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Abstract

We combine the known asymptotic behaviour of the QCD perturbation series expansion,

which relates the pole mass of a heavy quark to the MS mass, with the exact series coeffi-

cients up to the four-loop order to determine the ultimate uncertainty of the top-quark pole

mass due to the renormalon divergence. We perform extensive tests of our procedure by

varying the number of colours and flavours, as well as the scale of the strong coupling and

the MS mass, and conclude that this uncertainty is around 70 MeV. We further estimate

the additional contribution to the mass relation from the five-loop correction and beyond

to be 250 MeV.

http://arxiv.org/abs/1605.03609v1


1 Introduction

The top quark mass is a fundamental parameter of the Standard Model (SM). Due to its

large size, it has non-negligible impact in the precision tests of the SM. After the discovery

of the Higgs boson and the measurement of its mass, the values of the W and top mass

are strongly correlated, such that a precise determination of both parameters would lead to

a SM test of unprecedented precision [1]. Indeed, there is presently some tension between

the value of the top mass 177 ± 2.1 GeV fitted from electroweak data and from its direct

measurement [1], for which the combination of the Tevatron and LHC data yields the 1.6 σ

lower value of 173.34 ± 0.27 ± 0.71 GeV [2]. The value of the top mass is also crucial to

the issue of stability of the SM vacuum [3]. Higgs quartic coupling decreases at high scales,

eventually becoming negative. This evolution is very sensitive to the top mass value. For

example, a top mass near 171 GeV would imply that the quartic coupling may vanish at

the Planck scale, rather than turn negative.

The standard direct determination of the top mass at hadron colliders, being based upon

observables that are related to the mass of the system comprising the top decay products,

are quoted as measurements of the pole mass. On the other hand, it seems more natural to

use the MS mass in both precision electroweak observables and in vacuum stability studies.

In [4] the relation between the MS and pole mass for a heavy quark (the “mass conversion

formula” from now on) has been computed to the fourth order in the strong coupling αs.

Assuming the value of 163.643 GeV for the top-quark MS mass mt = mt(mt), and assuming

α
(6)
s (mt) = 0.1088, we have [4]

mP = 163.643 + 7.557 + 1.617 + 0.501 + (0.195 ± 0.005)GeV (1.1)

for the series expansion of the mass conversion formula. The last term from the fourth

order correction is less than one half of the third order one.

It is also known that the mass conversion formula is affected by infrared (IR) renor-

malons [5–7]. This means that there are factorially growing terms of infrared origin in the

perturbative expansion, such that the expansion starts to diverge at some order. If the

series is treated as an asymptotic expansion, the ambiguity in its resummation is of order

of a typical hadronic scale. Because of this, it is often stated that the ultimate accuracy

of top pole mass cannot be below a few hundred MeV. One of the goals of this work is to

make this estimate more precise.

It is remarkable that the perturbative relation between the pole and MS mass of a

heavy quark appears to be dominated by the leading infrared renormalon already in low

orders [8, 9]. This observation was used in previous work [10, 11], and more recently in

[12, 13] to estimate the unknown normalization of the leading IR renormalon, and mostly

applied in the context of bottom physics. In the context of top physics, the importance

of this issue was raised recently in [14]. The purpose of this work is to combine the newly

available four-loop coefficient [4] in the mass conversion formula with the known structure

of the first infrared renormalon singularity [7] to determine the normalization constant and

discuss its impact on top physics. We also perform an analysis of the dependence on the

number of colours and flavours, which is by itself of interest, and stability tests with respect
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to variations of the scale of the strong coupling and MS mass. This leads to an expression

for the mass conversion factor including an estimate of the contributions beyond four loops,

and an estimate of the irreducible error.

2 Reminder

The renormalon divergence is a manifestation of the fact that the mass conversion formula,

while infrared finite is sensitive to small loop momentum. In the case of the pole mass

this sensitivity is particularly strong, namely linear, resulting in rapid divergence of the

perturbative expansion, and an infrared sensitivity of order ΛQCD [5, 6]. The ambiguity in

defining the pole mass is therefore of similar size. This is not surprising as the pole mass of

a quark is not an observable due to confinement and the difference with the physical heavy

meson masses is also of order ΛQCD. Unlike other heavy quarks, the top quark decays on

hadronic time scales, and thus the propagator pole position acquires an imaginary part.

The renormalon divergence is not altered [15] by the fact that the top quark is unstable

with a width larger than ΛQCD and hence does not form bound states. The finite width

simplifies the perturbative treatment of top quarks, since it provides a natural IR cut-off,

and there exists no quantity for which the pole mass would ever be relevant. But the

infrared sensitivity of the QCD corrections to the mass conversion factor, which causes the

divergence, remains unaffected by the width.

Slightly more technically, the divergence arises from logarithmic enhancements of the

loop integrand. Heuristically, this can be understood by noticing that the running coupling

evaluated at the scale l of the loop momentum has the expansion

αs(l) =
1

b0 ln l2/Λ2
QCD

=
αs(m)

1− αs(m)b0 lnm2/l2
=

∞
∑

1

αn
s (m) bn0 ln

n m2

l2
. (2.1)

The IR contribution to the last loop integration in the (n + 1)-loop order then takes the

form

δm(n+1) ∝ αn+1
s (m)

∫ m

dl bn0 ln
n m2

l2
= m (2b0)

n αn+1
s (m)n! . (2.2)

With this behaviour the series of mass corrections reaches a minimal term of order

m (2b0)
nαn+1

s n! ≈ mαs n
−n (

√
2πnn+1/2e−n) ≈ m

√

παs

b0
exp

(

− 1

2b0αs

)

≈
√

παs

b0
ΛQCD, (2.3)

when n ≈ 1/(2b0αs) and then diverges. Asymptotic expansions can sometimes be summed

using the Borel transform. Given a power series

f(αs) =
∞
∑

n=1

cnα
n
s , (2.4)

the corresponding Borel transform is defined by

B[f ](t) =

∞
∑

n=0

cn+1
tn

n!
. (2.5)
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The Borel integral
∫ ∞

0
dt e−t/αs B[f ](t) (2.6)

has the same series expansion as f(αs) and provides the exact result under suitable condi-

tions. However, for the case of (2.2), where cn+1 = (2b0)
nn!, the Borel integral

∫ ∞

0
dt e−t/αs

1

1− 2b0t
(2.7)

cannot be performed because of the pole at t = 1/(2b0). We can introduce some prescription

for handling the pole in the integral, as, for example, the principal value prescription.

Whether or not this reconstructs the exact result, an ambiguity remains, quantified by the

imaginary part of the integral when going above or below the singular point. A commonly

used procedure is to define this ambiguity to be equal to the imaginary part of the integral

divided by Pi (see, e.g., [16], section 5.2). For (2.7), this yields

ΛQCD/(2b0) . (2.8)

In the range of αs values considered in this paper, the ambiguity is close to the size of the

smallest term in (2.3).1

It can be shown [7] that while the precise asymptotic behaviour of the mass conversion

formula differs from the simple ansatz employed in this section for illustration, as discussed

below, the ambiguity is exactly proportional to ΛQCD, which evaluates to about 250 MeV

in the MS scheme. In the remainder of this work, we aim to quantify the proportionality

factor.

3 The leading pole mass renormalon

We write the perturbative expansion of the mass conversion formula as

mP = m(µm)

(

1 +

∞
∑

n=1

cn(µ, µm,m(µm))αn
s (µ)

)

. (3.1)

Here αs(µ) is the MS coupling in the nl light flavours theory, and m(µm) stands for the MS

mass evaluated at the scale µm. (In the following we will consider different scale choices for

the heavy quark mass and the strong coupling constant). We also use m to denote the MS

mass evaluated self-consistently at a scale equal to the mass itself, i.e.

m = m(m). (3.2)

1Note, however, the different parametric dependence on αs of (2.3) and (2.8). The correct dependence

is that of (2.8), for the following reason: The typical width of the region where the minimal term is

attained grows parametrically as
√

1/(2b0αs). The accuracy of an asymptotic series is better estimated

by the minimal term times the factor accounting for the number of terms in this region, which makes

(2.3) parametrically consistent with (2.8). Numerically, this factor turns out to be of order one for the

applications considered in this paper, as will be confirmed in section 4 below. In case of doubt, the estimate

from the ambiguity of the Borel integral should be the preferred choice.
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The leading IR renormalon divergence implies the following large-n behaviour of the

perturbative coefficients [7] (and [16]2, eq. (5.90))

cn(µ, µm,m(µm)) −→
n→∞

Nc(as)n (µ,m(µm)) ≡ N
µ

m(µm)
c̃(as)n , (3.3)

where

c̃
(as)
n+1 = (2b0)

n Γ(n+ 1 + b)

Γ(1 + b)

(

1 +
s1

n+ b
+

s2
(n+ b)(n+ b− 1)

+ · · ·
)

. (3.4)

It is remarkable that b = b1/(2b
2
0) and the si coefficients of the sub-leading O(1/ni) be-

haviour can all be given in terms of the coefficients of the β function [7]. The relevant

expressions are collected in appendix A. We also note that the scale µm at which m is

evaluated does not appear explicitly on the right-hand side of (3.3) and hence is irrelevant

in (3.1) as far as the large-n behaviour is concerned. The dependence on the scale µ of the

strong coupling is compensated by the factor µ in front of c̃
(as)
n+1 in (3.3). With these defi-

nitions the normalization N is independent of µ and µm. It cannot however be computed

rigorously with present perturbative techniques in general, but in the limit of large negative

or positive nl it assumes the value [5]

lim
|nl|→∞

N =
CF

π
× e

5
6 , (3.5)

which equals 0.97656 for nc = 3 (CF = 4/3).

In the following we compare the exactly known low-order coefficients of the perturbative

expansion in the mass conversion relation with their expected asymptotic behaviour. By

definition (see (3.3)) the normalization N is given by

N = lim
n→∞

cn(µ, µm,m(µm))

c
(as)
n (µ,m(µm))

. (3.6)

We now determine N by evaluating the above expression for n = 1, 2, 3, 4, for which

cn(µ, µm,m(µm)) is known. To this end the result of [4] for the four-loop coefficient has

been expressed in terms of the strong coupling constant with nl flavours rather than nl+1,

since the asymptotic expression refers to the nl massless flavour theory. We also use un-

published results [17] for the nl, nc, µ and µm dependence of the four-loop coefficient. In

addition to the ratio cn/c
(as)
n for n from 1 to 4 we consider the relative difference between

the N estimates performed using the third and the fourth order coefficients, defined as

∆34 = 2
|c3/c(as)3 − c4/c

(as)
4 |

|c3/c(as)3 + c4/c
(as)
4 |

. (3.7)

The value of ∆34 can be considered to be an estimate of how close is the third order

coefficient to the asymptotic value. It is likely to be an overestimate of the deviation of the

2 The perturbative coefficients rn in this reference are related to those employed here by rn = cn+1.

With this notation the number of loops contributing to cn is n.
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fourth order coefficient from the asymptotic formula and should not be taken as an error

on the normalization N .

We report our results in table 1 for µm = m and the three values µ = m, µ = m/2

and µ = 2m of the coupling renormalization scale. The number of colours has been fixed to

nc = 3 in this table, and the number of light flavours was varied from a very large negative

value (equivalent to the large-nl limit) up to nl = 10. In columns 2 to 5 we show the ratios

cn/c
(as)
n , that correspond to an estimate of N according to (3.6) for finite n. In the last

column we give ∆34. The ± numbers account for the change in N due to the numerical

uncertainty in the calculation of the exact four-loop conversion coefficient, which is about

0.1% on the nl independent term for µ = µm = m(µm).

We first discuss the result for µ = m. For nl very large and negative the value of N is

close to the one predicted by (3.5). The value of ∆34 corresponds to a 4% deviation of the

third order coefficient from the asymptotic result, which is indeed the case, and the fourth-

order value is already much closer.3 As nl increases, the value of N decreases, reaching

0.506(2) and 0.462(2) for nl = 4 and 5, respectively, with a 9 and 13% variation when going

from the third to the fourth order coefficient. As nl increases, ∆34 also increases, so that

for nl above 7 the N values obtained from the third and fourth order coefficients differ by

factors of order 1. This behaviour is not unexpected: by increasing the number of light

flavours the first coefficient of the β function, b0, decreases (it vanishes for nl = 33/2),

hence the renormalon dominance is delayed to higher orders. We shall comment further on

the nl dependence below.

When considering different choices of the renormalization scale, we see that the µ =

m/2 case leads to larger variations than µ = 2m. The large nl limit yields a value that is

about 10% higher than the exact result but the associated value ∆34 ≈ 40% is also large,

indicating that the series is not as close to the asymptotic regime as for µ = m. For the

interesting cases nl = 4 and nl = 5, ∆34 is also more than a factor of two larger than

for µ = m. Again, this behaviour is not unexpected. The coefficients cn depend only

on logarithms of µ/m up to the (n − 1)th power. Eq. (3.3) shows that these logarithms

must asymptotically exponentiate to µ/m, which clearly happens less efficiently at finite

order when ln(µ/m) is larger. Hence we expect the best approximation to the asymptotic

behaviour to occur when µ ≈ m. Fig. 1 shows that this is indeed the case for large −nl. It

further shows a plateau around µ ≈ m and a more rapid departure from the exact result

for µ smaller then m than for larger µ, as also seen in table 1.

We also determine the normalization N for different values of nc and show the result

for ∆34 in fig. 2. We generically find ∆34 < 0.1 except in regions where b0 is small, where we

do not expect our method to work. Fig. 2 therefore demonstrates that the exact four-loop

coefficient indeed matches the asymptotic formula (3.1) in the expected range of nc and nl

values, comprising those of physical interest.

For the following a reliable determination of N and an estimate of its error is par-

ticularly important for nc = 3, nl = 5, corresponding to the case of the top quark. We

3We may note that the contribution from sub-leading renormalon poles to cn is of order 1/2n relative to

the leading one, but there is a further suppression for the case at hand due to a small numerical coefficient,

at least in the large-nl limit, see [16].
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µ/m = 1

nl c1/c
(as)
1 c2/c

(as)
2 c3/c

(as)
3 c4/c

(as)
4 ∆34

−1000000 0.6953 0.9624 0.9349 0.9714 0.038

−10 0.4744 0.7152 0.6898 0.7005± 0.0002 0.015± 0.000

0 0.4377 0.6357 0.6130 0.5977± 0.0006 0.025± 0.001

3 0.3954 0.6150 0.5723 0.5370± 0.0011 0.064± 0.002

4 0.3633 0.6120 0.5522 0.5056± 0.0015 0.088± 0.003

5 0.3143 0.6119 0.5244 0.4616± 0.0020 0.127± 0.004

6 0.2436 0.6089 0.4818 0.3942± 0.0028 0.200± 0.007

7 0.1474 0.5378 0.4084 0.2786± 0.0042 0.378± 0.015

8 0.0098 0.0379 0.2719 0.0564± 0.0068 1.312± 0.068

10 0.2684 −0.0916 −0.1108 −1.7228± 0.0271 1.758± 0.004

µ/m = 0.5

−1000000 1.3907 1.3554 0.6952 1.0773 0.431

−10 0.9487 0.9410 0.6701 0.7110± 0.0003 0.059± 0.000

0 0.8753 0.7907 0.6149 0.5807± 0.0012 0.057± 0.002

3 0.7908 0.7343 0.5659 0.5030± 0.0023 0.118± 0.005

4 0.7266 0.7159 0.5370 0.4631± 0.0030 0.148± 0.006

5 0.6286 0.6975 0.4943 0.4078± 0.0040 0.192± 0.010

6 0.4872 0.6704 0.4267 0.3243± 0.0056 0.273± 0.017

7 0.2948 0.5640 0.3117 0.1845± 0.0084 0.513± 0.043

8 0.0196 0.0370 0.1123 −0.0768± 0.0135 10.676± 5.676

10 0.5367 −0.0621 −0.2877 −2.1014± 0.0541 1.518± 0.011

µ/m = 2

−1000000 0.3477 0.6235 0.8631 0.9409 0.086

−10 0.2372 0.4800 0.5883 0.6576± 0.0001 0.111± 0.000

0 0.2188 0.4380 0.5217 0.5698± 0.0003 0.088± 0.001

3 0.1977 0.4314 0.4947 0.5247± 0.0006 0.059± 0.001

4 0.1817 0.4330 0.4831 0.5026± 0.0007 0.040± 0.001

5 0.1572 0.4376 0.4681 0.4724± 0.0010 0.009± 0.002

6 0.1218 0.4413 0.4452 0.4262± 0.0014 0.044± 0.003

7 0.0737 0.3968 0.4038 0.3460± 0.0021 0.154± 0.006

8 0.0049 0.0286 0.3177 0.1877± 0.0034 0.515± 0.017

10 0.1342 −0.0761 −0.0083 −1.1238± 0.0135 1.971± 0.000

Table 1. The values of N obtained from the coefficients of the perturbative expansion up to the

fourth order for several values of nl. Three values of the renormalization scale are considered.

determine the error by varying the two renormalization scale independently, that is we vary

µ/m(µm) and µm/m(µm) independently between 0.5 and 2, compute N from c4/c
(as)
4 as

above, and determine the error on N from the maximal variation. The dependence of N on

the two scale ratios is shown in fig. 3. With this definition our error estimate on N neither

depends on the value of the heavy quark mass nor the one of the strong coupling. We find

N = 0.4616+0.027
−0.070 (µ and µm)± 0.002 (c4) . (3.8)

As a further check we note that when the subleading term s2 (s1 and s2) is removed in
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Figure 1. The normalization N as a function of µ/m varied by a factor five around the central

scale. The dashed line shows the exact value 4e5/6/(3π) = 0.97656....

(3.4), the central value changes very little to 0.4573 (0.4584).

A similar method to determine the normalization of the leading pole mass renormalon,

albeit without variations of µm and nc, has already been used in [12]. More precisely, instead

of the four-loop pole mass considered here the three-loop static potential was employed to

arrive at the best estimate, based on the fact that the pole mass and static potential

leading renormalon normalizations are rigorously related by a factor of −1/2. Their values

are indeed in good agreement with ours, though deteriorating with increasing nl. The

approach to the exact value for large negative nl was also observed in [12].

The authors of Ref. [12] also determined the normalization N as a function of nl and

noted that it tends to zero in the range nl = 12 . . . 23 close to the conformal window. We

confirm this behaviour in our analysis, see Figure 4. To understand why the normalization

of the leading renormalon is forced to be small in this nl region, we look at the explicit

−10 −5 0 5 10
nl

2
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n
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03

0.
04 0.
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0.
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0.
10

0.
20

0.
40

Figure 2. ∆34 as a function of nc and nl, for µ = µm = m. The cross corresponds to the case

relevant for top, i.e. nc = 3 and nl = 5.
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Figure 3. The normalization N as a function of µ/m(µm) and µm/m(µm).

expression of for c
(as)
n from (3.3) for n = 4,

c
(as)
4 = (2b0)

3 (1 + b)(2 + b)(3 + b)

(

1 +
s1

3 + b
+

s2
(3 + b)(2 + b)

+ · · ·
)

. (3.9)

The region nl = 12 . . . 23 is approximately centred around the value of nl, where b0 vanishes,

hence b = b1/(2b
2
0) becomes large. As soon as b ≫ n0, where n0 is the order from which N

is determined (here n0 = 4), the individual terms in the above expression behave as

c
(as)
4 = (2b0)

n0

(

b1
2b20

)n0 (

1 +
s1
b

+
s2
b2

+ · · ·
)

∼ 1

(2b0)n0

(

1 +
#

b20
+

#

b40
+ · · ·

)

, (3.10)

from which we conclude a) that c
(as)
4 ∼ 1/(2b0)

n0 becomes very large, hence N must become

small to fit the given value of the exact four-loop coefficient c4, and b) the series of sub-

5 10 15 20 25 30
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

nl

N

Figure 4. The normalization N (for nc = 3, µ = µm = m) as a function of nl (black). The blue

dots show 1/b.
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leading asymptotic terms s1, s2, etc. breaks down, hence the extracted value of N is

completely unreliable. The smallness of N is therefore a technical artifact of the method,

which ceases to be valid when b becomes large compared to n0, and the question whether

N is small in the conformal window cannot be answered. In fact, while small b0 makes

renormalon behaviour less relevant to low orders due to the diminished (2b0)
n factor, there

seems to be no reason why the normalization N should vanish when the theory becomes

conformal non-perturbatively.

4 The mP – m conversion factor to all orders and the ultimate top pole

mass uncertainty

In the following we use two methods to estimate the remainder of the mass conversion rela-

tion beyond the exactly known four-loop accuracy and to estimate the intrinsic ambiguity

of summing the assumed asymptotic expansion. The first relies on truncation of the expan-

sion and an estimate of the minimal term. The second on Borel summation. We restrict

ourselves to the case of the top quark mass (nc = 3, nl = 5) and choose µ = µm = m.

We begin by writing

mP (n) = m

(

1 +
n
∑

k=1

ckα
k
s

)

, (4.1)

where the coefficients are the exact ones up to the fourth order in αs, and determined from

the asymptotic formula (3.4) (with normalization fitted to the fourth order term) for the

terms of order 5 and higher. We would like to define the best value of mP as the value at

which its increment with n is minimal. More precisely, we define

∆(n+ 1/2) = mP (n+ 1)−mP (n) , (4.2)

which is a decreasing function of n up to a certain value n0 beyond which it begins to

increase due to the renormalon divergence of the series expansion. By interpolating ∆ with

a quadratic form in the three points n0 − 1/2, n0 + 1/2, n0 + 3/2, we find its minimum at

(generally non-integer)

nmin = n0 + 1/2 − ∆(n0 + 3/2) −∆(n0 − 1/2)

2(∆(n0 + 3/2) + ∆(n0 − 1/2) − 2∆(n0 + 1/2))
. (4.3)

By interpolating linearly the value of mP (nmin) between n0 and n0 + 1 we get

mc
P
=

mP (n0)(∆(n0 + 3/2) −∆(n0 + 1/2)) +mP (n0 + 1)(∆(n0 − 1/2) −∆(n0 + 1/2))

∆(n0 + 3/2) + ∆(n0 − 1/2) − 2∆(n0 + 1/2)
(4.4)

as the best value of the pole mass. We note that with this prescription, if ∆(n0 − 1/2) =

∆(n0 + 3/2), then mc
P

corresponds to (mP (n0) +mP (n0 + 1))/2, as one would intuitively

expect, while for ∆(n0 − 1/2) ≫ ∆(n0 + 3/2) (∆(n0 − 1/2) ≪ ∆(n0 + 3/2)), we obtain

mP (n0 + 1) (mP (n0)).

We now estimate the correction to the top pole mass due to terms of order higher than

four by

δ(5+)mP = Nµ
∑

k=5
c̃
(as)
k αk

s(µ) , (4.5)

9



j c̃
(as)
j c̃

(as)
j αj

s

5 0.985499 × 102 0.001484

6 0.641788 × 103 0.001049

7 0.495994 × 104 0.000880

8 0.443735 × 105 0.000854

9 0.451072 × 106 0.000942

10 0.513535 × 107 0.001164

11 0.647283 × 108 0.001593

12 0.894824 × 109 0.002390

13 0.134620 × 1011 0.003902

14 0.218949 × 1012 0.006888

15 0.382818 × 1013 0.013070

Table 2. The coefficients c̃
(as)
j above the fourth order. Their value multiplied by the corresponding

power of αs = 0.108531 is also reported.

where c̃
(as)
j is defined in (3.4), and the barred sum represents the procedure we have just

outlined for the evaluation of the (divergent) sum. We report in table 2 the values of c̃
(as)
j

beyond the fourth order term. Eq. (4.5) can be easily computed for any value of αs and µ

and is well approximated by the second-order Taylor series around the reference value:

δ(5+)mP = Nµ× 10−3

(

3.604 + 14.69

(

αs(µ)

0.1085
− 1

)

+ 9.54

(

αs(µ)

0.1085
− 1

)2
)

. (4.6)

For typical values of N ≈ 0.5 and µ ≈ 160 GeV the formula is accurate at the sub-MeV

level for a ±5% variation of the strong coupling constant.

We now adopt the PDG value αs(MZ) = 0.1181 ± 0.0013, and take µ = m =

163.508 GeV for definiteness. With this input we find αs(µ) = 0.108531 for the (five

flavour) strong coupling constant and 173.34 GeV for the top pole mass using the four-loop

conversion formula. From the values reported in the table and the value of N given in (3.8)

we obtain for the series remainder

δ(5+)mP = 0.272+0.016
−0.041 (N)± 0.001 (c4)± 0.011 (αs)± 0.066 (ambiguity) GeV , (4.7)

where we show the error due to the uncertainty in the normalization N , the four-loop coef-

ficient c4, and αs(MZ). For the irreducible renormalon ambiguity we tentatively estimate

the size of the first omitted term by the value of ∆(n0 − 1/2). For the top mass conversion

factor we find

mc
P
/m = 1.06177+0.00010

−0.00025 (N) ± 0.00001 (c4) ± 0.00087 (αs)

± 0.00041 (ambiguity) . (4.8)

We also computed the change of the conversion factor under variations of µ/m and µm/m,

simultaneously in the exact four-loop part and the remainder, accounting for the dependence
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of N on µ and µm (fig. 3). This leads to +0.00025
−0.00041, which we do not include above, since it

is strongly correlated with the uncertainty of the same order from N alone.

In the second method we first compute the Borel transform of the asymptotic series

coefficients c̃(as) in (3.3), which gives

B[c̃(as)](t) =
1

(1− 2b0t)1+b
+

s1
b

1

(1− 2b0t)b
+

s2
b(b− 1)

1

(1− 2b0t)−1+b
+ . . . , (4.9)

and then the Borel sum

BS[c̃(as)](αs) =

∫ ∞

0
dt e−t/αs B[c̃(as)](t) . (4.10)

Since the series is not Borel-summable due to the IR renormalon singularity at t = 1/(2b0),

we define the sum as the principal value and estimate the ambiguity as the imaginary part

of the integral when the contour is deformed into the upper complex plane, divided by

Pi. This procedure is known to usually give a reliable estimate [16], close to the sum to

the minimal term and the estimate of the summation ambiguity by the smallest term in

the series. The Borel sum can easily be computed analytically, since (with the contour

deformed into the upper complex plane)

∫ ∞

0
dt e−t/αs

1

(1− 2b0t)γ
=

αs

(−2b0αs)γ
e−1/(2b0αs) Γ(1− γ,−1/(2b0αs)) , (4.11)

where Γ(a, z) denotes the incomplete Gamma function. The remainder of the mass conver-

sion formula is obtained by subtracting the first four coefficients, resulting in

δ(5+)mP = Nµ

(

BS[c̃(as)](αs(µ))−
4
∑

k=1

c̃
(as)
k αs(µ)

k

)

. (4.12)

With parameter input as above, we find

δ(5+)mP = 0.250+0.015
−0.038 (N)± 0.001 (c4)± 0.010 (αs)± 0.071 (ambiguity) GeV , (4.13)

which is close to the result (4.7) from the previous method. For any value of αs and µ

the result can again be determined accurately in the phenomenologically relevant region

according to the fit formula

δ(5+)mP = Nµ× 10−3

(

3.315 + 12.71

(

αs(µ)

0.1085
− 1

)

+ 4.55

(

αs(µ)

0.1085
− 1

)2
)

. (4.14)

For the top mass conversion factor itself, we find

mc
P
/m = 1.06164+0.00009

−0.00023 (N)± 0.00001 (c4) ± 0.00086 (αs)

± 0.00043 (ambiguity). (4.15)

In this case, the scale variation is +0.00013
−0.00028. We adopt (4.13) and (4.15) as our final results.

Given the MS mass, the top quark pole mass is determined by this relation with an accuracy

of 0.92 per mil, half of which is due to the irreducible uncertainty of the relation itself.
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5 Conclusions

We employed the four-loop coefficient in the pole-MS quark mass relation, which has re-

cently become available [4], and knowledge of the leading asymptotic behaviour of the

series expansion of the mass conversion factor [7] to estimate the remainder of the series

from terms above the four-loop order and the intrinsic ambiguity due to the asymptotic

nature of the series. For the case of the top quark we find about 250 MeV for the former

and 70 MeV for the ambiguity, which also represents the ultimate precision that can be

obtained for the pole mass. The ambiguity of 70 MeV is far below the accuracy that can

conceivably be achieved at the Large Hadron Collider, but larger than the one foreseen in

theoretical and experimental studies [18, 19] of a scan of the top pair production threshold

at a high-energy e+e− collider. In this case the pole mass ceases to be a useful concept and

other mass definitions must be employed.

Acknowledgements

This work is supported by the BMBF grants 05H15WOCAA (MB) and 05H15VKCCA

(MS). PM was supported in part by the EU Network HIGGSTOOLS PITN-GA-2012-

316704. MB thanks the Kavli Institute for Theoretical Physics, Santa Barbara, for hospi-

tality while this work was completed.

A Summary of formulae

In this Appendix, in order to make contact with the notation of [7, 16], we define the QCD

beta-function as

β(αs) = µ2∂αs(µ)

∂µ2
= β0α

2
s + β1α

3
s + . . . , (A.1)

With this convention β0 = −(11nc/3 − 2nl/3)/(4π), while in the main text we used bi =

−βi > 0 (for small nl).We adopt the MS scheme with nl massless quark flavours. (The

heavy quark whose mass is considered here is decoupled.) The constants that appear in

(3.4) are given by [7, 16] b = −β1/(2β
2
0 ) and

s1 =

(

− 1

2β0

)(

− β2
1

2β3
0

+
β2
2β2

0

)

, (A.2)

s2 =

(

− 1

2β0

)2( β4
1

8β6
0

+
β3
1

4β4
0

− β2
1β2
4β5

0

− β1β2
2β3

0

+
β2
2

8β4
0

+
β3
4β2

0

)

. (A.3)

Note that we have corrected some misprints in the expression for b and s2 given in [16]

(eqs. (5.91) and (5.92)) as already noted in [10].
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