppressed,

the running of the Majorana phases is stronger than the running of the masses, since the β-
functions of the masses depend on the values of the masses themselves (see also the discussion

in [20]). For φ
(0)
1 6= φ

(0)
2 , the main contribution to δmi comes from the term m

(0)
i φRGE

i , and

the correction to φ
(0)
i is close to maximal (i.e. π/2) in Eq. (3.26).

In the next section we will discuss the effect of RGE corrections to various sum rules in
more detail.

4 Numerical results

In this section, we will present our numerical results. We will answer the non-trivial question
of whether it is possible to reconstitute forbidden mass orderings by corrections, since some
SRs allow for only one of the two mass orderings. Furthermore, we will present our numerical
results for the allowed ranges for the effective mass |mee| and for the lightest neutrino mass
eigenvalues m, which we obtain from the corrected SRs.

4.1 Reconstituting forbidden orderings

Some SRs only allow for one particular mass ordering [15–17], i.e., normal (m1 < m2 < m3)
or inverted (m3 < m1 < m2). The question might arise if we can reconstitute those forbidden

9



mass orderings by large enough corrections. In [20], we did a similar study concerning the
generic corrections arising from renormalisation group effects, where we concluded that this
was not possible.

For SRs 2, 3, 4, 5, 10, 12 from Tab. 2, only one mass ordering is allowed. Hence, we have
s 6= 0 for the forbidden orderings. In order to obtain s(0) = 0 we need the leading order masses
to respect the allowed ordering in these SRs and due to corrections the observed masses will
obey the forbidden ordering. In other words, the corrections to the masses have to alter the
mass ordering. In principle the ordering of the leading order masses is not restricted to be

normal or inverted, one can also imagine to have m
(0)
1 > m

(0)
3 > m

(0)
2 or other variations as

long as they fulfill the leading order SR. However, one would usually discard such cases, as
they apparently do not correspond to reality.

To be more precise we want to ask the question how large δŝ at least has to be, such that
s(0) = 0 is fulfilled and the mi follow the “forbidden” mass ordering. This can be done most
easily by considering again the geometrical interpretation of the SRs, as done in Fig. 1. We
see that a SR without corrections is fulfilled if the values of δsr = δsi = 0 (i.e., the triangle
closes). Now, on the other hand, it can happen that – for experimentally allowed values of
the neutrino masses – the triangle never closes. For this case we want to determine δŝ with
|δŝ| being minimal. Obviously |δŝ| is minimal for

δŝi = 0 , (4.1)

∆χ23 − dφ2 = π , (4.2)

dφ1 −∆χ13 = −π . (4.3)

Then |δŝ| = |δŝr| is minimal.
Plugging these expressions into the general formulas results into a rather long expres-

sions, and hence we prefer to discuss what happens for the concrete example of SR 2, where
(c1, c2, d,∆χ13,∆χ23) = (1, 2, 1, π, π), and we want to focus on inverted mass ordering for the
observed (corrected) masses. Since we have δŝi = 0, and the minimal value for δŝr corresponds
to the situation where the sides of the triangle lie on the baseline, which is

δŝr = 2− m3

m2
− m1

m2
. (4.4)

For three different exemplary mass scales (m3 = 0.0, 0.001, 0.05 eV), we obtain:

δŝr(m3 = 0 eV) = 1.02 , (4.5)

δŝr(m3 = 0.001 eV) = 1.00 , (4.6)

δŝr(m3 = 0.05 eV) = 0.30 . (4.7)

The corrections thus have to have at least this size to reconstitute inverted mass ordering.
In Tab. 3 we have calculated the minimal values of δŝr for different mass scales, for a large

mass scale, for a small mass scale and for a vanishing value of m for the SRs which allow for
only one mass ordering (SRs 2, 3, 4, 5, 10, 12). We see that, in principle, we can reconstitute
all forbidden orderings although we might need quite sizeable corrections. Especially for the
case of very small neutrino masses the corrections are so large that a perturbative approach
is not suitable anymore and it is simply not appropriate to talk of a neutrino mass SR at all.

Furthermore, the attentive reader might be surprised that we can suddenly reconstitute
all forbidden orderings which was in no case possible for the RGE-corrections only. We will

10



Sum rule forbidden ordering δŝr(m)
m = 0 eV m = 0.001 eV m = 0.05 eV

2 IO 1.02 1.00 0.30
3 IO 1.02 1.00 0.30
4 NO 0.92 0.90 0.30
5 NO 0.95 0.94 0.30
10 IO 1.01 0.87 0.16
12 IO 1 0.86 0.16

Table 3: Summary table of the SRs which allow only one mass ordering and the minimal
value of the correction δŝr that is needed to reconstitute the forbidden mass orderings for
different mass scales.

show now that this is due to the fact that the correction to the SR had in nearly all cases a
fixed sign pointing in the “wrong” direction, i.e., the RGE-corrections – although potentially
sizeable – tend to make the forbidden mass orderings even less likely than the LO-SRs. In
other words, instead of making the deviation of the SR smaller, RGE-corrections increased it.
Only for one case the sign mentioned above was in principle suitable, but for that particular
case the corrections were way too small. Thus, our previous conclusions remain perfectly
valid for the RGE-corrected case, however, as we will see, the general case actually can make
the otherwise forbidden orderings possible – as to be expected.

As an example we will consider SR 2 in Tab. 2, where we try to reconstitute inverted mass
ordering by RGE-corrections. In order to do so, we will analyse the corrections to the lengths
of the sides of the triangle. If these corrections are positive and large enough, they can close
the open triangle. The non-trivial lengths of the triangle in case of SR 2 are m1

m2
and m3

m2
. The

correction to the lengths is

δ

(
m1

m2

)
=
m1 +mRGE

1

m2 +mRGE
2

, (4.8)

with an analogous expression for δ
(
m3
m2

)
. The RGE-corrections for the masses are of the form

mRGE
i =

1

16π2

[
αRGEm

(0)
i + Fim

(0)
i

]
log

(
µ

MZ

)
, (4.9)

where αRGE ≈ 3 is a function which depends on the gauge and Yukawa couplings, µ > MZ is
the high energy scale and Fi is a function which depends on the angles and on tanβ in the
MSSM. In the MSSM we expect the largest effect for Fi > 0, whereas Fi < 0 holds in the
SM. We will focus on the MSSM case first. If we plug Eq. (4.9) into Eq. (4.8) and expand
in mRGE

i , we see that the terms ∝ αRGE drop out since αRGE is the same for all masses. We
obtain:

δ

(
m1

m2

)
=
m

(0)
1

m
(0)
2

(F1 − F2) , (4.10)

δ

(
m3

m2

)
=
m

(0)
3

m
(0)
2

(F3 − F2) . (4.11)

11



In the 3σ ranges for the mixing angles from Tab. 1, we have F1 − F2 < 0 and F3 − F2 > 0.
Hence the length m3

m2
increases whereas the length m1

m2
decreases. If m3

m2
increases more strongly

than m1
m2

decreases we can hope to close the triangle. But for SR 2 this is not the case since
m1
m2

decreases stronger than m3
m2

increases. We conclude that the RGE-corrections make the
deviation from the SR even larger. Hence the inverted ordering cannot be reconstituted.

This statement can be transferred to SRs 3 and 10, where we also have to normalise the
sides of the triangle by m2. Also in these cases the corrections to the lengths of the sides are
∝ (F1 − F2) and ∝ (F3 − F2). In case of SRs 4 and 5, the sides of the triangle have to be
normalised to m3. The corrections to the length of the sides are ∝ (F1−F2) and ∝ (F2−F3).
For the 3σ ranges of the mixing angles, F1 − F2 < 0 and F2 − F3 < 0. Hence the sides of the
triangle both decrease due to RGE-corrections. Also in these cases we cannot reconstitute
the forbidden orderings. Only in the case of SR 12 both sides of the triangle increase. In
SR 12, d < 0 and we have to normalise the sides by md

3 to reconstitute normal ordering. This
leads to terms ∝ (F3 − F1) and ∝ (F3 − F2) in the corrections to the lengths of the sides,
which are both positive. However, numerically we would need a mass scale larger than 1 eV
for tanβ = 200 to fulfil the sum rule, which is simply unrealistic.

In fact, for any SR that is not fulfilled with the low energy masses, the RGE effects in
the MSSM have the wrong sign if d > 0 for both orderings and if d < 0 for normal ordering.
In the SM, δŝ has the right sign to decrease the deviation from the SR but nevertheless the
effects are too small to fulfil the sum rule.

In conclusion the fixed sign of the RGE-corrections makes it barely possible to reconstitute
forbidden orderings. Only in the case of d < 0 for inverted ordering or in the SM case the
sign was suitable, but the effects are nevertheless too small. Since however any corrections
to the masses beyond those from RGEs do not have a fixed sign, it is nevertheless possible to
reconstitute forbidden orderings in the general case.

In the following section we want to confirm these estimates also numerically.

4.2 The effects on the lower bound of m

One major prediction of the SRs is the lower bound on the smallest neutrino mass eigenvalue
m. The question arises how this bound changes in the light of corrections to the SR.

To answer this question, we will consider – similarly as in the previous section – the case
where the sides of the triangle lie on the baseline, i.e., the case where the SR is just fulfilled.
This clearly leads to the lower bound on the lightest mass m. In Tab. 4 we have summarised

the results for the relative change of the mass scale in leading order in ζ ≡ ∆m2
21

|∆m2
32|
≈ 0.03.

The results are presented in the form

m

m(0)
= 1− κ δŝ , (4.12)

where κ is a parameter that depends on the SR and on the mass ordering.
For SRs 1 and 4 in IO, the effect of the correction is enhanced because of the small ζ in

the denominator. For the other SRs we find that the relative change is between 20% and 80%
for δŝ = 0.1 and 0.3. In the next section, we will verify these estimates numerically. The
enhancement of the effect of the corrections for the mass scale for SR 1 and SR 4, for IO in
both cases, is not visible when considering RGE-corrections only, because δŝ for a small mass
scale is very small.
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SR ordering κ

1
NO 4/3
IO 2/ζ ≈ 65.3

2 NO 9/8

3 NO 9/8

4 IO 4/ζ ≈ 130.6

5 IO 33+19
√

3
24 ≈ 2.75

6
NO 3

√
2/(27ζ) ≈ 1.34

IO 4/3

7 NO 4/3
IO 9/8

8
NO 4/3
IO 9/8

9
NO 4/3
IO 9/8

10 NO 81/40 ≈ 2.03

11
NO 512/175 ≈ 2.93
IO 243/65 ≈ 3.74

12 NO 2

Table 4: Estimates for the relative change of the lower bound of the lightest mass, where

ζ ≡ ∆m2
21

|∆m2
32|

. Please see main text for more details.
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In the case of SR 7 for NO, we additionally get a correction to the upper mass bound:

m

m(0)
= 1 +

4

3
δŝ , (4.13)

which is 1.4 for δŝ = 0.3. Furthermore we obtain for δŝ 6= 0 a new allowed mass region in
NO. To open up this region we need for the lightest neutrino mass m = (0.01, 0.05, 0.1) eV a
δŝ = (−0.31,−0.27,−0.10). These values are well within our scan regions.

In the case of RGE effects only we encountered a parametric enhancement for the RGE
effects for SR 1 and 4 in IO for a medium mass scale. This enhancement is not present
now because we parametrised the corrections differently, to avoid any artificial parametric
enhancement.

4.3 Neutrinoless double beta decay

Finally, our main predictions are those for the effective mass

|mee| =
∣∣m1U

2
e1 +m2U

2
e2 +m3U

2
e3

∣∣ =
∣∣∣m1c

2
12c

2
13e−iφ1 +m2s

2
12c

2
13e−iφ2 +m3s

2
13e−2iδ

∣∣∣ (4.14)

as probed in neutrinoless double beta decay, see, e.g., Refs. [46] for detailed discussions on
this quantity. We have, for each SR, numerically scanned the parameter space and we have
derived the allowed regions for both normal and inverted mass orderings, see Figs. 2 to 13.
For each SR, we have investigated the following three cases depending on the size of ŝ, as
defined in Eq. (2.9):

1. ŝ < 10−4 (left panels): This case basically means that the SR is taken to be exact. All
plots perfectly match the unperturbed SR predictions, as presented in Refs. [17, 20].

2. ŝ < 0.1 (middle panels): This corresponds to a considerable perturbation of each SR.
In particular, a correction of this size will reveal that, in cases where one mass ordering
is forbidden for an exact SR, this ordering will open up due to the corrections.

3. ŝ < 0.3 (right panels): Here, the SRs are even less exact. This case is more or less
the limiting case of what can be described by the approach followed in this work, given
that we ultimately rely on a perturbative expansion. This case should in particular
include the RGE-corrections, as discussed in Ref. [20], as long as they can be described
accurately as small perturbations.

Let us discuss the results for the different SRs one by one, with a particular focus on how
the allowed regions for the perturbed SRs compare to those derived from the RGE-corrected
SRs (cf. Ref. [20], in which reference Sec. 4.X always contains the plots and the discussion on
SR X). The parameters for the respective SRs can be read off from Tab. 2.

Starting with SR 1 in Fig. 2, it is immediately visible from the left panel that, indeed, a
very small deviation from an exact SR, ŝ < 10−4, practically does not change the prediction
compared to that of the exact SR. This observation will hold true for all SRs, as to be expected.
If we increase ŝ, it is visible that, for NO, the allowed regions visibly increase. In particular,
the lowest allowed value for m evolves as (0.027, 0.023, 0.017) eV for ŝ < (10−4, 0.1, 0.3),
while at the same time the lowest possible value for the effective mass |mee| changes as
(0.025, 0.022, 0.016) eV. In particular, with increasing ŝ, the allowed range for the effective
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Figure 2: Effective mass with SR 1 for ŝ = 10−4, 0.1, 0.3.

mass becomes even slightly larger than if only RGE-corrections were included (cf. Sec. 4.1 in
Ref. [20]), where the minimal value for the effective mass would be at 0.026 eV.

For IO, in turn, while the allowed region also increased with increasing ŝ, the main differ-
ence is that the area does not grow sufficiently large as to cover the complete allowed region
obtained when taking into account RGE-corrections. As already hinted, this is a reflection
of the RGE-corrections not always staying within the perturbative range for ŝ, which is what
we are considering in this work.

As shown in [20], we encounter a parametric enhancement for the RGE effects for a small
mass scale, because the correction is proportional to the inverse mass scale. Since we avoid
parametric enhancements of the corrections in our parametrisation from Eqs. (2.6) to (2.8) we
do not obtain the same result as in [20]. Nevertheless, given that even with RGE-corrections
the change in the prediction was less than dramatic, in particular when taking into account
the nuclear uncertainties, we can again conclude that the predictions of the SRs are relatively
robust compared to corrections.

Let us press on and jump to SR 2, see Fig. 3. Starting with NO, the qualitative change
with increasing ŝ is similar to that with increasingly strong RGE-corrections, however, the
allowed regions are different (and possibly slightly larger for the RGE-corrections). For ŝ <
(10−4, 0.1, 0.3), the lowest m evolves as (0.015, 0.013, 0.009) eV and the lower bound on the
effective mass |mee| as (0.014, 0.012, 0.008) eV (compared to 0.016 eV and 0.015 eV for the
RGE-corrections). For IO, something interesting happens. As visible from the left panel of
Fig. 3, this mass ordering is not allowed for an exact SR. As noted in Sec. 4.1, this behaviour
remained true for the RGE-corrections. However, with a more general correction to the SR,
as implied by an approximate SR, the IO starts opening up. While it is hardly visible for
ŝ < 0.1, it is easy to spot for ŝ < 0.3. However, while the otherwise forbidden ordering does
in principle open up, the resulting predicted region unfortunately lies in the part of the plot
that is in any case strongly disfavoured by cosmology, cf. grey rectangle on the right in the
plots. Thus, in essence, the prediction of IO being forbidden does not change.

Similarly to the previous case, for SR 3 the allowed area for NO also broadens, while
for IO a small regions opens up which is however strongly disfavoured, cf. Fig. 4. How-
ever, the difference is that, for large enough ŝ, the allowed region for NO may enter the
“tube” in which cancellations inside |mee| to practically zero are possible. This implies that,
for ŝ < (10−4, 0.1, 0.3), while the smallest neutrino mass eigenvalue m is only reduced as
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Figure 3: Effective mass with SR 2 for ŝ = 10−4, 0.1, 0.3.
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Figure 4: Effective mass with SR 3 for ŝ = 10−4, 0.1, 0.3.

(0.015, 0.013, 0.009) eV, the minimum value of the effective mass |mee| changes more dra-
matically, (0.0030, 0.0020, 0.00029) eV, compared to a considerably larger lowest value of
0.0036 eV for RGE-corrections only.

For SR 4, cf. Fig. 5, no dramatic changes are visible. The allowed region is a bit broader for
strong RGE-corrections, but the minimal value of the effective mass is in any case 0.015 eV,
the lowest value at all possible for IO. The minimal value for the smallest neutrino mass
eigenvalue m decreases more strongly than for RGE-corrections only, however, such small
values are in any case not accessible by experiments. For NO, a small area opens up which is
allowed by the SR as such, but again it is located in the disfavoured region of the plot.

Sum rule 5 exhibits once more the characteristic behaviour, see Fig. 6. For IO, the
allowed region broadens even more strongly than for RGE-corrections only, leading to a
smallest neutrino mass m of (0.024, 0.020, 0.012) eV and a minimum effective mass |mee| of
(0.051, 0.050, 0.047) eV for ŝ < (10−4, 0.1, 0.3). For NO, the small region opening up is again
disfavoured.

Sum rule 6 – see Fig. 7 – looks similar to SR 5 for IO and to SR 3 for NO, in both cases fully
including the regions predicted by the RGE-corrections. For ŝ < (10−4, 0.1, 0.3), the smallest
neutrino mass m and the minimum effective mass |mee| change as (0.028, 0.025, 0.020) eV and
(0.053, 0.051, 0.045) eV, respectively, for IO. The corresponding values for NO are, in turn,
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Figure 5: Effective mass with SR 4 for ŝ = 10−4, 0.1, 0.3.
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Figure 6: Effective mass with SR 5 for ŝ = 10−4, 0.1, 0.3.
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Figure 7: Effective mass with SR 6 for ŝ = 10−4, 0.1, 0.3.
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Figure 8: Effective mass with SR 7 for ŝ = 10−4, 0.1, 0.3.

(0.011, 0.0090, 0.0061) eV and (0.0011, 0.00031, 3.5 · 10−12) eV, where the latter value simply
indicates that a full cancellation of the effective mass can happen.

Figs. 8 and 9 look nearly identical and quite interesting, too, as several changes happen.
Starting with IO, the allowed region again broadens, however, while a new edgy corner had
appeared for the RGE-corrections, see Sec. 4.7 for SR 7 in Ref. [20], in the case of approximate
SRs the band simply broadens. The lowest value possible for the effective mass quickly
reaches its absolute minimum and then cannot change any more, (0.017, 0.015, 0.015) eV for
ŝ < (10−4, 0.1, 0.3), while the smallest neutrino mass m varies as (0.017, 0.015, 0.012) eV.

For NO, in turn, the changes are more dramatic. First of all, the allowed patch consid-
erably grows for ŝ < (10−4, 0.1, 0.3), such that the minimum [maximum] mass eigenvalue m
varies as (0.0043, 0.0040, 0.0040) eV [(0.0060, 0.0071, 0.010) eV], while the minimum [maxi-
mum] effective mass changes as (0.0043, 0.0040, 0.0039) eV [(0.0087, 0.0073, 0.012) eV]. Fur-
thermore, for large enough mass m, a second (disjoint) allowed region opens up for NO in the
quasi-degenerate mass region for ŝ < (0.1, 0.3). However, again this new addition is located
in that part of the parameter space that is strongly disfavoured by cosmology.

Sum rule 9, cf. Fig. 10, did hardly change at all for RGE-corrections only. And also
for approximate SRs, hardly any significant change is visible for IO. Already for the ex-
act SR, the entire range is allowed for |mee|, while the smallest mass m changes slightly,
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Figure 9: Effective mass with SR 8 for ŝ = 10−4, 0.1, 0.3.
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Figure 10: Effective mass with SR 9 for ŝ = 10−4, 0.1, 0.3.

(0.017, 0.015, 0.012) eV, for ŝ < (10−4, 0.1, 0.3). However, for NO, where the ranges for m
change as (0.0043...0.0060, 0.0040...0.0071, 0.0040...0.010) eV, while the ones for |mee| evolve
as (0.0027...0.0067, 0.0022...0.0073, 0.0017...0.0095) eV. Again, for NO, a small region opens
up for large masses which are, however, disfavoured.

Coming to SR 10, the change in NO looks more dramatic than it actually is, given that
in all cases the full range for the effective mass is allowed. Also the smallest neutrino mass
m is always below detectability. However, for IO – which looks rather innocent at first sight
– a small region opens up that can actually be detectable! While IO is completely forbidden
for ŝ = 10−4 and only opens up in the disfavoured region for ŝ = 0.1, for the largest value
of ŝ = 0.3 the IO points start to penetrate the allowed region, predicting smallest values of
(m, |mee|) = (0.031, 0.054) eV.

For SR 11 both the NO and IO allowed band broaden to some extend for increasing ŝ,
see Fig. 12, and in particular they broaden more than if only the RGE-corrections were taken
into account. For IO, the smallest value of m [of |mee|] varies as (0.024, 0.021, 0.016) eV
[as (0.044, 0.039, 0.031) eV] for ŝ < (10−4, 0.1, 0.3). For NO, the smallest value of m varies
as (0.031, 0.029, 0.023) eV, while that of |mee| varies as (0.022, 0.017, 0.013) eV. As a com-
parison, the minimum values for (m, |mee|) have been determined to be (0.024, 0.042) eV
[(0.032, 0.021) eV] for IO [NO], cf. Sec. 4.11 in Ref. [20].
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Figure 11: Effective mass with SR 10 for ŝ = 10−4, 0.1, 0.3.

��-� ����� ����� ����� �
��-�

�����

�����

�����

�

� [��]

|�
��
|
[�
�
]

�
��
��
��
��
��
��
�
��
�
��
��
�

����������� �� �νββ

Δ���
� < �

Δ���
� > �

����
� �σ

��-������
����

��� ���� ��� � < ��-�

��-� ����� ����� ����� �
��-�

�����

�����

�����

�

� [��]

|�
��
|
[�
�
]

�
��
��
��
��
��
��
�
��
�
��
��
�

����������� �� �νββ

Δ���
� < �

Δ���
� > �

����
� �σ

��-������
����

��� ���� ��� � < ���

��-� ����� ����� ����� �
��-�

�����

�����

�����

�

� [��]

|�
��
|
[�
�
]

�
��
��
��
��
��
��
�
��
�
��
��
�

����������� �� �νββ

Δ���
� < �

Δ���
� > �

����
� �σ

��-������
����

��� ���� ��� � < ���

Figure 12: Effective mass with SR 11 for ŝ = 10−4, 0.1, 0.3.
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Figure 13: Effective mass with SR 12 for ŝ = 10−4, 0.1, 0.3.

Finally, for SR 12, the broadening for NO appears to be much stronger than in the case
where only RGE-corrections are taken into account. For ŝ < (10−4, 0.1, 0.3), the smallest
value for of m [of |mee|] varies as (0.0026, 0.0021, 0.0012) eV [as (0.0029, 0.0025, 0.0014) eV] in
the case of NO. For IO, again a small region opens up for larger ŝ, but only in the disfavoured
region.

5 Summary and conclusions

In this paper, we have used a perturbative approach to investigate how the predictions of neu-
trino mass sum rules change if the sum rules are not exact relations, but rather approximate
to a given degree. After establishing a formalism to treat corrections to an exact sum rule,
we show that the perturbations can be linked to the geometrical image of a “non-perfect” tri-
angle. This illustration makes it relatively easy to understand the generality of our approach,
as long as the corrections are small enough to be covered by a perturbative computation.

We then discuss several scenarios in which corrections to an exact sum rule can poten-
tially arise. The three most generic frameworks are higher-order terms resulting from flavour
symmetry breaking, corrections to the light neutrino masses arising from the charged lepton
sector, and modifications of sum rules due to renormalisation group running. We have for
each approach presented several analytic approximations, which serve as analytic estimates
to be compared to the numerical computations.

The latter are our main results. We have, for each of the known mass sum rules, in-
vestigated the effect of perturbations to the exact formulas. As to be expected, as long as
the correction terms are very small we basically recover the result obtained from an exact
sum rule. However, as we turn on the perturbations, we can see that the allowed regions
are modified. The first type of modification is a simple increase of the allowed area in the
parameter space. This is to be expected, since suddenly more parameter combinations are
allowed, but in fact these broadenings are rather mild for most of the cases (at least so long
as we stay in the perturbative regime). On the other hand, in several cases, qualitatively
new predictions arise: depending on the sum rule, the exact formulas may forbid one of the
neutrino mass orderings, which can be restored in the perturbed case. This could strongly
alter the predictions, however, it turns out that in most cases (except for SR 10) the newly
allowed regions are not very big and practically excluded by the cosmological bounds on the
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neutrino mass. Finally, an interesting result is that the predictions for approximate sum rules
do in many cases not cover the regions which had been derived by us in an earlier work on
the corrections from renormalisation group running. While this result may seem to come as
a surprise at first sight, it is in fact easy to understand, since in some cases the corrections
induced by running due to some parametric enhancement are larger than a 30% correction,
so that they are not covered by our formalism.

Summing up, we have treated the topic of neutrino mass sum rules in unprecedented
generality, to the point that we may have delivered the final step to what at all can be said
about neutrino mass sum rules on the phenomenological side. Using this work as well as
previous ones, any model predicting a new sum rule can be analysed to the point that it can
clearly be matched to the experimental results. We thus pass the ball to the experimentalists,
which will hopefully be able to deliver further new bounds which allow us to constrain whole
groups of flavour models in a reliable manner. This can push our understanding of the leptonic
flavour sector to a new level.
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A Notes on parametrisations and phases

In this appendix we want to give a comprehensive derivation of the relations between the
mixing parameters in the PMNS matrix and the neutrino and charged lepton mixing param-
eters.

First of all we parametrise the relevant matrices as unitary 3×3 matrices by 3 angles and
6 phases. One possible parametrisation is [50]:

U = P1U23U13U12, (A.1)

where the Uij are

U23 =




1 0 0
0 c23 s23e−iδ23

0 −s23eiδ23 c23


 , (A.2)

and analogous expressions for U12 and U13. We use the usual abbreviations cij ≡ cos θij and
sij ≡ sin θij . The matrix P1 is a diagonal matrix which only contains phases:

P1 =




eiω1 0 0
0 eiω2 0
0 0 eiω3


 . (A.3)
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The phase matrix P1 can be removed by an additional charged lepton phase rotation to make
the charged lepton masses real [50]. Hence we are left with only three phases δij and

U = U23U13U12 . (A.4)

In the standard parametrisation of the PMNS matrix which contains the Dirac phases
and the two Majorana phases we will also introduce an unphysical phase matrix P2, which
can be removed by a charged lepton phase rotation as

P2 =




eiη1 0 0
0 eiη2 0
0 0 eiη3


 . (A.5)

in the combination

P2R23U13R12P0 . (A.6)

Where δ13 in U13 is replaced with the Dirac phase δ and P0 contains the Majorana phases:

P0 =




e−iφ1/2 0 0

0 e−iφ2/2 0
0 0 1


 . (A.7)

Rij are the Euler matrices which are of the form of Eq. (A.2) but without any phases. The
relation between the δij in Eq. (A.1) and the phases in the matrix P0 is [50]:

φ1 = −2(δ12 + δ23) , (A.8)

φ2 = −2δ23 , (A.9)

δ = δ13 − δ23 − δ12 . (A.10)

Replacing the δij in Eq. (A.1) with Eqs. (A.8, A.9, A.10) leads to

P1U23U13U12 =︸︷︷︸
Eqs. (A.8,A.9,A.10)

P2R23U13R12P0 . (A.11)

By comparing both sides of the equation we see that the phases in P1 are related to the phases
in P2 as

ω1 = η1 −
φ1

2
, (A.12)

ω2 = η2 −
φ2

2
, (A.13)

ω3 = η3 . (A.14)

In the following we will use the parametrisation in Eq. (A.1) for the mixing matrix of the
neutrinos and the charged leptons. For the PMNS matrix we will replace the ωi in Eq. (A.1)
by Eqs. (A.12, A.13, A.14).

Our aim is to obtain expressions for the physical phases in the PMNS matrix (the Majorana
phases and the Dirac phase) in terms of the neutrino and charged lepton mixing parameters.
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We therefore use the relation UPMNS = U †eUν . From the elements in the first row the PMNS
matrix we obtain:

cPMNS
13 cPMNS

12 ei(η1−φ1/2) = ce12c
ν
12c

e
13c

ν
13e−i(ωe1−ων1 ) + e−i(δe12+δe13+δe23+ωe3−ων3 )

(ei(δe12+δe23)θe13c
e
12 − eiδe13θe23s

e
12)(eiδν13cν12c

ν
23s

ν
13 − ei(δe12+δν23)sν12s

ν
23)

+ e−i(δe12+δν23+ωe2−ων2 )se12(ei(δν12+δν23)cν23s
ν
12 + eiδν13cν12s

ν
13s

ν
23, (A.15)

sPMNS
12 cPMNS

13 ei(η1−φ2/2) = e−i(δe12+δν12+δe13+δe23+δν23+ωe1+ωe2+ωe3)(ei(δν12+δν23+ωe1)cν12

(−ei(δe13+δe23+ων2+ωe3)cν23s
e
12 + ei(δe12+δe23+δν23+ωe2+ων3 )θe13c

e
12s

ν
23

− ei(δe13+δν23+ωe2+ων3 )θe23s
e
12s

ν
23 + sν12(ei(δe12+δe13+δe23+δν23+ων1+ωe2ω

e
3)ce12c

ν
13

+ ei(δe13+δν13+δν23+ωe1+ωe2+ων3 )θe13c
e
12c

ν
23s

ν
13

− ei(δe13+δν13+δν23+ωe1+ωe2+ων3 )θe23c
ν
23s

e
12s

ν
13

+ ei(δe13+δν13+δe23+ωe1+ων2+ωe3)se12s
ν
13s

ν
23)), (A.16)

sPMNS
13 ei(η1−δ) = e−i(δe12+δe13+δν13+δe23+δν23+ωe1+ωe2+ωe3)

(−ei(δe12+δν13+δe23+δν23+ωe1+ωe2+ων3 )θe13c
e
12c

ν
13c

ν
23

+ ei(δe13+δν13+δν23+ωe1+ωe2+ων3 )θe23c
ν
13c

ν
23s

e
12

+ ei(δe12+δe13+δe23+δν23+ων1+ωe2+ωe3)ce12s
ν
13

− ei(δe13+δν13+δe23+ωe1+ων2+ωe3)cν13s
e
12s

ν
23) . (A.17)

These expressions are exact to leading order in θe13 and θe23. If we exploit the structure of the
PMNS matrix we furthermore obtain:

cPMNS
12

(
cPMNS

13

)2
cPMNS

23 sPMNS
13

(
sPMNS

12 sPMNS
23 e−iδ − cPMNS

12 cPMNS
23 sPMNS

13

)
=

(
UPMNS

11

)∗
UPMNS

13 UPMNS
31

(
UPMNS

33

)∗
. (A.18)

Together with Eqs. (A.15, A.16, A.17, A.18) we obtain equations for δ, η1, and for the
Majorana phases. The mixing angles in Eq. (A.18) can be expressed in terms of the leptonic
mixing parameters using Eqs. (A.15, A.16, A.17).

As a concrete example to employ the formalism to derive the expressions for the Majorana
phases, we consider the A5 × SU(5) model proposed in [23, 47, 48]. We have θe13 ≈ 0, θe23 ≈
0, θe12 6= 0 and in the neutrino sector we have Golden Ratio mixing with θν13 = 0, θν23 = 45◦

and θν12 = arctan
(

2
1+
√

5

)
. Since θe13 and θe23 are negligibly small, we will set their values to

zero in the following. The phase δe12 in the charged lepton sector will be treated as a free
parameter. For simplicity, we take the neutrino mass matrix to be real. The phases in the
neutrino sector which lead to positive eigenvalues are then:

ων1 = π/2, ων2 = π, ων3 = π/2, δν12 = 3π/2, δν23 = 3π/2. (A.19)

With these parameters we obtain for Eqs. (A.15, A.16, A.17, A.18,) to first order in θe12:

cPMNS
12 ei(η1−φ1/2) ≈ eiπ/2(

√
3 +
√

5 + θe12e−iδe12)√
5 +
√

5
, (A.20)

sPMNS
12 ei(η1−φ2/2) ≈ − 2√

10 + 2
√

5
+

θe12e−iδe12
√

5−
√

5
, (A.21)
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θPMNS
13 ei(η1−δ) ≈ eiπ/2θe12e−iδe12

√
2

, (A.22)

sPMNS
12 sPMNS

23 e−iδ ≈ −
√

2(15 + 7
√

5)e−iδe12 + (5 + 2
√

5)θe12e−2iδe12 + (20 + 9
√

5)θe12

4(5 + 2
√

5)3/2
. (A.23)

One might wonder if it is possible to take the limit θe12 → 0 in Eq. (A.22) and to obtain a
sensible result. This is not possible since a diagonal charged lepton mass matrix corresponds
to θPMNS

13 = 0 where δ is unphysical and in the derivation of Eq. (A.22) from Eq. (A.10) we
have to divide by θPMNS

13 . For a non-diagonal charged lepton mass matrix we obtain for δ

δ ≈ π + δe12 +
θe12 sin(δe12)√

2
. (A.24)

We can easily obtain that η1 is

η1 ≈ −
π

2
+

1√
2
θe12 sin(δe12) . (A.25)

Finally we get

φ1 ≈
√

3 +
√

5θe12 sin(δe12) , (A.26)

φ2 ≈ π −
√

5− 1√
2

θe12 sin(δe12) . (A.27)

One might wonder if it is necessary to include the unphysical phases in order to derive the
expressions for Majorana phases. Indeed, the correct consideration of the unphysical phases
is essential since taking the ωi in Eq. (A.1) to zero which corresponds to ηi = φi/2 for i = 1, 2
changes the matrix element from which we extract the Majorana phases. For example, to
obtain information about φ2, we consider the 1-2 element if we include the unphysical phases
but if we neglect the unphysical phases we would have to consider the 2-3 element of the
PMNS matrix. The dependence of these elements on the charged lepton mixing parameters
differs in general. Even in the case of only a 1-2 mixing in the charged lepton we would miss
the correct θe12 dependence of φ2 without the unphysical phases.

The formulas derived in [49–51] assume that the unphysical phases have been already
correctly taken into account. The reader has to be aware that these formulas therefore
strictly apply to this case only.

A phase matrix on the left side of the PMNS matrix can always be absorbed by an
additional charged lepton phase rotation. For this reason, the phases ηi do not appear in
physical observables.
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