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Direct, resonant production of the charmonium states χc1 and χc2 in electron-positron annihila-
tion is investigated. Depending on details of the model, a sizeable variation of the prediction for
the production cross section is anticipated. It is demonstrated that resonant production could be
observed under favorable circumstances.

PACS numbers: 13.66.Bc, 13.40.Gp

I. INTRODUCTION

The exclusive production of narrow resonances in
electron-positron annihilation has been up to now ob-
served for states with the quantum numbers of the vir-
tual photon, JPC = 1−−, only. In principle axial vector
resonances with JPC = 1++ can be produced directly
through two distinctly different mechanisms: either elec-
tromagnetically through two virtual photons or through
the neutral current. The tensor state with JPC = 2++,
in contrast, can be produced through the electromagnetic
process only. In practice, however, the rates are tiny at
low energies and up to now only resonant production of
hadrons with JPC = 1−− has been observed experimen-
tally. Nevertheless, already quite early the production of
1++ and 2++ states has been suggested, either through
the neutral current [1] or through two virtual photons
[1, 2], with emphasis on charmonium resonances. In view
of the small resonance enhancement, which is below or at
most at the percent level, no experimental attempt has
been made up to now to verify the predictions. How-
ever, with the advent of e+e− colliders with extremely
high luminosity like BESIII, the picture has changed and
this possibility has gained renewed interest [3–5]. It now
seems that resonant production of χc1 and χc2 might
eventually be accessible by experiments. The signal could
be observed either in a resonant excess of the hadronic
cross section e+e− → χcJ → hadrons or, alternatively,
of the cross section e+e− → χcJ → J/ψ + γ with subse-
quent decay J/ψ → µ+µ−. Note, that the interference
with the continuum cross section e+e− → J/ψ+γ, which
is the result of obvious radiative corrections, might play
an important role in this connection.

It is the purpose of this paper to investigate these pos-
sibilities in detail. We will first evaluate the resonant
electromagnetic cross section both for the JPC = 1++

and the JPC = 2++ state, including the influence of
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FIG. 1: Diagrams for the cross section for the process e+e− →
χcJ → γJ/ψ(→ µ+µ−).

interference with continuum reaction (Figure 1), recall-
ing and extending earlier results [1–5]. Two different fi-
nal states will be considered: the hadronic cross section
from the resonant reaction e+e− → χcJ → hadrons, and
the lepton plus photon state e+e− → χcJ → γJ/ψ(→
µ+µ−) together with its interference with the continuum
e+e− → γJ/ψ(→ µ+µ−). Of course the e+e− energy
has to be chosen equal to the mass of χc1 or χc2 and the
photon energy has to be chosen in the proper kinematic
region.

II. RESONANT χcJ PRODUCTION

A. Short distance approximation

Let us in a first step recall the results from [2, 5] on
resonant χcJ production, using as a rough approximation
the short distance expansion as discussed in [2]. The
coupling to two virtual photons is given by

Aαβ0 (p1, p2)ǫ
1
αǫ

2
β =

√

1

6
c

2

Mχc0

{[(ǫ1ǫ2)(p1p2)

−(ǫ1p2)(ǫ2p1)][M
2
χc0

+ (p1p2)]

+(ǫ1p2)(ǫ2p2)p
2
1 + (ǫ1p1)(ǫ2p1)p

2
2

−(ǫ1ǫ2)p
2
1p

2
2 − (ǫ1p1)(ǫ2p2)p1p2},

(1)

Aαβ1 (p1, p2, ǫ)ǫ
1
αǫ

2
β = ic{p21(ǫ, ǫ1, ǫ2, p2) + p22(ǫ, ǫ2, ǫ1, p1)

+ǫ1p1(ǫ, ǫ2, p1, p2) + ǫ2p2(ǫ, ǫ1, p2, p1)},
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(2)

Aαβ2 (p1, p2, ǫ)ǫ
1
αǫ

2
β =

√
2cMχc2

{(p1p2)ǫ1µǫ2ν
+ p1µp2ν(ǫ1ǫ2)

− p1µǫ
2
ν(ǫ1p2))− p2µǫ

1
ν(ǫ2p1))}ǫµν ,

(3)

where

c ≡ c((p1 + p2)
2, p21, p

2
2,m)

=
16παa√

m

1

((p1 − p2)2/4−m2 + iǫ)2
,

(4)

with m the effective charm quark mass in χci , a =
√

1
4π3Q

2φ′(0), φ′(0) the derivative of the wave function

at the origin and Q = 2/3 the charm quark electric
charge. p21, p

2
2, ǫ1, ǫ2 are the squares of the momenta

and the polarization vectors of the photons and ǫ is the
polarization vector in case of χc1 and the polarization
tensor in case of χc2 . We have checked that terms in the
amplitudes, which are proportional to the binding ener-
gies and neglected in [2], are breaking gauge invariance.
Thus the results, Eqs.(1-3), do contain all the allowed
binding energy corrections. Using this form of the photon
resonance coupling, the amplitude for electron-positron
annihilation is given by a loop integral and can be cast
into the form:

A(e+e− →3 PJ ) = ie2
∫

dp1
(2π)4

v̄(l+)γν 6 hγµu(l−)(5)

1

h2
1

p21

1

p22
AµνJ (p1, p2, ǫ),

with h = l− − p1. Since we neglect the electron mass
throughout, the amplitudes are given by

A(e+e− →3 P0) = 0, (6)

A(e+e− →3 P1) = g1v̄γ5/ǫu, (7)

A(e+e− →3 P2) = g2v̄γ
µuǫµν(l

ν
+ − lν−)/Mχc2

. (8)

As shown in [5] the mass corrections are completely neg-
ligible for electrons. For the coefficients characterizing
the amplitudes one finds [2]

g1 = −α
2
√
2

M
5/2
χc1

32a log
2b1
Mχc1

, (9)

g2 =
α2

M
5/2
χc2

64a[log
2b2
Mχc2

+
1

3
(iπ + log 2− 1)],

(10)

with binding energy defined as bi = 2m − Mχci
. No-

tice that the definition of a in [2] is different by a factor√
3mQ2 from the definition used here. The electronic

widths are given by

Γ(3P1 → e+e−) =
1

3

|g1|2
4π

Mχc1
, (11)

Γ(3P2 → e+e−) =
1

5

|g2|2
8π

Mχc2
. (12)

Note that the result for J = 2 differs from the one of [2]
by a factor 2. Furthermore the factor 3Q4

i has been taken
into account in the definition of a. The numerical results
are expected to depend significantly on the precise value
of the charmed quark mass and the relative size of the
absorptive part. For negative value of b the amplitudes
develops a sizeable absorptive part which subsequently
simulates the contribution from the intermediate state
J/ψ + γ.

B. Binding energy corrections

In the next step we include binding energy corrections
into the result. We thus include terms of order 1−x with
x = 4m2

M2
χci

. The decay rates are now given by:

Γ(χc1 → e+e−) =
1

3

|g1γγ |2
4π

Mχc1
, (13)

Γ(χc2 → e+e−) =
1

5

|g2γγ |2
8π

Mχc2
. (14)

with the coupling g1γγ and g2γγ given by

g1γγ =
16α2a√
mM2

χc1

[

log

(

x

1 + x

)

(1− x)

−
(

log

(

x

1− x

)

+ iπ

)

(1 + x)

]

, (15)

g2γγ =
32

√
2α2a

3
√
mM2

χc2

[

(

1 + x

2
+

8

(1 + x)2

)

log(1 − x)

+
3

2
(1 + x) log(1 + x)− 2

(

1 + x+
2

(1 + x)2

)

log(x)

− 8

(1 + x)2
log(2)− 1− iπ

2

(

1 + x+
8

(1 + x)2

)

]

.

(16)

Of course, in the limit x → 1 the results from equations
(9) and (10) are recovered. Leading order approximation
and exact results for positive and negative binding energy
are given in Table I, where we have used a typical value
of 0.1GeV 5 for |φ‘(0)|2.

C. Short and Long distance combined

Although the model discussed in the previous section
exhibits the correct leading logarithmic behavior of the
photon-photon -χci coupling, the non-enhanced terms
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Γ(χc1 → e+e−) Γ(χc2 → e+e−)

b = 0.5 GeV

Leading term 0.0226 eV 0.0243 eV

exact result 0.0317 eV 0.0159 eV

b = −0.5 GeV

Leading term 0.164 eV 0.0512 eV

exact result 0.141 eV 0.0731 eV

TABLE I: Electronic widths for b = −0.5GeV and b =
0.5GeV

are of comparable size, potentially even larger than the
formally dominant ones. For this reason we formulate an
ansatz which gives the correct behavior for the coupling
of χc2 to two photons and for the coupling of both χc1
and χc2 to J/ψγ. We start from the following ansatz (see
Figs. 2, 3):

Aαβ1γγ(p1, p2, ǫ)ǫ
1
αǫ

2
β

∣

∣

∣

∣

p2
1
=p2

2
=0

= 0, (17)

Aαβ1γJ/ψ(p1, p2, ǫ)ǫ
1
αǫ

2
β

∣

∣

∣

∣

p2
1
=0, p2

2
=M2

J/ψ

= ic1J/ψ

{

p22(ǫ, ǫ2, ǫ1, p1)

+ǫ1p1(ǫ, ǫ2, p1, p2)

+ǫ2p2(ǫ, ǫ1, p2, p1)
}

,

(18)

Aαβ2γγ(p1, p2, ǫ)ǫ
1
αǫ

2
β

∣

∣

∣

∣

p2
1
=p2

2
=0

=
√
2c2γMχc2

{

(p1p2)ǫ
1
µǫ

2
ν

+ p1µp2ν(ǫ1ǫ2)

− p1µǫ
2
ν(ǫ1p2))− p2µǫ

1
ν(ǫ2p1))

}

ǫµν ,

(19)

Aαβ2γJ/ψ(p1, p2, ǫ)ǫ
1
αǫ

2
β

∣

∣

∣

∣

p2
1
=0, p2

2
=M2

J/ψ

=
√
2c2J/ψMχc2

{

(p1p2)ǫ
1
µǫ

2
ν

+ p1µp2ν(ǫ1ǫ2)

−p1µǫ2ν(ǫ1p2))− p2µǫ
1
ν(ǫ2p1))

}

ǫµν ,

(20)

where, in the case of the amplitudes Aiγγ , p1 and p2 are
the momenta of photons, ǫ1 and ǫ2 are their polariza-
tion vectors. In the case of the amplitudes AiγJ/ψ, p1 is
the photon momentum, ǫ1 its polarization vector, p2 is
the J/ψ momentum and ǫ2 its polarization vector. The
function cγ is the χci − γγ form factor, whereas cJ/ψ is
the χci − γJ/ψ form factor. These form factors have the
following forms:

ciγ ≡ (1 +
f · aJ
aM2

J/ψ

)c(M2
χci
, 0, 0,m) =

cγ = 4e2√
m
(a+ faJ

M2

J/ψ

) 1
(M2

χ/2+b
2/4+bMχ/2)2

+
χc

J/ψ
χc

FIG. 2: Diagrams for decay widths Γ(χc0,1,2 → γγ).

cJ/ψ = 4eaJ√
m

1
(M2

χ/2+b
2/4+bMχ/2−M2

J/ψ
/2)2

J/ψ
χc

FIG. 3: Diagrams for decay widths Γ(χc0,1,2 → γJ/ψ).

16πα√
m

(a+
faJ
M2
J/ψ

)

1
(

M2
χci
/2 + b2i /4 + biMχci

/2
)2 , (21)

ciJ/ψ ≡ aJ
ae
c(M2

χci
, 0,M2

J/ψ,m) =

4eaJ√
m

1
(

M2
χci
/2 + b2i /4 + biMχci

/2−M2
J/ψ/2

)2 .

(22)

The coupling aJ in our model is a free parameter. With
this ansatz one obtains

Γ(χc1 → J/Ψγ) =

1

96π
|c1J/ψ|2M2

J/ΨM
3
χc1

(1 + x1)(1 − x1)
3, (23)

Γ(χc2 → γγ) =
1

160π
|c2γ |2M5

χc2
, (24)

Γ(χc2 → J/Ψγ) =

1

80π
|c2J/ψ|2M5

χc2
(1− x2)

3(1 + x2/2 + x22/6), (25)

where xi = M2
J/Ψ/M

2
χci

and ciγ , c
i
J/ψ are defined in Eq.

(21) and (22). The parameter a has been defined after
Eq.(4). The constant f has been extracted from the elec-
tronic width of J/ψ calculated according to the diagram
from Fig. 4 and has the following form:

f =

√

3ΓJ/ψ→e+e−M
3
J/ψ

4πα2
. (26)
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e+
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ef

i
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FIG. 4: Diagram for decay width Γ(J/ψ → e+e−) .

The Rpeak value at the peak of the cross section is
given by [6]

Rpeak =
σ
(0)
res

σpt
=

Γee
∆

9

4α2

√
2M

Γhad
Γtot

NZ (27)

where Γee,Γhad and Γtot denote the width of the reso-
nance into e+e−, into hadrons and the total width, re-
spectively. ∆ stands for the machine energy resolution
and NZ is slightly model dependent factor around 0.7.
Taking for illustration values for Γee between 0.1 eV and
0.5 eV, Γhad/Γtot = 0.66 and ∆ = 4MeV , one finds Rpeak
between 2.15·10−3 and 1.075·10−2.
Alternatively, one may focus on the decay channel

e+e− → χci → γJ/ψ(→ µ+µ−). For the 1++ state the
prediction is also affected by the amplitude due to the
neutral current [1, 2, 5] . To identify the interference
term, the neutral current amplitude has to be decom-
posed into the form (Ve+Ae)AC , and it is the interference
between the AeAC term from the neutral current and the
dispersive part (real part) of the electromagnetic ampli-
tude which affects the rate. Specifically one obtains:

Γ(χc1 → e+e−) =
Mχc1

3π

[

|g1|2
4

(28)

+
aGF√
2mQ2

Re(g1)

+
a2G2

F

mQ4

(

1− 4 sin2 θW + 8 sin4 θW

)]

,

where GF is the Fermi constant and θW is the weak mix-
ing angle. The function g1 comes from performing loop
integrals (see Appendix A).
The mass of the c quark, the derivative of the wave func-
tion at the origin (in fact a) and the parameter aJ have
been extracted from the measured decay widths [7] of
χc1,2 to γγ and to γJ/ψ, using formulae (23), (24), (25).
The obtained parameters, the square of the derivative
of the wave function |φ′

(0)|2, the binding energies cal-
culated according to bi = 2m −Mi, and the parameter
aJ are presented in Table II together with the calculated
decay widths.
The electronic widths have been calculated using the

diagrams from Figure 5. For χc1 we have, in addition,
also included the contribution coming from the neutral
current Eq. (29). The functions gi, which come from

a[GeV5/2] |φ
′

(0)|2 [GeV5] m [GeV] b1 [GeV] b2[GeV] aJ

0.073 0.04 1.7 -0.204 -0.249 0.11

widths [MeV] χc1 χc2

Γ(χ→ γγ)th - 5.28819 · 10−4

Γ(χ→ J/ψγ)th 2.84760 · 10−1 3.70560 · 10−1

Γ(χ→ γγ)exp - 5.3(3) · 10−4

Γ(χ→ J/ψγ)exp 2.8(2) · 10−1 3.7(3) · 10−1

TABLE II: Parameters and theoretical (th) (this paper), and
experimental (exp) [7] values of Γ(χ1,2 → γγ, γJ/ψ).

e−

l−

e+

l+

χc

(a)

J/ψ

e−

l−

e+

l+

χc

(b)

FIG. 5: Diagrams for decay widths Γ(χc0,1,2 → e+e−).

performing loop integrals can be divided into two parts:

gi = giγγ + giJ/ψγ , (29)

coming from Fig.5a and Fig.5b. The formulae for these
functions can be found in Appendix A. In Table III we
present the values of the electronic widths within the
adopted model, where giγγ is the contribution from the
diagram with two photons, giJ/ψγ the contribution from

the diagram which contains J/ψγ. For χc1 we include
the sum of electromagnetic and neutral current contribu-
tion (QED + Z0). The obtained values of the electronic
widths are quite comparable to the ones obtained within
other models [2–5].

III. THE PROCESS e+e− → χci → γJ/ψ(→ µ+µ−)

With the couplings extracted as described above one
can predict the χc1 and χc2 production cross sections in
e+e− annihilation. As these states are not stable one can
observe only their decay products and an easy to identify
final state has to be chosen. An obvious choice is the
reaction e+e− → χc → γJ/ψ(→ µ+µ−). The Feynman
diagram describing this process is given in Fig.1a. In
Fig.1b we present the diagram for the similar process,

γγ + J/ψγ γγ J/ψγ QED+Z0

Γ(χc1 → e+e−) [eV] 0.078 0.073 0.003 0.071

Γ(χc2 → e+e−) [eV] 1.35 0.032 0.975 -

TABLE III: Electronic widths for χc1 and χc2 . See text for
details
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where J/ψ is substituted by γ. The same final state is
produced also in the ISR process (Fig. 1c) and the two
amplitudes interfere.
Within the adopted model the χci production ampli-

tudes read

M0 = 0, (30)

M1 =

{

g1v̄(l+)γ5γ
µu(l−)

+
2aGFM

2
χc1

f
v̄(l+)

(

(1 + 2m/Mχc1
)γ5γ

µ

+(1− 4 sin2 θW + 2m/Mχc1

−8m/Mχc1
sin2 θW )γµ

)

u(l−)

}

Πχc1µν (k) Aνβ1 Π
J/ψ
βδ (p2) e ū(q3)γ

δv(q4)

(31)

M2 = g2v̄(l+)γ
µu(l−)(l

ν
+ − lν−)/Mχc2

Πχc2µναβ(k) A
αβγ
2 Π

J/ψ
γδ (p2) e ū(q3)γ

δv(q4), (32)

where f = 2
√
2(Mχc1

/2 + m)Mχc1

√
mQ2. The ampli-

tudes Aνβi can be found in Appendix B of [2],

Aνβ1 = −i1
2
c(I11

νβ
+ I12

νβ
), (33)

Aαβγ2 = −c
√
2Mχc2

I2αβγ2 , (34)

and coincide with Eq.(2) and Eq.(3) Here the contribu-
tions I11 , I

1
2 and I22 are given by:

I11
νβ

= ǫµ̄ν̄βνF 1
µ̄ν̄p

2
γ̄p

2γ̄ − ǫµ̄ν̄ᾱνF 1
µ̄ν̄p

2
ᾱp

2β , (35)

I12
νβ

= 0, (36)

I2αβγ2 = F 1αδ
(

gβγp2δ − gγδ p
2β
)

, (37)

where

F 1
µν = ǫ1µp

1
ν − ǫ1νp

1
µ. (38)

The I12
νβ

vanishes for one real photon in the vertex. The
coupling of J/ψ to muons and the J/ψ propagator col-
lected in ΠJ/ψ, are given by,

Π
J/ψ
βδ (p) =

√

3ΓJ/ψ→e+e−

α
√

p22

gβδ − pβpδ/M
2
J/ψ

p22 −M2
J/ψ + iMJ/ψΓJ/ψ

,

(39)
while the χc1 propagator Πχc1 has the following form:

Πχc1µν (k) =
gµν − kβkδ/M

2
χc1

k2 −M2
χc1

+ iΓχc1Mχc1

, (40)

where k is the four-momentum of the χc1 ,Mχc1
and Γχc1

are its mass and its decay width respectively. The χc2
propagator Πχc2 has the following form:

Πχc2µναβ(k) =
Bµναβ

k2 −M2
χc2

+ iΓχc2Mχc2

, (41)

where we use similar notation as for χc1 . The tensor
Bµναβ is given by the following formula:

Bµναβ =
1

2
(PµαPνβ + PµβPνα)−

1

3
PµνPαβ), (42)

where Pµν = −gµν + kµkν/Mχc2
. The form factor c is

given in Eq.(4).

IV. IMPLEMENTATION INTO THE

PHOKHARA GENERATOR: TESTS AND

RESULTS

The amplitudes described in the previous sec-
tion were implemented into the PHOKHARA
event generator and will appear at the web page
(http://ific.uv.es/∼rodrigo/phokhara/) as release 9.2.
The radiative return amplitude was already implemented
in the version 7.0 [8, 9]. The implementation of the
other amplitudes was tested by constructing two inde-
pendent codes: one using a trace method to sum over
polarizations of initial and final particles, the second one
using the helicity amplitude method with a basis chosen
as in [10]. Excellent agreement of relative accuracy
about 10−15, was found except in the region where the
amplitudes have zeros, but even for these negligible
contributions several digits of the results agree.
Another test consisted of a comparison of the inte-

grated cross section obtained by the PHOKHARA gener-
ator and an analytic form (σ1,2) obtained with the ampli-
tude from figure 1a for the scattering energy

√
s =Mχc1,2

in the narrow width approximation given below

σ1 =
12π

s
Br(χc1 → e+e−)

Br(χc1 → J/ψγ)Br(J/ψ → µ+µ−), (43)

σ2 =
20π

s
Br(χc2 → e+e−)

Br(χc2 → J/ψγ)Br(J/ψ → µ+µ−), (44)

with the partial widths given in Eqs.(23,25,11,12) and

ΓJ/ψ→µ+µ− =

(1 + 2
m2
µ

M2
J/ψ

)
√

1− 4m2
µ/M

2
J/ψ. ΓJ/ψ→e+e− . (45)

The total widths are taken from [7]. As all the widths
here are narrow, the approximation works well. The rel-
ative difference between the generator results and the
analytic formulae Eq.(44) are (0.49± 0.07)% for χc1 and
(2.81± 0.02)% for χc2 .
The predicted values of the electronic widths are rather

small. More optimistic values, up to a factor 10 bigger,
can be obtained within the vector dominance model of
[2]. Yet, even with these relatively small values one can
potentially observe the signal over the radiative return
background. In Figures 6 and 8 we show the cross sec-
tions of the reactions e+e− → µ+µ−γ imposing angular

http://ific.uv.es/~rodrigo/phokhara/
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QED+Z0 signal
QED signal

ISR background

Mχc1
= 3.51066 GeV

20o < θγ < 160o

20o < θµ−,µ+ < 160o

√
s (GeV )

σ
(n
b)

3.523.5183.5163.5143.5123.513.5083.5063.5043.502

0.0195

0.019

0.0185

0.018

0.0175

0.017

FIG. 6: The cross section e+e− → µ+µ−γ, see text for details.

QED+Z0 signal
QED signal

ISR background

Mχc1
= 3.51066 GeV
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√
s (GeV )

σ
(n
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0.091

0.09

0.089

0.088

0.087

0.086

FIG. 7: The cross section e+e− → µ+µ−γ, see text for details.

cuts on photons, whereas in Figures 7 and 9 we present
these cross sections without imposing this cuts. In both
cases we have assumed the χc1 and χc2 electronic widths
as listed in Table III. A beam spread of 1MeV per beam
with Gaussian distribution was assumed. A possible con-
tribution from the diagram in Fig. 1(b) is negligible for
event selections used in the plots, where the muon pair
invariant mass was chosen to be within 3 J/ψ widths
within J/ψ mass (detector resolution was not taken into
account). In the distributed version of the generator the
diagram with χci → γ∗(→ µ+µ−)γ is included. As the
contribution of Z0 to the χci width is tiny, the same is
expected for the diagram similar to Fig.1(c) with γ sub-
stituted with Z0 and these contributions were neglected.
A signal of up to 10 % of the radiative return back-

ground can be observed. The cross section is obviously
bigger, when the photon is not tagged, but the signal
to background ratio is smaller. Hopefully the BES-III
collaboration will be able to measure these cross sec-
tions and extract the electronic widths of the χc1 and
χc2 . The scan in the vicinity of these two charm states
would also provide the possibility of testing the models
and extracting the phase between the radiative return
and the χc1 (χc2) production amplitudes. As one can
observe, with the relative phases between the amplitudes
predicted within the model adopted in this paper, the

QED signal
ISR background

Mχc2
= 3.55620 GeV

20o < θγ < 160o

20o < θµ−,µ+ < 160o

√
s (GeV )

σ
(n
b)

3.583.5753.573.5653.563.5553.553.5453.543.535

0.02

0.019

0.018

0.017

0.016

0.015

0.014

0.013

0.012

0.011

FIG. 8: The cross section e+e− → µ+µ−γ, see text for details.

QED signal
ISR background

Mχc2
= 3.55620 GeV

20o < θµ−,µ+ < 160o

√
s (GeV )

σ
(n
b)

3.583.5753.573.5653.563.5553.553.5453.543.535

0.084

0.082

0.08

0.078

0.076

0.074

0.072

FIG. 9: The cross section e+e− → µ+µ−γ, see text for details.

production of χc1 and χc2 can be mainly observed as an
interference between the ISR and the signal diagrams.

V. CONCLUSIONS

Diract, resonant production of χc1 and χc2 in electron-
positron annihilation through two virtual photons will
lead to a small, but nevertheless measurable resonant en-
hancement of the cross section. The prediction exhibits a
sizeable model dependence, a consequence of the fact that
predictions for charmonium, based on the nonrelativistic
potential model are of qualitative nature only. Neverthe-
less, a resonant signal both in the hadronic cross section
and in the γµ+µ− channel could be seen at the BESIII
storage ring under favorable circumstances.
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Appendix A: g1 and g2 couplings

The effective couplings g1 and g2 are defined in Section
II through loop integrals. We split them into two parts.
One coming from diagrams containing χci − γ− γ vertex
and called giγγ and diagrams containing χci − J/ψ − γ
vertex called giJ/ψγ . The constants g1 and g2 are sums
of these two contributions gi = giγγ + giJ/ψγ .

The couplings read (M = Mχc1
in g1; M = Mχc2

in

g2; MJ ≡MJ/ψ in both); x ≡ 4m2/M2, y ≡ 4M2
J/ψ/M

2

g1γγ =
16α2a√
mM2

[

log

(

x

1 + x

)

(1− x)

−
(

log

(

x

1− x

)

+ iπ

)

(1 + x)

]

, (A1)

g2γγ =
32

√
2α2a

3
√
mM2

[

(

1 + x

2
+

8

(1 + x)2

)

log(1− x)

+
3

2
(1 + x) log(1 + x) − 2

(

1 + x+
2

(1 + x)2

)

log(x)

− 8

(1 + x)2
log(2)− 1− iπ

2

(

1 + x+
8

(1 + x)2

)

]

(A2)

g1J/ψγ =
8α2aJf√

4παmM2M2
J

[

(

log

(

x

1− x

)

+ iπ

)

(

1 + x− y

2

)

+F0(x, y)−
1

4
(3 + x+ y)F1(x, y)

− y(4 + y)

2(2 + 2x− y)2
F2(x, y) +

y(1 + y − x)

2(2 + 2x− y)
F3(x, y)

−y
2
F4(x, y) +

y

2
(3− x)F5(x, y)

]

,

(A3)

g2J/ψγ =
16

√
2α2aJf

3
√
4παmM2M2

J

[

2− log(2)

(

3− 16

(1 + x)2

)

+ log(x)

(

1− y + 2x+
8

(1 + x)2

)

+ log(1− x)

(

1

2
+ y − 2x− 16

(1 + x)2

)

−3y

8
log
(y

4

)

+ log
(

1− y

4

)

(

−3

2
+

3y

8

)

+iπ

(

1− 11y

8
+ 2x+

8

(1 + x)2

)

−F0(x, y)−
(

1

2
+ y − x

4

)

F1(x, y)

+
−55− 123xy + 126x+ 93x2 − 94y + 38y2

16(2 + 2x− y)2
F2(x, y)

+
87− 5xy − 2y + 2y2 + 2x+ 3x2

2(2 + 2x− y)
F3(x, y)

−3y

4
F4(x, y) −

3y

4
(1 + x)F5(x, y)

]

(A4)

with

r =
√

x− (1− y + x)2/4 (A5)

and

A(x, y) = arctan

(

1− y + x

2r

)

− arctan

(−1− y + x

2r

)

F0(x, y) =
1 + y − x

4
log(x/y)− rA(x, y)

F1(x, y) = log(x/y) +
1 + y − x

r
A(x, y)

F2(x, y) = 2 log(2)− x log(x) + y/2 log(y/2)

−(1− x) (log(1 − x)− iπ)

+(2− y/2) (log(2− y/2)− iπ)

+
−1− x+ y

2
log(x) +

−1 + x− y

2
log(y)

−2rA(x, y)

F3(x, y) = −3

2
log(x) + log(1 − x)− iπ

+
1

2
log(y)− 1− x+ y

2r
A(x, y)

F4(x, y) = log(1− 2/y) log(y/2)− Li2(2/y)

+Li2

(

1− y/2

1 + x− y/2

)

− Li2

( −y/2
1 + x− y/2

)

−Li2

(

1− y/2

(1− x)/2 + ir1

)

− Li2

(

1− y/2

(1− x)/2− ir1

)

+Li2

( −y/2
(1− x)/2 + ir1

)

+ Li2

( −y/2
(1− x)/2− ir1

)

F5(x, y) = − 1

1 + x− y/2
log

(

1 + x

x

)

+
−r1 + i(1 + y − x)/2

(1 − x+ 2ir1)r1
log

(

(1− x+ y)/2 + ir1
(−1− x+ y)/2 + ir1

)

−r1 + i(1 + y − x)/2

(1− x− 2ir1)r1
log

(

(1 − x+ y)/2− ir1
(−1− x+ y)/2− ir1

)

(A6)

with

r1 =
√

x− (1 + y − x)2/4 (A7)
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[2] J. H. Kühn, J. Kaplan, and E. G. O. Safiani, Nucl.Phys.

B157, 125 (1979).
[3] N. Kivel and M. Vanderhaeghen, JHEP 02, 032 (2016),

1509.07375.
[4] A. Denig, F.-K. Guo, C. Hanhart, and A. V. Nefediev,

Phys. Lett. B736, 221 (2014), 1405.3404.
[5] D. Yang and S. Zhao, Eur. Phys. J. C72, 1996 (2012),

1203.3389.
[6] W. Buchmüller and S. Cooper, Adv. Ser. Direct. High

Energy Phys. 1, 410 (1988).
[7] K. Olive et al. (Particle Data Group), Chin.Phys. C38,

090001 (2014).
[8] H. Czyz, A. Grzelinska, and J. H. Kühn, Phys.Rev. D81,
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