
Prepared for submission to JHEP TTP16-002

On the reduction of generalized polylogarithms to
Lin and Li2,2 and on the evaluation thereof

Hjalte Frellesviga Damiano Tommasinia Christopher Wevera,b

aInstitute of Nuclear and Particle Physics, NCSR âĂĲDemokritosâĂİ, Agia Paraskevi, 15310,
Greece

bInstitute for Theoretical Particle Physics (TTP), Engesserstraße 7, D-76128 Karlsruhe & Institute
for Nuclear Physics (IKP), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen,
Karlsruhe Institute of Technology, Germany

E-mail:
frellesvig@inp.demokritos.gr, tommasini@inp.demokritos.gr, christopher.wever@kit.edu

Abstract: We give expressions for all generalized polylogarithms up to weight four in
terms of the functions log, Lin, and Li2,2, valid for arbitrary complex variables. Furthermore
we provide algorithms for manipulation and numerical evaluation of Lin and Li2,2, and add
codes in Mathematica and C++ implementing the results. With these results we calculate
a number of previously unknown integrals, which we add in App. C.

Draft from February 1, 2016

Keywords: Generalized polylogarithms, Multiple polylogarithms, Higher orders, Feyn-
man integrals, Computer algebra.

1 Introduction

In the recent decades, the Standard Model of particle physics has been established as
extremely successful, due to its high level of agreement with the data provided by numerous
experiments. In order to further test the Standard Model, or possibly discover new physics,
we need to both predict and measure the values of many observables with even higher
accuracy.

From the theoretical side, which is the focus of this paper, this necessitates the compu-
tation of higher order corrections in perturbation theory, and for that purpose new math-
ematical techniques to compute loop integrals become desirable. A large class of dimen-
sionally regularized Feynman loop-integrals can be expressed in terms of generalized (or
Goncharov) polylogarithms (GPLs) (in the mathematical community these are also known
as hyperlogarithms). Those special functions were originally introduced by Poincaré [1] for
the study of differential equations, further studied by Chen [2], and brought to the attention
of the physics community by Goncharov [3, 4].

At one-loop all Feynman integrals (in 4 − 2ε dimensions) are expressible in terms of
the logarithm log(x) and the dilogarithm Li2(x), up to the zeroth order in the ε expansion
[5], and these functions are special cases of GPLs. At two or more loops many Feynman
integrals can be likewise expressed in terms of GPLs [6–15] (for further references, see those
of ref. [16]), but there are also integrals which are counter examples, such as notably that
of the fully massive sunset graph [17, 18]. Certain graphs without massive propagators are
also believed to be counter examples [19]. In this paper we will restrict the discussion to
GPLs.

In [20] it was conjectured that all GPLs up to weight four, which includes all GPLs
needed for two-loop calculations, can be expressed in terms of logarithms, the classical
polylogarithms Lin(x) (n ≤ 4), and one extra special function denoted by Li2,2(x, y). In
the same reference it was explicitly shown that the conjecture holds true for a subset of
GPLs, denoted harmonic polylogarithms (HPLs), up to weight four. A number of physical
calculations of two-loop Feynman integrals with several scales, i.e. [21–25] have hinted at
the truth of that conjecture, and in this paper we will show it explicitly. Additionally
we provide a library of all the GPLs up to weight four, containing the reduction to the
previously named functions that is valid for arbitrary complex variables.

Since the logarithm and classical polylogarithm are well-known functions, efficient al-
gorithms for their numerical evaluation have been widely studied and developed. On the
other hand, the GiNaC implementation of Vollinga and Weinzierl [26] is the only publicly
available program which can efficiently evaluate the special function Li2,2(x, y) for any set
of complex arguments1. In this paper we provide an independent algorithm and a numerical
code for the efficient evaluation of Lin(x) and Li2,2(x, y).

Thus the tools for the complete reduction and evaluation of any GPL up to weight four
is made available with this paper.

1The function Li2,2(x, y) are among the “two-dimensional HPLs" which are discussed and implemented
in ref. [27] for some real values of the arguments.

– 2 –

The paper is organized as follows: In sect. 2 we define the GPL functions and review
some of their main properties. In sect. 3 we provide some relations that are useful for the
reduction of GPLs, and in sect. 4 we provide some explicit expressions for the reductions.
In sect. 5 we describe the Crandall [28] algorithm for the evaluation of Lin(x), and propose
our modified version. In sect. 6 we propose an algorithm to evaluate the Li2,2(x, y) function,
and in sect. 7 we describe the added code containing our implementation of the algorithms
and reduction. Finally in sect. 8 we discuss our results and propose some directions for
further research.

In appendix A we provide some exact expressions for Li2,2(x, y) in special points, and
in app. B we provide details on certain expressions for Li2,2(x, y). In app. C we list some
integrals that to the best of our knowledge are unknown, and in app. D some further
expressions involving hypergeometric functions. In app. E we give explicit expressions for
all GPLs at weight 3 and some further relations.

2 Generalized polylogarithms

GPLs [1, 3, 4] are defined recursively as

G(a1, . . . , an;x) =

∫ x

0

dz

z − a1
G(a2, . . . , an; z) , (2.1)

with

G(0, . . . , 0︸ ︷︷ ︸
n

;x) ≡ G(0̄n;x) =
logn(x)

n!
and G(;x) = 1 , (2.2)

and with the complex integration path being a straight line from 0 to the generally complex
x.

GPLs satisfy a large number of relations between themselves. Primary is the rescaling
relation

G(a1, . . . , an;x) = G(za1, . . . , zan; zx) , (2.3)

where z is a general complex number different from zero. The relation is valid whenever
an 6= 0. From eq. (2.3) we see that the full set of arguments of a general G(a1, . . . , an;x) is
redundant, as one, conventionally x, may always be put to one by setting z = x−1. For the
case of complex x, this x → 1 rescaling may be used to ensure that the naive integration
path of eq. (2.1) is the correct one.

Additionally there are the shuffle rules [29]

G(a1, . . . , am;x)G(b1, . . . , bn;x) =
∑
c∈aXb

G(c1, . . . , cm+n;x) , (2.4)

where aXb denotes the shuffle product of the lists a and b, which is defined as the set of
all lists containing exactly the elements of a and b, for which the ordering of the elements
of a and b are preserved.

– 3 –

Note that while the rescaling property of eq. (2.3) is not directly valid for an 6= 0, we
may apply it if we first shuffle the zero away using eq. (2.4). Only if all the an are zero we
cannot rescale x→ 1, but in this case we can use the definition of eq. (2.2). In practice we
can therefore study G(a1, . . . , an; 1) without any loss of generality.

GPLs are equivalent to another class of functions, the multiple polylogarithms (MPLs),
which are defined2 by the sum

Lim1,...,mn(x1, . . . , xn) =

∞∑
k1>···>kn>0

xk11

km1
1

· · · x
kn
n

kmn
n

. (2.5)

The relation between the two classes is

Lim1,...,mn(x1, . . . , xn) = (−1)nG
(

0̄m1−1,
1
x1
, 0̄m2−1,

1
x1x2

, . . . , 0̄mn−1,
1∏n

i=1 xi
; 1
)

(2.6)

or correspondingly

G
(

0̄m1 , a1, 0̄m2 , a2, . . . , 0̄mn , an;x
)

= (−1)nLim1+1,...,mn+1

(
x
a1
, a1a2 , . . . ,

an−1

an

)
. (2.7)

The MPLs obey a class of relations denoted as the stuffle3 rules [16, 29]. Just as the
shuffle rules were based on the shuffle product, the stuffle rules are based on the stuffle
product defined as

a ∗◦ b =
⋃
j=0

Mj
a,b,◦(aXb) , (2.8)

where a and b are lists, ◦ is an operator, and where the operator Ma,b,◦(x) acting on a
list x, gives the set of all list which may be obtained by taking two adjacent elements of
x and turning them into one element equaling the original two joined by the operator ◦,
under the condition that one of the two elements come from a, and the other from b. We
see that the maximal value taken by j equals the length of the shortest of the lists a and
b. Additionally we define M of a set of lists (the way it is applied in eq. (2.8)) to be the
union of the results of applyingM to the individual members of the set, i.e.

M({x1, . . . , xn}) ≡
n⋃
i=1

M(xi). (2.9)

We note that the operator ∗ should be applied at the purely symbolic level, which means
that even if some members of a and/or b are numerically identical they should still be
treated as different by the operator.

With these definitions and considerations in place, the stuffle rules are given as

Lim1,...,ma(x1, . . . , xa)Lin1,...,nb
(y1, . . . , yb) =

∑
i

Liui(zi) , (2.10)

2We note that the literature is split rather evenly on how to define MPLs. We are using the same
definition as i.e. [26, 30], while [20, 31] use the opposite definition in which the ordering of the indices is

reversed, i.e. L̂im1,...,mn(x1, . . . , xn) =
∑∞

0<k1<···<kn

x
k1
1

k
m1
1

· · · xkn
n

k
mn
n

.
3The word ’stuffle’ may be obtained by combining the word ’shuffle’ with the word ’stuck’ which is what

the operatorM(x) of eq. (2.8) makes the elements of the list x.

– 4 –

where the sets of lists

u = m ∗+ n and z = x ∗× y (2.11)

are assigned the same ordering.
An example of the use of the stuffle rules is the relation

Lim1,m2,m3(x1, x2, x3)Lim4(x4) = Lim1,m2,m3,m4 (x1, x2, x3, x4)

+Lim1,m2,m4,m3 (x1, x2, x4, x3) + Lim1,m4,m2,m3 (x1, x4, x2, x3) (2.12)

+Lim4,m1,m2,m3 (x4, x1, x2, x3) + Lim1,m2,m3+m4 (x1, x2, x3 · x4)

+Lim1,m2+m4,m3 (x1, x2 · x4, x3) + Lim1+m4,m2,m3 (x1 · x4, x2, x3) ,

where the first four terms correspond to j = 0 in eq. (2.8), while the last three correspond
to j = 1. Note that the stuffle algebra and the shuffle algebra are independent structures,
giving complementary relations among the MPLs and consequently the GPLs.

One additional identity between the GPLs is the Hölder relation [29]

G(a1, . . . , an; 1) =
n∑
j=0

(−1)jG(1− aj , 1− aj−1, . . . , 1− a1; 1− q)G(aj+1, . . . , an; q) ,

(2.13)

which holds when a1 6= 1 and an 6= 0, and where q may take values in a subset of C which
includes the real numbers.

GPLs can be assigned the property of weight corresponding to the number of logarith-
mic integrations [16] in (2.1), such that G(a1, . . . , an;x) has weight n. This implies that
log(x) has weight 1, Lin(x) has weight n, and Lim1,...,mn(x1, . . . , xn) has weight

∑n
i=1mi.

Additionally a product of two functions with respective weights m and n is assigned weight
m+ n. We see that most of the equations in this paper conserve this quantity explicitly.

Some useful relations can be obtained by integration by parts

G(z1, z2, . . . , zn; 1) = G(z1; 1)G(z2, z3, . . . , zn; 1)−
∫ 1

0

G(z1; t)G(z3, . . . , zn; t)

t− z2
dt (2.14)

= G(z1; 1)G(z2, . . ., zn; 1)−G(z2, z1; 1)G(z3, . . . , zn; 1)+. . .−(−1)nG(zn, . . . , z1; 1).

Note from the last expression that the sum G(z1, z2, . . . , zn; 1) + (−1)nG(zn, . . . , z1; 1)

can be expressed as a combination of lower weight GPLs. Furthermore, following eq. (2.1)
we may evaluate GPLs of weight n by an n-dimensional numerical integration; on the other
hand by iterating the expression of eq. (2.14) (and recalling that G(z; t) = log(1− t/z)) we
may reduce the total number of dimensions of the integration from n to n/2. A possible
numerical implementation of a weight n GPL is by evaluating the weight n − 1 GPL that
appears on the r.h.s. of eq. (2.1) by its series representation as in eqs. (2.5, 2.7) and then
numerically performing the last single integration in eq. (2.1). By the use of eq. (2.14) the
GPLs only need to be evaluated up to weight n− 2 instead, and then integrated over one
dimension in order to evaluate a GPL of weight n.

A further relation can be obtained from eq. (2.14) in case of one or more zero letters

– 5 –

G(0̄m, z1, z2, . . . , zn; 1) =
(−1)m

m!

∫ 1

0

log(t)m

(t− z1)
G(z2 . . . , zn; t)dt. (2.15)

As can be seen from eq. (2.1), the GPLs are in general not well defined whenever any
of the letters a1, . . . , an lie exactly along the integration path that is the straight line in
complex space connecting the origin and the argument x, i.e. if ai/x ∈ (0, 1). There is
a discontinuity whenever ai crosses the straight line connecting the origin and the (fixed)
argument x and these lines also define exactly all the branch cuts of the GPLs. Therefore,
whenever ai/x ∈ (0, 1) an infinitesimal perturbation in x (or equivalently in the letters
because of eq. (2.3)) is required such as to make the GPL well defined. An example of such
a perturbation is to multiply the argument by a factor 1 ± iε where afterwards the limit
ε→ 0 is taken. The usual adopted convention is to take 1− iε [26, 32].

Up to weight three, it is known [20, 33] that all GPLs can be expressed as combinations
of the functions log(x), Li2(x), and Li3(x). In [20] a minimal basis of functions at higher
weights were proposed, and specifically it was proposed that at weight four the additional
basis functions Li4(x) and Li2,2(x, y) are required, where the latter, in accordance with eq.
(2.6), may be expressed as4

Li2,2(x, y) = G(0, 1
x , 0,

1
xy ; 1). (2.16)

Notice that for instance Li3,1 (or Li1,3) may be chosen as a basis functions instead of Li2,2
since they are related as given in eq. (E.16). In the following two sections, 3 and 4, we will
show that this conjecture is correct and also present some explicit expressions for GPLs up
to weight four. For a more detailed discussion of the properties of GPLs, see for example
[20, 26, 29, 34].

3 Some reduction relations for GPLs

In order to reduce the GPLs we may use some powerful relations that the GPLs satisfy.
We have already discussed the rescaling (2.3), shuffle (2.4) and stuffle (2.10) identities in
the previous section. Based on these identities alone, all GPLs can be expressed in terms
of a smaller set of functions and we choose the following basis

weight 1 : G(a; 1)

weight 2 : G(a, b; 1), G(0, a; 1)

weight 3 : G(a, b, c; 1), G(0, a, b; 1), G(0, 0, a; 1)

weight 4 : G(a, b, c, d; 1), G(0, a, b, c; 1), G(0, a, 0, b; 1), G(0, 0, 0, a; 1) , (3.1)

where a, b, c, d are different non-zero complex numbers.
For a further reduction of the above basis integrals, we can use relations found by

recursively expressing GPLs with argument 1 − x in terms of GPLs with argument x.
4As is the case for the general MPL (see the note to eq. (2.5)), the literature is split on how to define

Li2,2. The alternative definition has the two arguments exchanged such that L̂i2,2(x, y) = G(0, 1
y
, 0, 1

xy
; 1).

– 6 –

These and other similar transformation rules were discussed in ref. [26], albeit not in the
context of GPL reduction. At weights one and two the relations take the following form

G(1; 1− x) = G(0;x) , (3.2)

G(a, 1; 1− x) = G(1− a, 0;x)−G(1− a, 0; 1)− 2πi sgn(Im(a))T(1, x; 1− a)G(0, 1− a).

The function T(a, b;x) equals one whenever the point x lies inside the triangle spanned by
the three points 0, a and b in the complex plane and zero otherwise (see fig. 1). It may be
expressed as

T(a, b;x) ≡ θ
(

Im(x̄a)
Im(x̄(a−b))

)
θ
(

1− Im(x̄a)
Im(x̄(a−b))

)
θ
(

Im(āb)
Im(x̄(a−b)) − 1

)
, (3.3)

where x̄ denotes the complex conjugate of x. At weight three the corresponding relation is

G(a, b, 1; 1− x) = G(1− b, 0; 1)
(
G(1− a; 1)−G(1− a;x)

)
+G(1− a, 1− b, 0;x)

−G(1− a, 1− b, 0; 1)− 2πi sgn(Im(a))T(1, x; 1− a)
(
G(1− b, 0; 1− a)−G(1− b, 0; 1)

)
−2πi sgn(Im(b))T(1, x; 1− b)G(0; 1− b)

(
G(1− a;x)−G(1− a; 1− b)

−2πi sgn(Im(a))T(P(1, x; 1− b), x; 1− a)
)
, (3.4)

with

P(a, b;x) ≡ Im(āb)

Im(x̄(a− b))
x , (3.5)

see fig. 1 for the geometric meaning of the point P(a, b;x).
Finally at weight four the relation reads

G(a, b, c, 1; 1− x) = G(1− a, 1− b, 1− c, 0;x)−G(1− a, 1− b, 1− c, 0; 1)

−G(1− a;x)G(1− b, 1− c, 0; 1) +G(1− a; 1)G(1− b, 1− c, 0; 1)

+G(1− c, 0; 1)
(
G(1− b; 1)G(1− a;x)−G(1− a, 1− b;x)−G(1− b, 1− a; 1)

)
−2πi sgn(Im(a))T(1, x; 1− a)

(
G(1− b, 1− c, 0; 1− a)−G(1− b, 1− c, 0; 1)+G(1− c, 0; 1)

×
(
G(1− b; 1)−G(1− b; 1− a)

))
− 2πi sgn(Im(b))T(1, x; 1− b)

(
G(1− c, 0; 1− b)

−G(1− c, 0; 1)
)(
−G(1− a; 1− b)+G(1− a;x)−2πi sgn(Im(a))T(P(1, x; 1− b), x; 1− a)

)
−2πi sgn(Im(c))T(1, x; 1− c)G(1− c; 0)

(
G(1− a, 1− b;x) +G(1− b, 1− a; 1− c)

−G(1− a;x)G(1− b; 1− c)− 2πi sgn(Im(a))T(P(1, x; 1− c), x; 1− a)
(
G(1− b; 1− a)

−G(1− b; 1− c)
)
− 2πi sgn(Im(b))T(P(1, x; 1− c), x; 1− b)

(
G(1− a;x)−G(1− a; 1− b)

−2πi sgn(Im(a))T(P(1, x; 1− b), x; 1− a)
))

. (3.6)

– 7 –

a

b

P (a, b; x)

x

Re

Im

Figure 1. This figure shows the triangle that is spanned by the points 0, a and b in the complex
plane. The function T as given by eq. (3.3) evaluates to one whenever the point x is inside the
triangle, and to zero otherwise. P(a, b;x) denotes the point where the radial line going through x
and the line between a and b cross.

In the relations (3.2), (3.4) and (3.6) above, the letters a, b, c are assumed to be different
from each other and non-zero. The relations follow a pattern and can be extended to these
cases and also to higher weights. The crucial point here is that the above formulae are
exact for any complex values of the parameters5. This is achieved by the introduction of
the “triangle” function T in (3.3), which appears naturally when performing the integrals
recursively while taking into account the pole of the integrand. In particular, the functions
T appearing in the expressions above cancel exactly the discontinuities [31] along spurious
branch cuts, in the complex plane of the letters a, b, c for any fixed x, that are introduced
by the various GPLs in the expression. At the same time they also correctly reproduce
the discontinuities along the true branch cuts of the corresponding GPL. The simplest case
where this can be seen is the weight two formula (3.2): the branch cuts in the complex
plane of a along the two lines connecting the pairs of points (1, 1−x) and (0, 1) respectively
are removed by the last term −2πi sgn(Im(a))T(1, x; 1 − a)G(0, 1 − a). Simultaneously,
this same term correctly reproduces6 the discontinuity along the branch cut connecting the
true branch points 0 and 1− x.

Whenever any of the letters a, b, c lie exactly on the lines defining the triangle function
T, one encounters an undefined θ(0) and an infinitesimal perturbation of x is required to
remove the letter off of the line such that the appearance of θ(0) is avoided7. If the letters
lie along a spurious branch cut, the result will be independent of the exact value of the

5Whenever Im(x̄(a− b)) = 0, one may safely set T = 0.
6In order to see this, note that the three lines connecting the pairs of points (1, 1−x), (0, 1) and (0, 1−x)

in the complex space of a corresponds to three lines connecting the pairs of points (0, x), (0, 1) and (1, x) in
the complex space of 1−a which equals exactly the three sides of the triangle defined by T(1, x; 1−a) in fig. 1.
Using the fact that the discontinuity of the functions log(x) and Li2(x) along their branch cuts equal 2πi and
2πi log(x) respectively, one may see that the discontinuity of G(1−a, 0;x) = G(1−a;x)G(0;x)−G(0, 1−a;x)

and G(1 − a, 0; 1) = −G(0, 1 − a; 1) along the lines connecting the points (1, 1 − x) and (0, 1) respectively
is exactly 2πiG(0; 1 − a). It can similarly be shown that 2πiG(0; 1 − a) is the correct discontinuity of
G(a, 1; 1− x) along the true branch cut.

7For the sgn factors in the expression a zero as argument is not an issue, since whenever sgn(0) appears
it will multiply a vanishing T function.

– 8 –

perturbation in x, as long as it is small enough and does not result in the crossing of a true
branch cut by the letters. However if any of the letters lie along a true branch cut of the
GPL, i.e. if for example a/(1−x) ∈ (0, 1), a perturbation in x is required to make the GPL
well defined to begin with (we refer to the discussion below eq. (2.15)), which will then
make sure that again a θ(0) in T is avoided. These considerations are for example already
required for the stuffle identities (2.10) and similar issues have also been discussed about
in the context of GPL identities [20] and Feynman integrals [24]. Lastly it is important to
note that all the triangle functions T in the relations (3.2), (3.4) and (3.6) vanish whenever
the absolute values of the letters a, b, c are larger than one and the absolute value of the
argument 1− x.

The letters appearing in the above 1 − x transformation rules are all of the form one
minus the letter in the original GPL. In particular the GPLs of highest weight that appear
on the right hand sides of the relations have one letter equal to zero. Therefore if we start
with any GPL up to weight four and then rescale for example its right most letter to one,
assuming it is non-zero, and afterwards apply (3.2), (3.4) and/or (3.6), one may express
any GPL of weight n ≤ 4 in terms of a sum of weight n GPLs where at least one letter is set
to zero plus a combination of lower weight GPLs. In general when the GPL has n0 letters
that are the same, we may rescale all of them to one and apply similar relations as above
to express it in terms of weight n GPLs with all least n0 zero letters plus a combination of
lower weight GPLs. In this way the basis integrals are further reduced to

weight 1 : G(a; 1)

weight 2 : G(0, a; 1)

weight 3 : G(0, a, b; 1), G(0, 0, a; 1)

weight 4 : G(0, a, b, c; 1), G(0, a, 0, b; 1), G(0, 0, 0, a; 1). (3.7)

Before continuing we will mention one alternative to the 1 − x identities. That is
applying the Hölder convolution (2.13), such that any GPL of arbitrary weight n may be
expressed in terms of GPLs with weight n with at least one letter equal to zero, plus a
combination of lower weight GPLs

G (z1, . . . , zn−1, 1;x) = G (z1, . . . , zn−1, 1; 1)− (−1)nG (0, 1− zn−1, . . . , 1− z1; 1− x)

−
n−1∑
i=1

(−1)iG (1− zi, 1− zi−1, ..., 1− z1; 1− x)G (zi+1, ..., zk;x)

= (−1)n(G (0, 1− zn−1, . . . , 1− z1; 1)−G (0, 1− zn−1, . . . , 1− z1; 1− x))

−
n−1∑
i=1

(−1)iG (1− zi, 1− zi−1, ..., 1− z1; 1− x)G (zi+1, ..., zk;x) . (3.8)

We have applied (2.13) twice on the termG (z1, . . . , zn−1, 1; 1) in the above equation, namely
once for the first equation with q = x and once again with q = 0 resulting in the second
equation, both times assuming z1 6= 1. Yet for our reductions we have not used the Hölder
convolution but instead the 1−x identities in (3.2), (3.4) and (3.6) as previously mentioned.

– 9 –

In the next section we give expressions for G(0, a, b; 1) and G(0, a, b, c; 1) that can be
reduced to classical polylogarithms and Li2,2. Therefore the final set of basis functions up
to weight four will be shown explicitly to be the logarithm, the classical polylogarithms Li2,
Li3, and Li4, and the function Li2,2, which can itself not be further reduced to polylogarithms
and which therefore may be considered as a candidate for a standard function.

4 Expressions for GPLs

In this section we list expressions for some GPLs of weight ≤ 4, that are valid for all values
of the complex parameters and depend only on rational combinations of the letters. At
weight one, two expressions are enough to describe the entire complex domain

G(0;x) = log(x) G(a;x) = log
(
1− x

a

)
for a 6= 0 . (4.1)

At weight two we likewise have to have separate expressions depending on whether the
letters are zero or non-zero, and also depending on whether or not they are equal

G(0, 0;x) = 1
2 log2(x) G(0, a;x) = −Li2

(
x
a

)
G(a, 0;x) = log(x) log

(
1− x

a

)
+ Li2

(
x
a

)
G(a, a;x) = 1

2 log2
(
1− x

a

)
(4.2)

G(a, b;x) =

{
Li2
(
b−x
b−a

)
− Li2

(
b

b−a

)
+ log

(
1− x

b

)
log
(
x−a
b−a

)
when

∣∣Im(ax)
∣∣ > ∣∣Im(bx)

∣∣
Li2
(

a
a−b

)
− Li2

(
a−x
a−b

)
+ log

(
1− x

a

)
log
(
b−a
b

)
otherwise.

The latter of the above expressions is our first example in which a single expression is
insufficient to cover all complex values of the function arguments. However, if we admit
Heaviside θ functions in our expressions we may use eq. (3.2) to write the latter expression
as

G(a, b;x) = Li2
(
b−x
b−a

)
− Li2

(
b

b−a

)
+ log

(
1− x

b

)
log
(
x−a
b−a

)
+2πi sgn

(
Im
(
b
x

))
log
(
1− a

b

)
T
(
1, 1− x

b ; 1− a
b

)
, (4.3)

where the function T is given in the previous section.
This approach of writing the GPLs as single expressions with possible θ functions is so

general that it extends to weight four as we will show explicitly in the following. For the
remainder of this section we will without loss of generality rescale the argument x to one.
At weight three we may apply eq. (3.4) to express a GPL in terms of weight three GPLs
with at least one letter being zero plus a combination of lower weight GPLs. The remaining
function which is required according to eq. (3.7) is therefore

G(0, a, b; 1) = −Li3
(
a−ab
a−b

)
− Li3

(
− b
a−b

)
+ Li3

(
b−1
b−a

)
+ Li3

(
1
a

)
+ Li3(1− b)

+ log
(
b−1
b

)(
Li2
(
a−ab
a−b

)
− Li2

(
b−1
b−a

)
− Li2(1− b)

)
− 1

6 log3
(
ab
a−b

)
+1

2 log2
(
b−1
b

)(
log
(

(a−1)b
a−b

)
− log(b)− log

(
a−1
a−b

))
− 1

6π
2 log

(
ab
a−b

)
+ log3(b)

6 + 1
6π

2 log(b) + iπ log2
(
b−a
ab

)
sgn(Im(b))H1(a, b)

+iπ log2
(
b−a
b

)
T
(
1, 1− 1

b , 1−
a
b

)
sgn
(
Im
(
a
b

))
. (4.4)

– 10 –

The above expression may be obtained by extending the derivations and results in section
8.4 of [33] to the whole complex plane. It is valid whenever a and b are different and
non-zero. The function H1 that appears in eq. (4.4) above is defined as8

H1(a, b) ≡ θ
(

min
(

1, |a|
2Im(b)

Im(āb)

)
− r(a, b)

)
θ(r(a, b)) ,

r(a, b) ≡ |a|
2Im(b)−|b|2Im(a)

Im(āb) . (4.5)

The above expressions explicitly reproduce the known result [20, 33] that GPLs up to weight
three can be expressed in terms of Li3,Li2 and logarithms for any complex values of the
parameters. The explicit results for all GPLs at weight 3 are given in app. E.

According to the list (3.7), at weight four we need to compute the functionG(0, a, b, c; 1),
which is related by shuffle identities to G(a, b, c, 0; 1). Assume henceforth that the arbi-
trary complex letters a, b, c are different and non-zero. In order to compute G(0, a, b, c; 1),
G(a, 0, b, c; 1), G(a, b, 0, c; 1) and G(a, b, c, 0; 1) we consider directly their definition in eq.
(2.1) and plug in the analytic expressions of the weight three GPLs found above. By sub-
tracting contributions to the above four GPLs that do not integrate directly to Li2,2 or
Lin≤4 by standard integration techniques, and relating the remainders denoted below as G̃,
by stuffle identities it follows that G(a, b, c, 0; 1) can be expressed as

G(a, b, c, 0; 1) = −G
(
0, a, 0, cb ; 1

)
+ 1

2G
(
0, a, 0, acb ; 1

)
−G

(
0, a, 0, bc ; 1

)
−G

(
a, 0, 0, cb ; 1

)
+1

2G
(
0, a, 0, abc ; 1

)
+ 1

2G
(
0, cb , 0,

c
ab ; 1

)
− 1

2G
(
0, acb , 0, a; 1

)
− 1

2G
(
0, cab , 0,

c
b ; 1
)

+1
2G
(
0, bc , 0,

b
ac ; 1

)
− 1

2G
(
0, abc , 0, a; 1

)
− 1

2G
(
0, bac , 0,

b
c ; 1
)
−G

(
0, 0, 0, ab ; 1

)
+1

2G
(
0, ba , 0, b; 1

)
− 1

4G
(
0, a, 0, ab ; 1

)
+ 3

4G(0, a, 0, b; 1)− 1
2G
(
0, 1

b , 0,
a
b ; 1
)

−1
4G
(
0, ab , 0, a; 1

)
+ 1

2G
(
0, ab , 0,

1
b ; 1
)
− 1

2G
(
0, b, 0, ba ; 1

)
− 1

4G(0, b, 0, a; 1)

+1
2G
(
a, 0, ab , 0; 1

)
+ 1

2G
(
a, ab , 0, 0; 1

)
−G

(
0, 0, 0, ac ; 1

)
+ 1

2G
(
0, ca , 0, c; 1

)
−1

4G
(
0, a, 0, ac ; 1

)
+ 3

4G(0, a, 0, c; 1)− 1
2G
(
0, 1

c , 0,
a
c ; 1
)
− 1

4G
(
0, ac , 0, a; 1

)
+1

2G
(
0, ac , 0,

1
c ; 1
)
− 1

2G
(
0, c, 0, ca ; 1

)
− 1

4G(0, c, 0, a; 1)− 1
2G(a, 0, c, 0; 1)

−3
2G(a, c, 0, 0; 1)− 4G(0, 0, 0, a; 1)−G

(
0, 0, 0, cb ; 1

)
−G

(
0, 0, 0, bc ; 1

)
+G(0, 0, 0, b; 1) +G(0, 0, 0, c; 1) + 1

2

(
−G̃

(
a, 0, ab ,

a
c ; 1
)

+ G̃
(
a, 0, bc , b; 1

)
+G̃

(
a, 0, bc ,

a
c ; 1
)

+ G̃(a, 0, c, b; 1)
)

+ S(a, b, c, 0; 1) . (4.6)

The last function S(a, b, c, 0; 1) in eq. (4.6) is given in app. E and is combination of GPLs
up to weight 3, while

G̃(a, 0, b, c; 1) ≡ G(a, 0, b, c; 1)−
∫ 1

0

G(c;x)G(0, b;x)

x− a
dx

= −
∫ 1

0

G(c, 0, b;x) +G(0, c, b;x)

x− a
dx (4.7)

is the remaining contribution from G(a, 0, b, c; 1) that does integrate directly to Li2,2 and
Lin≤4 by standard integration techniques. Note that all GPLs shown in eq. (4.6) have at

8Whenever Im(āb) = 0, one may safely set H1 = 0.

– 11 –

least two zero letters and may therefore be expressed in terms of Li2,2, polylogarithms and
logarithms. What is thus left is to express G̃(a, 0, b, c; 1) in terms of Li2,2 and polyloga-
rithms. For this purpose the following observation is useful, namely whenever x ∈ [0, 1]

G
(

0, 0, 1; b(x−c)x(b−c)

)
= −(G(0, c, b;x) +G(c, 0, b;x)) +G(c, c, b;x) +G(0, 0, b;x)

−G(0, 0, c;x) +G(0, c, c;x) +G(c, 0, c;x)−G(c, c, c;x)− 1
6 log3

(
−x(b−c)
b(x−c)

)
(4.8)

−1
6π

2 log
(
−x(b−c)
b(x−c)

)
− 2πi sgn (Im(b))H2(b, c)G

(
0, 0; x(b−c)

b(x−c)

)
,

where the function H2 is defined as

H2(a, b) ≡ θ(− Im(a)Im(b))θ(1− r(a, b))θ(r(a, b)) = lim
y→0

T
(

1,−1−a
a ; 1−b

yb

)
. (4.9)

The first two terms in eq. (4.8) are exactly the integrand in eq. (4.7) and therefore, by
direct integration, we finally get

G̃(a, 0, b, c; 1) = −G(a, c, c, b; 1) +G
(
a(b−c)
b(a−c) , 0, 0, 1; b−c

b−bc

)
−G(a, 0, 0, b; 1)

+G(a, 0, 0, c; 1)−G(a, 0, c, c; 1)−G(a, c, 0, c; 1) +G(a, c, c, c; 1)−G
(

1− c
b , 0, 0, 1; b−c

b−bc

)
+H2(b, c)

{
4π2 sgn(Im(b)) sgn(Im(c))H2(c, a)G

(
0, 0; a(b−c)

b(a−c)

)
θ(r(c, a)− r(b, c))

−2πi
{
−sgn(Im(c))

(
G
(
a(b−c)
b(a−c) , 0, 0; 1

)
+G

(
1− c

b , 0, 0; 1− c2

b2

)
−G

(
1− c

b , 0, 0; 1
)

−G
(
a(b−c)
b(a−c) , 0, 0; 1− c2

b2

))
+ sgn(Im(b))

(
G
(
a(b−c)
b(a−c) , 0, 0; 1− c2

b2

)
+G

(
1− c

b , 0, 0; b−c
b−bc

)
−G

(
1− c

b , 0, 0; 1− c2

b2

)
−G

(
a(b−c)
b(a−c) , 0, 0; b−c

b−bc

))}}
−2πi sgn(Im(c))H2(c, a)G

(
0, 0, b(a−c)a(b−c) ; 1

)
. (4.10)

All GPLs in eq. (4.10) have at least two letters equal to zero or two letters which are
the same. By again applying eq. (3.6) the GPLs with two equal letters can expressed in
terms of GPLs with two letters equal to zero, i.e. the basis functions Li2,2,Li4,Li3,Li2 and
logarithms. The complete expression for G(a, b, c, d; 1) in terms of the basis functions can
now be found by combining9 eqs. (3.6), (4.6), (4.10) and (E.17). We refer to the ancillary
files for the explicit expressions for G(0, a, b, c; 1), G(a, b, c, d; 1) and similarly for the cases
where some letters coincide. The functions H1 and H2 serve a similar purpose as the
“triangle” function T for the 1− x identities discussed in the previous section. They cancel
discontinuities along spurious branch cuts and contribute to the correct discontinuities
along true branch cuts in eqs. (4.4) and (4.8) respectively. The way of circumventing the
appearance of an undefined θ(0) by small perturbations of the parameters as discussed
below eq. (3.6) applies similarly here as well.

9The GPLs of weights one, two and three that appear in the final result can be expressed in terms of
the basis functions by our previous results in this section and the expressions given in app. E.

– 12 –

Lastly, we note that eq. (4.8) may be used to derive an alternative expression for
G(0, a, b; 1) that contains the function H2, which is itself related to the triangle function T
(cf. eq. (4.9)), instead of the function H1 as in eq. (4.4). Therefore all GPLs up to weight
four are in principle fully expressible in terms of the basis functions and only the triangle
function T. However, in our ancillary files we kept the expression (4.4) for G(0, a, b; 1) in
terms of the function H1 as it is more compact.

To conclude this section, we have explicitly shown here that the conjecture posed
in [20] is correct, namely that all GPLs up to weight four are expressible in terms of
Li2,2,Li4,Li3,Li2 and logarithms. Furthermore, in the ancillary files we give explicitly a
replacement rule which can be applied to map any GPL up to weight four to the basis
functions for all complex values of the parameters. With these GPLs fully reduced, we will
in the remaining sections discuss the algorithms we use to numerically evaluate the basis
functions.

5 Numerical evaluation of classical polylogarithms

The classical (or Euler) polylogarithm Lin(x) is defined recursively as

Lin(x) =

∫ x

0

dy

y
Lin−1(y) , (5.1)

with

Li1(x) = − log(1− x) . (5.2)

This implies the relation

Lin(x) = −G(0̄n−1, 1, x). (5.3)

Additionally Lin may be expressed as the integral

Lin(x) =
(−1)n

(n− 1)!

∫ 1

0

log(t)n−1

(t− 1/x)
dt , (5.4)

which follows from eq. (2.15).
From eq. (2.5) we get the summed expression

Lin(x) =

∞∑
j=1

xj

jn
, (5.5)

which converges whenever |x|≤ 1. When |x|> 1, Lin(x) may be mapped into the convergent
region using the inversion relation [33]

Lin(x) = (−1)n−1Lin
(

1
x

)
− 1

n! logn(−x) + 2

bn2 c∑
r=1

logn−2r(−x)

(n− 2r)!

(
21−2r − 1

)
ζ(2r) (5.6)

– 13 –

or specifically

Li2(x) = −Li2(1
x)− 1

2 log2(−x)− π2

6 ,

Li3(x) = Li3(1
x)− 1

6 log3(−x)− π2

6 log(−x), (5.7)

Li4(x) = −Li4(1
x)− 1

24 log4(−x)− π2

12 log2(−x)− 7π4

360 .

Close to |x|= 1, the sum of eq. (5.5) converges slowly, making it unsuited for numerical
evaluation. An alternative and widely used algorithm was proposed by R. E. Crandall in ref.
[28], and is based on an expansion in the logarithm of the argument of the Lin(x), in order
to obtain an expression that converges quickly even when |x|≈ 1 and n is a small number.
The algorithm which we propose in the current section is based on similar considerations.
The expansion in question is [28, 33]

Lin
(
e−α

)
=

(−α)n−1

(n− 1)!
(Hn−1 − log(α)) +

∞∑
m=0

m6=n−1

ζ(n−m)

m!
(−α)m , (5.8)

where α = − log(x), Hn denote the harmonic numbers, and ζ(x) the Riemann zeta function.
We recall that ζ(−n) = −Bn+1/(n+1) for n ≥ 1, with Bn denoting the Bernoulli numbers.
Specifically this gives

Li2
(
e−α

)
= π2

6 − α−
1
4α

2 + α log(α) +
∞∑
n=1

B2n
2n(2n+1)!α

2n+1 ,

Li3
(
e−α

)
= ζ3 − π2

6 α+ 3
4α

2 + 1
12α

3 − 1
2α

2 log(α)−
∞∑
n=1

B2n
2n(2n+2)!α

2n+2 , (5.9)

Li4
(
e−α

)
= π4

90 − ζ3α+ π2

12α
2 − 11

36α
3 − 1

48α
4 + 1

6α
3 log(α) +

∞∑
n=1

B2n
2n(2n+3)!α

2n+3 .

The factorial decay of the terms in eq. (5.8) makes it converge faster than the defining
sum of eq. (5.5), and for that reason eq. (5.8) is desirable for numerical evaluation.
Crandall’s algorithm evaluates Lin by eq. (5.5) for |x|< x0 where typically x0 = 1/2, by eq.
(5.6) for |x|> |1/x0|, and by eq. (5.8) for |x0|≤ x ≤ |1/x0|. There is, however, an expression
with a similar factorial convergence, that expands Lin(1− e−α) instead, and which thus is
suitable inside the convergent region of eq. (5.5). That expression [26] is

Lin
(
1− e−α

)
=
∞∑
j=0

Cn,jα
j+1

(j + 1)!
(5.10)

with

C1,j = δj,0 and Cn+1, j =

j∑
k=0

(
j

k

)
Bj−k
k + 1

Cn,k . (5.11)

For n = 2 this simplifies to

Li2
(
1− e−α

)
= α− 1

4α
2 +

∞∑
m=1

B2m α
2m+1

(2m+ 1)!
, (5.12)

– 14 –

with no such simplifications for higher n. In any case, the coefficients Cn,j in (5.11) can
be calculated once and stored in the numerical code, such that recalculating them is not
needed when evaluating the Lin in a specific point.

1 20-1
Re(

Im
(

)x

x)

-1

0

1

A B

CC

A

2

1

1

2

Figure 2. This figure shows which expression for Lin(x) is used for which values of x. In region A
we use eq. (5.10), in region B we use eq. (5.8), and in region C we use eq. (5.6) to map into region
A with C1 mapping to A1 and C2 to A2.

In our algorithm, we choose to evaluate Lin(x) using eqs. (5.8) and (5.10) together
with the inversion formula eq. (5.6) to map to the convergent regions. We use eq. (5.10)
whenever Re(x) ≤ 1

2 and |x|≤ 1, eq. (5.8) whenever Re(x) > 1
2 and |x − 1|≤ 1, and eq.

(5.6) combined with eq. (5.10) otherwise. See fig. 2.
For a detailed discussion of the evaluation of classical polylogarithms and the relations

between them, see [26, 33].

6 Numerical evaluation of Li2,2(x, y)

Li2,2(x, y) is, as can be seen from eq. (2.5), defined as the sum

Li2,2(x, y) =
∞∑

i>j>0

xi yj

i2 j2
, (6.1)

which converges whenever |x|≤ 1 and |xy|≤ 1. Additionally it may be expressed as a GPL
through eq. (2.16), and as the one-dimensional integral

Li2,2(x, y) =

∫ 1

0

log(z)Li2(xyz)

z − 1
x

dz , (6.2)

which follows from eq. (2.15).
Outside the region of convergence of eq. (6.1) two relations are needed in order to map

to the convergent region. One is the stuffle relation (eq. (2.10)) which for the case of Li2,2
becomes

Li2,2(x, y) = −Li2,2(y, x)− Li4(xy) + Li2(x)Li2(y) , (6.3)

– 15 –

|x| |xy|
< 1 < 1 no mapping needed
> 1 < 1 stuffle, eq. (6.3)
> 1 > 1 inversion, eq. (6.4)
< 1 > 1 stuffle and inversion

Table 1. A procedure for mapping Li2,2(x, y) to the convergent region. For the case of equalities
both cases are in principle applicable.

and which is seen to effectively swap the two arguments. The other needed relation is

Li2,2(x, y) = Li2,2(1
x ,

1
y)− Li4(xy) + 3

(
Li4(1

x) + Li4(y)
)

+ 2
(
Li3(1

x)− Li3(y)
)

log(−xy)

+ Li2(1
x)

(
π2

6
+

log2(−xy)

2

)
+

1

2
Li2(y)

(
log2(−xy)− log2(−x)

)
, (6.4)

which is our generalization of the inversion relation eq. (5.6) for the case of Lin, to Li2,2.
As for other similar relations, this inversion relation requires non-zero imaginary parts on
x, y, and xy in order to be guaranteed correct.

That eqs. (6.3) and (6.4) together can map the whole phase space to the convergent
region can be realized from table 1. That algorithm lays the basis for our implementation
of Li2,2.

Due to the slow convergence of eq. (6.1) for values of |x| or |xy| close to one, it is
desirable to use another, faster converging expression for these regions in the spirit of eqs.
(5.10) and (5.8) for Lin. In ref. [26] eq. (5.10) is generalized to a larger class of functions,
the harmonic polylogarithms, a class which does not include Li2,2. Yet following steps
similar to those of section 4.3 of ref. [26] we derive (see appendix B for more details)

Li2,2(x, y) =

∞∑
i=0

∞∑
j=1

αiβj
(
CAij + CBij (log(β)−log(xy))

)
(6.5)

+

∞∑
i=1

αi
(
CCi log(1− β

α) + CDi

(
Li2(βα) + log(1− β

α)(log(β)−log(xy))
))

,

where

α = − log(1− y) , β = − log(1− xy) , (6.6)

and where the Cs denote constants for which the expressions are given in appendix B, but
which may be calculated once and stored, an approach which we use for our implementation.

Also eq. (5.8) may be generalized to the case of Li2,2(x, y) (see appendix B for more

– 16 –

details) with the result

Li2,2(x, y) =

∞∑
i=0

∞∑
j=0

β̃iα̃j
(
KA
ij +KB

ij log(β̃) +KC
ij log(β̃ + ξ0)

)
+
∞∑
i=0

α̃i
(
KD
i + β̃KE

i

)(
log(α̃+ β̃)− log(α̃+ β̃ + ξ0)

)
(6.7)

+ F(α̃, β̃, ξ0) + Li2,2(xe−ξ0 , y) + ξ0Li1,2(xe−ξ0 , y) ,

where

α̃ = log(y) , β̃ = − log(xy) , (6.8)

where F(α̃, β̃, ξ0) is a rather simple function given in appendix B. Expressions for the ξ0-
dependent coefficients K are likewise given in appendix B, but note that for a fixed value
of ξ0, the coefficients may be calculated once and stored as it was the case for eq. (6.5). A
larger value of the parameter ξ0 decreases the convergence rate of the series expansions in
α̃, β̃ in (6.7), while simultaneously increasing the convergence rate of the two MPLs on the
last line of eq. (6.7). We have chosen the fixed value ξ0 = 1 for our implementation.

log 10 H C ijL

5
10

15

20
j

5
10

15

20
i

- 20
-15
-10
- 5

0

Figure 3. This figure shows the values of the coefficients of eq. (6.1) (blue) and eq. (6.7) (red)
where the latter is taken to be KA

ij + KB
ij log(β̃) + KC

ij log(β̃ + ξ0) evaluated at β̃ = 2 and ξ0 = 1.
The faster convergence of eq. (6.7) (as a function of the number of terms) is clearly visible.

Unlike the case for Lin, it is not always preferable to use eqs. (6.5) or (6.7) instead
of the original defining sum eq. (6.1) for reasons of timing. We realize that a precision
corresponding to terminating the sum of eq. (6.1) at i = N will include around N2/2

terms. But from the factorization property of eq. (6.1), i.e. the fact that it can be
written as

∑
ij f(i)g(j), one may realize that a proper recursive implementation of the

sum will scale10 as only 2N , i.e. linearly rather than quadratically. This property is not
(seemingly) shared by the logarithmic expansions of eqs. (6.5) or (6.7), thus while their
faster convergence corresponds to a smaller value of N (as shown in fig. 3), their timing
will still be worse in most cases.

For our implementation we split the evaluation of Li2,2(x, y) into a number of regions,
as illustrated in fig. 4. The left figure shows the general case. In region A we use the

10This is also true for the general Lim1,...,mn . A calculation with a cut-off at i = N will include approxi-
mately Nn/(n!) terms, but the timing will scale linearly as nN .

– 17 –

0.5 1.0 1.5 2.0 2.50.0

B

A

C

D

E

E

E

E
A

B

F
GH

C

D

0-π -π/2

φ

φ

x

xy

F

F F

F
F

FB

B

G
G G

G

G
GG

G
H

x

y

0.0

0.5

1.0

1.5

2.0

2.5

-π π/2 π

-π/2

0

π/2

π

Figure 4. This figure is a slightly simplified illustration of the regions into which we split the
evaluation of Li2,2(x, y) as described in the main text. Not shown on the figure is the fact that
region C is used in place of D whenever |x|> 3.5.

defining sum eq. (6.1). In region B we combine it with stuffle (eq. (6.3)), in region C with
inversion (eq. (6.4)) and in region D with both. In regions E we apply a resummed version
of eq. (6.1) in which we analytically perform the sum of the ’diagonal’ terms with fixed
i − j. In the sub-regions it gets combined with EA: nothing, EB: stuffle, EC : inversion,
ED: stuffle and inversion. FGH on the left figure denotes an area in which both |x| and
|xy| are close to one. In that case we use the regions shown on the right figure. In regions
F we apply the Hölder formula eq. (2.13) with q = 2 to map to the convergent region (see
[26]), and in the sub-region FB this is combined with the stuffle relation. In regions G we
apply eq. (6.5), and finally in region H, when one of the variables are close to (actual) one,
we apply eq. (6.7). Additionally we choose (everywhere except in regions A and B) to use
the formulae of app. A when applicable.

Considerations on series acceleration

In order to improve the numerical convergence of Li2,2(x, y) for (|x|∼ 1, |y|∼ 1) we have
tried different strategies. For instance we tried to perform the analytic continuation of the
series of eq. (6.1) from x = 0 to x = x0, where for example x0 = −1/2. We also tried to
apply some series acceleration techniques that are explained for example in refs. [35–37]11.
Unfortunately, to the best of our knowledge, no transformation that works for our specific
problem is known. For any transformation that we attempted the convergence is improved
in some specific values of (x, y) but not in others, without any obvious pattern.

For this reason, we decided to not use such a procedure, even though it would be
interesting to perform more detailed studies in this direction.

11One of us (D.T.) would like to thank Dr. E. J. Weniger and Dr. R. Borghi for their kind suggestions
and private communication on the topic.

– 18 –

7 The added code

Alongside the paper we publish a number of ancillary files containing our implementation
of the results from the previous four sections and from appendix C. These are gtolrules.m,
gtolexample.nb, lievaluate.cpp, constants.cpp, lievaluateexample.cpp,
lievaluateinterface.tm, MakefileLinux, MakefileMAC, and interfaceexample.nb.

The reductions

The file gtolrules.m contains the implementation of the relations mapping GPLs to
log, Lin, and Li2,2 as described in sections 3 and 4. It has been implemented such that
G(a1, . . . , an;x) have separate relations for any combinations of ai = aj , ai = x, and ai = 0

(the trivial cases of x = 0 are treated separately). This means that for instance at weight
two there are separate relations for

G(0, 0;x), G(0, x;x), G(0, a;x), G(x, 0;x), G(a, 0;x) ,

G(x, x;x), G(a, a;x), G(x, a;x), G(a, x;x), G(a, b;x) .
(7.1)

Whenever G(a1, . . . , an;x) has x = a1, the result will diverge (unless x = a1 = 1 and
a2 = · · · = an = 0), as can be seen from the definition of eq. (2.1) and from the specific
expressions in section 4. That divergence is made explicit in the replacement rules by
isolating it as powers of the divergent G(x;x) which we express in Mathematica as the
symbol log0. This is done using the shuffle rules of eq. (2.4) as described in ref. [38]. Thus
for example the divergent G(x, a;x) is implemented as

G(x, a;x) = G(x;x)G(a;x)−G(a, x;x) = log0 log
(
1− x

a

)
+ Li2(x

x−a) . (7.2)

While this treatment of divergences has been applied systematically, there may still be
ambiguities with the divergences since no specification of the way the diverging limit is
taken is given. We advise the user to take systematic care of any divergences before applying
our reductions.

Specifically the reduction is implemented in Mathematica as a set of replacement rules
named gtolrules. Applying gtolrules to an expression containing a symbolic function
called G of two12 to five arguments, will apply the mappings to the Gs and express the result
in terms of the symbolic functions MyLog, MyLi, and MyLi22, and the symbolic functions
denoted MyT, MyP, MyR, MyH1, MyH2, and MyTH, which correspond to the various combinations
of Heaviside θ-functions described in sections 3 and 4. Additionally gtolrules.m contains
the replacement rules logback which substitutes Log and PolyLog for MyLog and MyLi, and
the replacement rules thetaback which substitutes the expressions for the θ-functions in.

gtolrules.m also contains our results of the 13 integrals listed in appendix C. They
are implemented as the replacement rule itogrules, which replace the symbolic function
I1 to I13 as defined in the appendix, with their expressions in terms of GPLs.

The Mathematica notebook gtolexample.nb contains an example of the use of these
replacement rules.

12We chose to not implement the trivial G(;x) = 1.

– 19 –

The numerical evaluation

The files lievaluate.cpp and constants.cpp contain our C++ implementations of Lim(x)

and Li2,2(x, y), described in sections 5 and 6. lievaluate.cpp contains mainly functions,
and constants.cpp a large number of constants needed by the functions. The functions
meant for the user are declared as

complex<double> li1(complex<double> &x);
complex<double> li2(complex<double> &x);
complex<double> li3(complex<double> &x);
complex<double> li4(complex<double> &x);
complex<double> li5(complex<double> &x);
complex<double> li6(complex<double> &x);
complex<double> libasic(int n, complex<double> &x);
complex<double> li22basic(complex<double> &x, complex<double> &y);
complex<double> li(int n, complex<double> &x);
complex<double> li22(complex<double> &x, complex<double> &y);

Many additional functions and constants meant for internal use, are also declared in lievaluate.cpp
and constants.cpp, but in order to prevent naming conflicts, they have all been assigned
names starting with the letters ’WTF’ - the initials of the authors.

Of the functions mentioned above, the first six contain our implementation of Li1(x) to
Li6(x). Li1(x) is implemented through the definition eq. (5.2), while the others are imple-
mented as described in section 5. libasic calls these six functions for the corresponding
values of n, and returns zero and prints a warning for other values. Likewise the function
li22basic contains our implementation of Li2,2(x, y) as described in section 6.

For some values of the arguments where the integral of eq. (2.1) hits a branch-cut,
GPLs are not well defined, but need an ε-prescription. We follow the prescription of ref.
[26] as explained below eq. (2.15), which is that G(a1, . . . , an;x)→ G(a1, . . . , an;x(1− iε))
in these cases. This corresponds to

Lin(x)→ Lin(x(1− iε)) and Li2,2(x, y)→ Li2,2(x(1− iε), y) . (7.3)

In the functions li and li22 we have implemented this prescription, together with a similar
regularization which is needed internally for real values of y in Li2,2(x, y).

The added file lievaluateexample.cpp contains three examples of the use of the code,
illustrating how to include it, and how to use the functions. Please note that all the
functions call their arguments ’by reference’, which implies that calling a function with a
number directly (such as li4(-2.3)) is invalid.

The files lievaluateinterface.tm, MakefileLinux and MakefileMAC are used for the
Mathematica interface to our code, which is made using the MathLink protocol under
the Linux or OS X operating systems. One should use the proper makefile according to
the operating system and rename it to Makefile. Please follow the instructions which
are written as comments in Makefile on how to set up and compile the interface. For
completion, all the functions mentioned above are included as Mathematica versions. The
file interfaceexample.nb contains examples on how to use this interface.

– 20 –

Performance of ’lievaluate’.

The precision of the double format used by C++ allows for 15-17 significant digits. Due
to numerical instabilities we do not always attain that level of precision, but of 10000

evaluations of li22(x,y) of random13 arguments, none had a relative deviation (i.e. 2|a−ba+b |)
from the true value greater than 10−13. We have also performed many tests in extreme
cases, such as cases with arguments very close to zero or one, and found similar levels of
agreement.

8 Discussion

In this paper we presented relations expressing any generalized polylogarithm up to weight
four in terms of a basis of logarithms, classical polylogarithms, and the function Li2,2.
Additionally we presented algorithms allowing the evaluation of these functions anywhere
in complex phase space.

To express a Feynman integral expressible in terms of GPLs, using such a basis, may be
done in general using the symbol map [4, 20] and its co-product based generalization [31] in
which a minimal basis of functions gets fitted to the ’symbol’ of the Feynman integral. The
expressions presented in this paper will not in general produce as compact expressions, since
the functional basis used in section 4 is calculated at the level of the individual GPL, rather
than at the level of the entire expression. Additionally our expressions for the reductions
have not been fully simplified or optimized with respect to size or computation time.

Yet from the point of view of numerical evaluation of GPLs of general complex vari-
ables, we believe our method to be highly competitive. When faced with this problem one
previously had three options. A generally inefficient numerical integration from the defini-
tion of eq. (2.1), a potentially highly demanding reduction using symbols, and an iterated
series of algebraic manipulations of the GPLs as implemented for example in GiNaC [26],
which in the end potentially requires the evaluation of a vastly increased number of GPLs.

In conclusion, our expressions should firstly be regarded as a proof of concept that
such a reduction is possible in all cases, something which was only conjectured in [20], and
additionally as an alternative way to obtain numerical expressions for GPLs using only
numerical implementations of Lin and Li2,2, such as those described in sections 5 and 6 and
added as described in section 7.

We regard our over-all approach to the evaluation of Li2,2, as described in table 1, to
be solid. But the expressions, eqs. (6.5) and (6.7) that we use for the evaluation in slowly
convergent regions have room for improvement. Perhaps it is possible to resum some of the
terms, or reexpress them in a way that allows for a quicker evaluation as it is the case for
the defining sum of eq. (6.1). Another option could be to continue the investigation of the
series acceleration techniques mentioned at the end of section 6.

There is nothing which in principle prevents the approach used in this paper from being
extended to higher weights, such as the six which are needed for three-loop calculations.
Extending to weight six is conjectured in ref. [20] to require the extra special functions

13Where the absolute values were chosen exponentially distributed between e−10 and e10.

– 21 –

Li2,3, Li2,4, Li3,3, and Li2,2,2, and they may likely be evaluated using an approach similar to
that which we propose for Li2,2. The reduction to such a set, will require the evaluation of
a large number of integrals, similar to higher weight versions of those listed in section 4 and
appendix C, and it is that step which we believe to be the biggest obstacle for continuing.

Acknowledgments

The authors would like to thank Costas Papadopoulos, Thomas Gehrmann, Andreas von
Manteuffel, Erik Panzer, Narek Martirosyan, Yang Zhang, Francesco Coradeschi, Ernst
Joachim Weniger, and Riccardo Borghi for useful discussions.

In particular we would like to thank Thomas Gehrmann and Costas Papadopoulos for
their helpful coments on the draft in its intermediate stages.

This work was primarily performed at NCSR Demokritos. CW and DT were primarily
supported by the Research Funding Program ARISTEIA, HOCTools (co-financed by the
European Union (European Social Fund ESF) and Greek national funds through the Op-
erational Program "Education and Lifelong Learning" of the National Strategic Reference
Framework (NSRF)). The work of HF is supported by the European Commission through
the HiggsTools Initial Training Network PITN-GA-2012-316704.

A Li2,2(x, y) in special points

In this appendix we list expressions for Li2,2(x, y) at various special values, in terms of
simpler functions.

Li2,2(0, x) = 0 , Li2,2(1, 1) =
π4

120
= 3

4ζ4 ,

Li2,2(x, 0) = 0 , Li2,2(−1,−1) = − π4

480
= − 3

16ζ4 , (A.1)

Li2,2(x, x) =
1

2

(
Li 2

2 (x)− Li4(x2)
)
, (A.2)

Li2,2(1
x , x)= 3Li4(x)− 1

2
Li2(x)

(
Li2(x) + log2(−x) + π2

)
− π4

90
, (A.3)

Li2,2(x, 1) = −2
(
Li4(1

1−x) + Li4(x
x−1) + Li4(x)

)
+ 2Li3(x) log(1− x)

+
1

2
Li 2

2 (x)− 1

6
log4(1− x) +

1

3
log3(1− x) log(−x) (A.4)

+
π2

6
log2(1− x)− 2ζ3 log(1− x) +

π4

45
.

Note that Li2,2(x, 1) is equivalent to the harmonic polylogarithm G(0, 1, 0, 1;x). An expres-
sion for Li2,2(1, x) may be obtained from the above using the stuffle relation of eq. (6.3).
We note that some of the above relations require nonzero imaginary part of x in order to
be well defined and correct.

– 22 –

B Details of Li2,2 expressions

In this appendix we sketch the derivations of eqs. (6.5) and (6.7) and list the constants
appearing in their expressions.

In order to derive eq (6.5), we start from eq. (6.2) and apply variable substitutions

Li2,2(x, y) =

∫ p

0

log
(

1−e−q

xy

)
Li2(1− e−q)

eq−t − 1
dq , (B.1)

where

q = − log (1− xyz) , p = − log(1− xy) , t = − log(1− y) .

We expand all terms by the following

log
(

1−e−q

xy

)
= log

(
1
xy

)
+ log(q) +

∞∑
i=0

Bi+1q
i+1

(i+ 1)(i+ 1)!
,

1

eq−t − 1
=

1

q − t
+
∞∑
i=0

Bi+1(q − t)i

(i+ 1)!
,

Li2
(
1− e−q

)
=
∞∑
i=0

qi+1Bi
(i+ 1)!

. (B.2)

Note the last expression is equivalent to eq. (5.12). After performing all integrations we
obtain eq. (6.5).

The constants of eq. (6.5) are

CAij = (1− δj,1 − δj,2)(−1)i
j−3∑
ν=0

(
i+ ν

ν

)
Bi+ν+1

(i+ ν + 1)!

j−3−ν∑
µ=0

Bµ+1Bj−3−ν−µ
(µ+ 1) (µ+ 1)! j (j − 2− ν − µ)!

+ (1− δj,1)(−1)i+1
j−2∑
ν=0

(
i+ ν

ν

)
Bj−ν−2Bi+ν+1

j2 (j − ν − 1)! (i+ ν + 1)!

+ (1− δi,0δj,1)

i+j−2∑
ν=0

Bν+1Bi+j−ν−2

j (ν + 1) (ν + 1)! (i+ j − ν − 1)!
− Bi+j−1

j2 (i+ j)!
, (B.3)

CBij = (1− δj,1)(−1)i
j−2∑
ν=0

(
i+ ν

ν

)
Bi+ν+1Bj−ν−2

j (i+ ν + 1)! (j − ν − 1)!
+

Bi+j−1

j (i+ j)!
,

CCi = (1− δi,1)

i−2∑
ν=0

Bν+1Bi−ν−2

(ν + 1) (ν + 1)! (i− ν − 1)!
,

CDi =
Bi−1

i!
. (B.4)

To obtain eq. (6.7), one splits up the integral (6.2) in two integrals, namely over the two
intervals [0, exp(−ξ0)] and [exp(−ξ0), 1], where ξ0 is an arbitrarily chosen positive number.

– 23 –

Li2,2(x, y) = f1 + f2 (B.5)

where

f1 =

∫ exp(−ξ0)

0

log(t)Li2(txy)

t− 1/x
dt ,

f2 =

∫ 1

exp(−ξ0)

log(t)Li2(txy)

t− 1/x
dt =

∫ β̃

β̃+ξ0

(β̃ − z)Li2(e−z)
ez+α̃ − 1

dz , (B.6)

and

β̃ = − log(xy) , α̃ = log(y) , z = − log(txy) . (B.7)

In the first integral f1 one rescales the variable as t → t/exp(−ξ0) and expresses the
integral in terms of a sum of an Li2,2 and Li1,2 with argument (xe−ξ0 , y). For ξ0 large
enough, one may then safely use the convergent series expressions (2.5) in this interval.

For the second integral f2 one applies the following expansion formulas

1

ez+α − 1
=

1

z + α
+
∞∑
m=0

cm(z + α)m, Li2(e−z) = z log(z) +
∞∑
n=0

κnz
n , (B.8)

where

cm =
Bm+1

(m+ 1)!
and κ0 =

π2

6
, κ1 = −1 , κn = Bn−1

(n−1)n! (n ≥ 2) . (B.9)

The first equation in eqs. (B.8) is equivalent to the second equation in eqs. (B.2), while
the second equation is the same as the first one in eqs. (5.9). By computing all resulting
integrals one finds eq. (6.7).

The additive function F(α̃, β̃, ξ0) is given as

F(α̃, β̃, ξ0) = (α̃2 + α̃β̃)

(
Li2
(
− β̃+ξ0

α̃

)
− Li2

(
−β̃
α̃

)
+ log(β̃ + ξ0) log

(
α̃+β̃+ξ0

α̃

)
(B.10)

− log(β̃) log
(
α̃+β̃
α̃

))
+ 2πi sgn(Im(α̃))(α̃+ β̃)α̃ log(−α̃) δ(α̃, β̃, ξ0) ,

where δ(α̃, β̃, ξ0) is given as the function

δ(α̃, β̃, ξ0) =


1 if |arg(β̃ + ξ0)|< |arg(−α̃)|< |arg(β̃)| and

sgn(arg(β̃)) = sgn(arg(−α̃)) and 1 <
∣∣∣ Im(β̃)

Im(α̃)

∣∣∣
0 otherwise .

(B.11)

For the constants K (which still have dependence on the free parameter ξ0) we use
(B.9) and then

– 24 –

KA
ij = (1− δi,0 − δi,1)

1

i(i− 1)

i−2∑
ν=0

κνci+j−ν−2

(
i+ j − ν − 2

i− ν − 2

)

+ (1− δi,0)

∞∑
m=j

cm

(
m

m− j

) ∞∑
ν=Max(0,
m+2−i−j)

(
i+ ν − 1

i− 1

)
− ξ ν0

i− 1 + ν
κν+i+j−m−2

+
∞∑
m=j

cm

(
m

m− j

) ∞∑
ν=Max(0,
m+2−i−j)

(
i+ ν

i

)
ξ ν0
i+ ν

κν+i+j−m−2 (B.12)

+ (1− δi,0) (−1)j+1
∞∑
ν=1

κi+j+ν−1
ξ ν0

ν + i− 1

(
i+ ν − 1

i− 1

)

+ (1− δj,0) (−1)j
∞∑
ν=1

κi+j+ν−1
ξ ν0
ν + i

(
i+ ν

i

)

+ (1− δi,0)

∞∑
ν=Max(1,3−i)

cν+i+j−3

(
ν + i+ j − 3

j

)
ξ ν0

(ν + i− 1)2

(
ν + i− 1

i− 1

)

+
∞∑

ν=Max(1,3−i)

ci+j+ν−3

(
i+ j + ν − 3

j

)
−ξ ν0

(i+ ν)2

(
i+ ν

i

)

+ δj,0

∞∑
ν=1

κi+ν−1
ξ ν0
i+ ν

(
i+ ν

i

)
+ δi,0δj,0

− ξ 2
0

4
+ δi,1δj,0

ξ0

2
+ δi,0δj,1ξ0 ,

KB
ij = (1− δi,0 − δi,1 − δi,2) ci+j−3

1

i(i− 1)

(
i+ j − 3

j

)
+ δi,2δj,0

1

2
+ δi,1δj,1 ,

KC
ij = (1− δi,0)

∞∑
ν=Max(0,3−i)

cν+i+j−3

(
ν + i+ j − 3

j

)
−ξ ν0

ν + i− 1

(
i− 1 + ν

i− 1

)

+
∞∑

ν=Max(0,3−i)

cν+i+j−3

(
ν + i+ j − 3

j

)
ξ ν0
ν + i

(
ν + i

i

)
(B.13)

+ δi,0δj,0
ξ 2

0

2
− δi,0δj,1ξ0 − δi,2δj,0

1

2
− δi,1δj,1 ,

KD
i = (1− δi,0)(−1)i+1κi−1 ,

KE
i = (−1)iκi .

C Table of integrals

The importance of GPLs is due to the fact they allow the integration (at least formally)
of a large class of functions, by applying algebraic rules starting from the definition of the

– 25 –

GPL, given by eq. (2.1). For example∫ z

0

G(a1, . . . , an; t)G(b1, . . . , bn; t)

(t− c)(t− d)
dt (C.1)

can easily be integrated in terms of GPLs by applying the shuffle rule of eq. (2.4) on
the numerator and partial fractioning on the denominator. Furthermore for both of the
following integrals∫ z

0

G(a1, . . . , an; t)

(t− b)2
dt or

∫ z

0
t3G(a1, . . . , an; t) dt (C.2)

the integration can be performed by integration by parts. In practice any combination of
GPLs and rational functions can be formally integrated by the use of GPLs.

Here we provide an example, where we can formally integrate a large class of integrals
containing logarithms (assuming that the bi are all different)∫ z

0

(log(1− t/a1) + log(1− t/a2) + . . . log(1− t/am))n

(t− b1)(t− b2) . . . (t− bk)
dt =

=

∫ z

0

(∑
q1+q2+...+qm=n

n!
G(a1, t)

q1

q1!

G(a2, t)
q2

q2!
. . .

G(am; t)qm

qm!

)(
k∑
i=1

1

(t− bi)
1∏

j 6=i(bi − bj)

)
dt=

=n!
k∑
i=1

∑
T

G(bi, Tn({a1, . . . , am}); z)∏
j 6=i(bi − bj)

 , (C.3)

where the tuple Tn({a1, . . . , am}) is the set of all possible vectors of dimension n, made up
of all possible combinations and orders of the elements a1, . . . , an. For example

T 2({a, b, c}) = {{a, a}, {a, b}, {a, c}, {b, a}, {b, b}, {b, c}, {c, a}, {c, b}, {c, c}} .

If the result of the integral is a combinations of GPLs of weights ≤ 4, it is now possible
to explicitly express it in terms of the basis functions by using the results of this paper. Here
we list some of the most useful integrals, which to the best of our knowledge are generally
unknown14. In order to obtain expressions in terms of log, Lin, and Li2,2, all that is needed
it to combine the expressions of this appendix with the reductions described in sections 3
and 4. The expressions in this appendix are included in an auxiliary file, as explained in
section 7.

I1(z; a, b) =

∫ z

0

log(t) log(1− t/a)

t− b
dt = G(b, 0, a; z) +G(b, a, 0; z) (C.4)

= G(0, z)G(b, a; z)−G(0, b, a; z) ,

I2(z; a, b) =

∫ z

0

log(1− t/a) log(1− t/b)
t

dt = G(0, a, b; z) +G(0, b, a; z) , (C.5)

I3(z; a, b, c) =

∫ z

0

log(1− t/a) log(1− t/b)
t− c

dt = G(c, a, b; z) +G(c, b, a; z) . (C.6)

14In some simpler cases they are known for some values of the variables [33], but the general case with
general complex variables is not.

– 26 –

From now on, in order to keep the list of integrals relatively short, we will include only the
most general cases without considering null letters or letters equaling each other, since they
can be easily obtained with a similar strategy.

I4(z; a, b) =

∫ z

0
log(1− t/a) log(1− t/b) dt (C.7)

= 2z + (z − a)(G(a, b; z)−G(a; z)) + (z − b)(G(b, a; z)−G(b; z)) ,

I5(z; a, b, c) =

∫ z

0
log(1− t/a) log(1− t/b) log(1− t/c) dt (C.8)

= −6z + (z − a)
(

2G(a; z)−G(a, b; z)−G(a, c; z)+G(a, b, c; z)+G(a, c, b; z)
)

+ (z − b)
(

2G(b; z)−G(b, a; z)−G(b, c; z) +G(b, a, c; z) +G(b, c, a; z)
)

+ (z − c)
(

2G(c; z)−G(c, a; z)−G(c, b; z) +G(c, a, b; z) +G(c, b, a; z)
)
,

I6(z; a, b, c, d) =

∫ z

0
log(1− t/a) log(1− t/b) log(1− t/c) log(1− t/d) dt (C.9)

= (z − a)
(
− 6G(a; z) + 2(G(a, b; z) +G(a, c; z) +G(a, d; z))−G(a, b, c; z)

−G(a, b, d; z)−G(a, c, b; z)−G(a, c, d; z)−G(a, d, b; z)−G(a, d, c; z)

+G(a, b, c, d; z) +G(a, b, d, c; z) +G(a, c, b, d; z) +G(a, c, d, b; z)

+G(a, d, b, c; z) +G(a, d, c, b; z)
)

+ (cyclic in {a,b,c,d}) + 24z ,

I7(z; a, b, c) =

∫ z

0

log(1− t/a)2 log(1− t/b)
t− c

dt (C.10)

= 2
(
G(c, a, a, b; z) +G(c, a, b, a; z) +G(c, b, a, a; z)

)
,

I8(z; a, b, c, d) =

∫ z

0

log(1− t/a) log(1− t/b) log(1− t/c)
t− d

dt (C.11)

= G(d, a, b, c; z) +G(d, a, c, b; z) +G(d, b, a, c; z) +G(d, b, c, a; z)

+G(d, c, a, b; z) +G(d, c, b, a; z) ,

I9(z; a, b, c) =

∫ z

0

Li2(t/a) log(1− t/b)
t− c

dt (C.12)

= −G(c, 0, a, b; z)−G(c, 0, b, a; z)−G(c, b, 0, a; z) ,

– 27 –

I10(z; a, b, c) =

∫ z

0
Li2(t/a) log(1− t/b) log(1− t/c) dt (C.13)

= (z − a)
(

6G(a; z)− 2G(a, b; z)− 2G(a, c; z) +G(a, b, c; z) +G(a, c, b; z)
)

+ z
(
− 12− 2G(0, a; z) +G(0, a, b; z) +G(0, a, c; z) +G(0, b, a; z) +G(0, c, a; z)

−G(0, a, b, c; z)−G(0, a, c, b; z)−G(0, b, a, c; z)−G(0, b, c, a; z)−G(0, c, a, b; z)

−G(0, c, b, a; z)
)

+ (z − b)
(

3G(b; z)− 2G(b, a; z)−G(b, c; z) +G(b, 0, a; z)

+G(b, a, c; z) +G(b, c, a; z)−G(b, 0, a, c; z)−G(b, 0, c, a; z)−G(b, c, 0, a; z)
)

+ (z − c)
(

3G(c; z)− 2G(c, a; z)−G(c, b; z) +G(c, 0, a; z) +G(c, a, b; z)

+G(c, b, a; z)−G(c, 0, a, b; z)−G(c, 0, b, a; z)−G(c, b, 0, a; z)
)
,

I11(z; a, b) =

∫ z

0
Li2(t/a) log(1− t/b)2 dt (C.14)

= 2(z − a)
(

3G(a; z)− 2G(a, b; z) +G(a, b, b; z)
)

+ 2z
(
− 6−G(0, a; z) +G(0, a, b; z)

+G(0, b, a; z)−G(0, a, b, b; z)−G(0, b, a, b; z)−G(0, b, b, a; z)
)

+ 2(z − b)
(

3G(b; z)− 2G(b, a; z)−G(b, b; z) +G(b, 0, a; z) +G(b, a, b; z)

+G(b, b, a; z)−G(b, 0, a, b; z)−G(b, 0, b, a; z)−G(b, b, 0, a; z)
)
,

I12(z; a, b) =

∫ z

0
Li2(t/a)Li2(t/b) dt (C.15)

= (z − a)
(
− 3G(a; z) + 2G(a, b; z)−G(a, 0, b; z)

)
+ (z − b)

(
− 3G(b; z) + 2G(b, a; z)−G(b, 0, a; z)

)
+ z
(

6 +G(0, a; z) +G(0, b; z)− 2G(0, a, b; z)− 2G(0, b, a; z)

+ 2G(0, 0, a, b; z) + 2G(0, 0, b, a; z) +G(0, a, 0, b; z) +G(0, b, 0, a; z)
)
,

I13(z; a, b) =

∫ z

0
Li3(t/a) log(1− t/b) dt (C.16)

= (z − a)
(

3G(a; z)−G(a, b; z)
)

+ z
(
− 4− 2G(0, a; z) +G(0, 0, a; z) +G(0, a, b; z)

+G(0, b, a; z)−G(0, 0, a, b; z)−G(0, 0, b, a; z)−G(0, b, 0, a; z)
)

+ (z − b)
(
G(b; z)−G(b, a; z) +G(b, 0, a; z)−G(b, 0, 0, a; z)

)
.

D Series expansions of hypergeometric functions

GPLs can be used to obtain, in some cases, a series expansion of hypergeometric functions
in a purely algebraic way. An alternative method is already available as explained in [39].

– 28 –

Here we consider an different approach, inspired by the integration technique used in [40],
which is in turn inspired by well established integration techniques, see for instance [41, 42].
Let us consider as an example the following Euler’s expression

B(2 + ε, 3 + 2ε) 2F1(ε, 2 + ε; 5 + 3ε; z) =

∫ 1

0
x1+ε(1− x)2+2ε(1− zx)−ε dx , (D.1)

where B(b, c) is the beta function, 2F1 is the Gauss hypergeometric and |z|≤ 1. In practice
one may require some expansion in terms of the small parameter ε of the integral in eq.
(D.1).

The procedure is as follows. The first step is to perform the following expansions

xn+ε = xneε log(x) = xn
∞∑
i=0

εi
log(x)i

i!
= xn

∞∑
i=0

εiG(0i;x) , (D.2)

(a− x)n+ε = (a− x)naε(1− x/a)ε = (a− x)naε
∞∑
i=0

εiG(ai;x) . (D.3)

Note that the first expression eq. (D.2) is valid for any complex x, while the second eq. (D.3)
is in general valid only for real x (but still allows for a complex parameter a). Generally
this is not a problem, since x is the integration variable as in eq. (D.1).

As a second step we can substitute the expansion for each term in the integrand in eq.
(D.1)

∫ 1

0
x(1− x)2

(∞∑
i=0

εiG(0i;x)

) ∞∑
j=0

2jεjG(1j ;x)

(∞∑
k=0

(−ε)kG((1/z)k;x)

)
dx . (D.4)

The third step is to truncate the sums at the desired order, work out the products and
apply the shuffle algebra. For example we may compute the result up to ε2∫ 1

0
(x− 1)2x

(
1 + ε(G(0;x) + 2G(1;x)−G(1/z;x)) + ε2(G(0, 0;x) + 2G(0, 1;x)

−G(0, 1/z;x) + 2G(1, 0;x) + 4G(1, 1;x)− 2G(1, 1/z;x)−G(1/z, 0;x)

− 2G(1/z, 1;x) +G(1/z, 1/z;x) +O(ε3)
)
dx . (D.5)

At this point the integration is performed term by term via integration by parts and
applying the definition eq. (2.1).

In principle this technique can be applied to any integrand involving an arbitrarily
complicated product of n terms, and the expansion can be computed up to arbitrary order
in ε. However there are three main issues. First of all the method cannot be generally
applied to arbitrary powers. For example a term x1/2+ε will generally lead to non-rational
functions and then the result cannot be expressed in terms of GPLs. A second problem
can arise in the case of nested integrations over different variables. For example, after
integrating eq. (D.5) the resulting GPLs will be dependent on the variable z in their letters
as G(. . . , f(z), . . . ; 1). At a second integration step we may want to integrate over the

– 29 –

variable z. It is possible to rewrite any GPL in standard form G(. . . ; z) for any rational
functions in z (at least in principle), but it is not always possible for non-rational expressions
(see [34]). Actually both these problems are related to the fact that not all hypergeometric
functions can be expanded as combinations of GPLs, but require more general functions.

The third problem is related to possible divergences. This problem can be solved by
subtracting the main divergent part as follows (see [40]). Let’s consider for simplicity an
integrand with a divergence in x = 0 as for example x−1+εf(x) where f(x) is regular at
x = 0. Then

∫ 1

0
x−1+εf(x) =

∫ 1

0
x−1+εf(0) +

∫ 1

0
x−1+ε(f(x)− f(0)) . (D.6)

Since f(0) is just a constant, the first integral on the right can be integrated analytically,
while the second is regularized since f(x)− f(0) is not only finite, but goes to zero at least
linearly in x. For example we can consider the following integration

∫ x

0

t−1+ε(a− t)ε

ε(1− ε)
dt =

1

ε(1− ε)

[
aε
∫ x

0
t−1+ε dt+

∫ x

0
t−1+ε((a− t)ε − aε) dt

]
(D.7)

=
1

ε(1− ε)

aεxε
ε

+

∫ x

0

(∑∞
i=0 ε

iG(0i; t)

t

)(
aε
∞∑
j=1

εjG(aj ; t)

)
dt

 (D.8)

=
aε

ε(1− ε)

xε
ε

+
∞∑

i=0, j=1

εi+j

(∑
ck∈0iXaj

G(0, ck;x)

) . (D.9)

Note that the right sum in eq. (D.8) has lower limit one, due to the procedure of subtracting
the divergence.

In case the previously explained problems do not appear, the procedure presented in this
appendix is suitable for an automatized implementation in a computer code. Furthermore,
for expansions including GPLs up to weight 4, we can obtain analytic results as explained
in sects. 3 and 4.

E Specific expressions for GPLs

This appendix contains the explicit expressions for all GPLs at weight 3. The function
S(a, b, c, 0; 1) that appears in eq. (4.6) and which only depends on GPLs up to weight 3 is
given at the end of this appendix. For the definitions of the functions T,H1 and P appearing
in the expressions see sects. 3 and 4.

– 30 –

G(0, 0, 0, x) = 1
6 log(x)3 , (E.1)

G(0, 0, a, x) = −Li3
(
x
a

)
, (E.2)

G(0, a, 0, x) = 2Li3
(
x
a

)
− log(x)Li2

(
x
a

)
, (E.3)

G(a, 0, 0, x) = log(x)Li2
(
x
a

)
− Li3

(
x
a

)
+ 1

2 log(x)2 log
(
1− x

a

)
, (E.4)

G(0, a, a, x) = log
(
1− x

a

)
Li2
(
1− x

a

)
− Li3

(
1− x

a

)
+ 1

2 log
(
x
a

)
log
(
1− x

a

)2
+ ζ3 , (E.5)

G(a, 0, a, x) = − log
(
1− x

a

)
Li2
(
x
a

)
− 2 log

(
1− x

a

)
Li2
(
1− x

a

)
+ 2Li3

(
1− x

a

)
− log

(
x
a

)
log
(
1− x

a

)2 − 2ζ3 , (E.6)

G(a, a, 0, x) = log
(
1− x

a

)
Li2
(
x
a

)
+ log

(
1− x

a

)
Li2
(
1− x

a

)
− Li3

(
1− x

a

)
+ 1

2 log(x) log
(
1− x

a

)2
+ 1

2 log
(
x
a

)
log
(
1− x

a

)2
+ ζ3 , (E.7)

G(a, a, a, x) = 1
6 log

(
1− x

a

)3
, (E.8)

G(0, a, b, x) = iπ log
(
x
(

1
a −

1
b

))2 sgn (Im(bx))H1

(
a
x ,

b
x

)
+ iπ log

(
1− a

b

)2 sgn (Im (ab))T (1, 1− x
b , 1−

a
b

)
− log

(
1− x

b

)
Li2
(
x−b
a−b

)
(E.9)

+ log
(
1− x

b

)
Li2
(
a(x−b)
x(a−b)

)
+ Li3

(
x−b
a−b

)
− Li3

(
a(x−b)
x(a−b)

)
− Li3

(
b

b−a

)
+ Li3

(
x
a

)
− log

(
1− x

b

)
Li2
(
1− b

x

)
+ Li3

(
1− b

x

)
− 1

6 log
(

ab
ax−bx

)3

−1
2 log

(
1− x

b

)2
log
(
a−x
a−b

)
+ 1

2 log
(
1− x

b

)2
log
(
b(a−x)
x(a−b)

)
− 1

6π
2 log

(
ab

ax−bx

)
+ 1

6 log
(
b
x

)3 − 1
2 log

(
1− x

b

)2
log
(
b
x

)
+ 1

6π
2 log

(
b
x

)
,

G(a, 0, b, x) = −iπ log
(
a−x
b

)2 sgn (Im (bx))H1

(
b
a ,

b
x

)
− iπ log

(
1− x

a

)2 sgn (Im (xa))T (1, 1− x
b , 1−

x
a

)
− log

(
1− x

a

)
Li2
(
a
b

) (E.10)

− log
(
1− x

b

)
Li2
(
b−x
a−x

)
+ log

(
1− x

b

)
Li2
(
a(b−x)
b(a−x)

)
+ Li3

(
b−x
a−x

)
− Li3

(
a(b−x)
b(a−x)

)
− Li3

(
a
b

)
+ Li3

(
a

a−x

)
+ log

(
1− x

b

)
Li2
(
1− b

x

)
− Li3

(
1− b

x

)
−Li3

(
x
b

)
+ 1

6 log
(
− b
a−x

)3
+ 1

6π
2 log

(
− b
a−x

)
− 1

2 log
(
1− x

b

)2
log
(
a−b
a−x

)
+ 1

2 log
(
1− x

b

)2
log
(
x(a−b)
b(a−x)

)
− 1

6 log
(
b
x

)3
+ 1

2 log
(
b
x

)
log
(
1− x

b

)2 − 1
6π

2 log
(
b
x

)
,

G(a, b, 0, x) = iπ
(

log
(
a−x
b

)2 sgn (Im (bx))H1

(
b
a ,

b
x

)
− log

(
x
(

1
a −

1
b

))2 sgn (Im (bx))H1

(
a
x ,

b
x

) (E.11)

− log
(
1− a

b

)2 sgn (Im (ab))T (1, 1− x
b , 1−

a
b

)
+ 2 log(x) log

(
1− a

b

)
sgn

(
Im
(
b
x

))
T
(
1, 1− x

b , 1−
a
b

)
+ log

(
1− x

a

)2 sgn (Im (xa))T (1, 1− x
b , 1−

x
a

))
− log(x)Li2

(
b

b−a

)
+ log(x)Li2

(
x−b
a−b

)
+ log

(
1− x

a

)
Li2
(
a
b

)
+ log

(
1− x

b

)
Li2
(
b−x
a−x

)
− log

(
1− x

b

)
Li2
(
a(b−x)
b(a−x)

)
+ log

(
1− x

b

)
Li2
(
x−b
a−b

)
− log

(
1− x

b

)
Li2
(
a(x−b)
x(a−b)

)
− Li3

(
b−x
a−x

)
+ Li3

(
a(b−x)
b(a−x)

)
− Li3

(
x−b
a−b

)
+ Li3

(
a(x−b)
x(a−b)

)
+ Li3

(
a
b

)
+ Li3

(
b

b−a

)
− Li3

(
a

a−x

)
− Li3

(
x
a

)
+ Li3

(
x
b

)
−1

6 log
(
− b
a−x

)3
+ 1

6 log
(

ab
ax−bx

)3
+ 1

2 log
(
1− x

b

)2
log
(
a−b
a−x

)
+ 1

2 log
(
1− x

b

)2
log
(
a−x
a−b

)
− 1

2 log
(
1− x

b

)2
log
(
b(a−x)
x(a−b)

)
− 1

2 log
(
1− x

b

)2
log
(
x(a−b)
b(a−x)

)
+ log(x) log

(
1− x

b

)
log
(
a−x
a−b

)
− π2

(
1
6 log

(
− b
a−x

)
− 1

6 log
(

ab
ax−bx

))
,

G(a, b, b, x) = −iπ log
(
1− a

b

)2 sgn (Im (ab))T (1, 1− x
b , 1−

a
b

)
+ log

(
1− x

b

)
Li2
(
x−b
a−b

)
− Li3

(
x−b
a−b

)
+ Li3

(
− b
a−b

)
+ 1

2 log
(
1− x

b

)2
log
(
a−x
a−b

)
,

(E.12)

G(a, b, a, x) = 2iπ log
(
1− b

a

)2 sgn (Im (ba))T (1, 1− x
a , 1−

b
a

)
+ 2iπ log

(
1− b

a

)
log
(
1− x

a

)
sgn

(
Im
(
a
x

))
T
(
1, 1− x

a , 1−
b
a

) (E.13)

− log
(
1− x

a

)
Li2
(

a
a−b

)
− log

(
1− x

a

)
Li2
(
a−x
a−b

)
+ 2Li3

(
a−x
a−b

)
− 2Li3

(
a
a−b

)
,

G(a, a, b, x) = −iπ log
(
1− b

a

)2 sgn (Im (ba))T (1, 1− x
a , 1−

b
a

)
− 2iπ log

(
1− b

a

)
log
(
1− x

a

)
sgn

(
Im
(
a
x

))
T
(
1, 1− x

a , 1−
b
a

) (E.14)

+ log
(
1− x

a

)
Li2
(

a
a−b

)
− Li3

(
a−x
a−b

)
+ Li3

(
a
a−b

)
− 1

2 log
(
1− x

a

)2
log
(
x−b
a−b

)
+ 1

2 log
(
1− x

a

)2
log
(
1− x

b

)
,

– 31 –

G(a, b, c, x) = 1
6 log

(
c−b
a

)3 − 1
6 log

(
(a−c)(c−b)

(a−b)c

)3
− 1

6 log
(
c−b
a−x

)3
+ 1

6 log
(

(a−c)(c−b)
(a−b)(c−x)

)3
− 1

2 log
(

a
a−b

)
log
(

b
b−c

)2 (E.15)

−1
2 log

(
1− b

a

)
log
(

b
b−c

)2
+ 1

2 log
(
a−b
a−x

)
log
(
b−x
b−c

)2
+ 1

2 log
(
a−x
a−b

)
log
(
b−x
b−c

)2
+ Li3

(
b
a

)
+ Li3

(
b

b−a

)
− Li3

(
b(a−c)
a(b−c)

)
− Li3

(
b(a−c)
(a−b)c

)
+ Li3

(
− c
a−c

)
−Li3

(
− c
b−c

)
+ Li3

(
1− c

a

)
− Li3

(
a−c
a−x

)
− Li3

(
b−x
a−x

)
+ Li3

(
(a−c)(b−x)
(b−c)(a−x)

)
+ Li3

(
(a−c)(b−x)
(a−b)(c−x)

)
− Li3

(
x−b
a−b

)
− Li3

(
x−c
a−c

)
+ Li3

(
x−c
b−c

)
−Li2

(
a−c
b−c

)
log
(

a
a−c

)
+ Li2

(
− c
b−c

)
log
(

a
a−c

)
− Li2

(
b
a

)
log
(

b
b−c

)
− Li2

(
b

b−a

)
log
(

b
b−c

)
+ Li2

(
b(a−c)
a(b−c)

)
log
(

b
b−c

)
+ Li2

(
b(a−c)
(a−b)c

)
log
(

b
b−c

)
+1

2 log
(

b
b−c

)2
log
(

(b−a)c
a(b−c)

)
+ 1

2 log
(

b
b−c

)2
log
(
a(c−b)
(a−b)c

)
+ Li2

(
a−c
b−c

)
log
(
a−x
a−c

)
− Li2

(
− c
b−c

)
log
(
a−x
a−c

)
+ Li2

(
b−x
a−x

)
log
(
b−x
b−c

)
−Li2

(
(a−c)(b−x)
(b−c)(a−x)

)
log
(
b−x
b−c

)
− Li2

(
(a−c)(b−x)
(a−b)(c−x)

)
log
(
b−x
b−c

)
+ Li2

(
x−b
a−b

)
log
(
b−x
b−c

)
− 1

2 log
(
b−x
b−c

)2
log
(
− (b−c)(a−x)

(a−b)(c−x)

)
− 1

2 log
(
b−x
b−c

)2
log
(

(b−a)(c−x)
(b−c)(a−x)

)
−Li2

(
c−b
a−b

)
log
(
1− x

c

)
+ Li2

(
x−b
a−b

)
log
(
1− x

c

)
+ log

(
a−x
a−b

)
log
(
b−x
b−c

)
log
(
1− x

c

)
− π2

(
− 1

6 log
(
c−b
a

)
+ 1

6 log
(

(a−c)(c−b)
(a−b)c

)
+ 1

6 log
(
c−b
a−x

)
−1

6 log
(

(a−c)(c−b)
(a−b)(c−x)

)
+ 4 log

(
1− b

c

)
T
(
1, 1− x

c , 1−
b
c

)
T
(
P
(
b
c , 1−

x
c

)
, 1− x

c , 1−
a
c

))
+ iπ

(
T
(

1, b
b−c ,

a
a−c

)
sgn

(
Im
(

c
a−c

))
log
(

a
a−c

)2

+ log
(
b−a
b−c

)2
T
(

1, b
b−c ,

b−a
b−c

)
sgn

(
Im
(
a−c
b−c

))
− log

(
b−a
b−c

)2
T
(

1, b−xb−c ,
b−a
b−c

)
sgn

(
Im
(
a−c
b−c

))
− 2Li2

(
a−c
b−c

)
T
(
1, 1− x

c , 1−
a
c

)
sgn

(
Im
(
a
c

))
+2Li2

(
− c
b−c

)
T
(
1, 1− x

c , 1−
a
c

)
sgn

(
Im
(
a
c

))
− 2 log

(
1− a

c

)
log
(
b−a
b−c

)
T
(
1, 1− x

c , 1−
a
c

)
sgn

(
Im
(
a
c

))
+ H1

(
b−c
a−c , 1−

b
c

)
log
(

a
b−c

)2
sgn

(
Im
(
b
c

))
−H1

(
1− a

c , 1−
b
c

)
log
(

(b−a)c
(a−c)(c−b)

)2
sgn

(
Im
(
b
c

))
+ 2 log

(
1− b

c

)
log
(
a−b
a−c

)
T
(
1, 1− x

c , 1−
b
c

)
sgn

(
Im
(
b
c

))
−2 log

(
1− b

c

)
log
(
a−x
a−c

)
T
(
1, 1− x

c , 1−
b
c

)
sgn

(
Im
(
b
c

))
+ H1

(
b−c
a−c ,

c−b
c−x

)
log
(
a−x
b−c

)2
sgn

(
Im
(
c−b
c−x

))
−H1

(
c−a
c−x ,

c−b
c−x

)
log
(
− (a−b)(c−x)

(a−c)(c−b)

)2
sgn

(
Im
(
c−b
c−x

))
+ 2 log

(
b−a
b−c

)
log
(
1− x

c

)
T
(

1, b−xb−c ,
b−a
b−c

)
sgn

(
Im
(
c−b
c−x

))
+ log

(
a−x
a−c

)2
T
(

1, b−xb−c ,
a−x
a−c

)
sgn

(
Im
(
x−c
a−c

)))
.

Furthermore with stuffle and shuffle identities one finds the relations

Li3,1(a, b) = 1
2

(
Li2(b)Li2(ab)+Li2,2(b, a)−Li2,2

(
ab, 1

a

))
− Li4(ab) + log(1− b)(Li3(ab)− Li3(a)) ,

Li2,2(a, b) = Li4(ab) + log(1− a)Li3(b)− log(1− a)Li3(ab)− Li3,1(a, b) + Li3,1(b, a)− Li3,1
(
ab, 1

b

)
. (E.16)

The function S(a, b, c, 0; 1) that appears in eq. (4.6) equals

S(a, b, c, 0; 1) = −1
2G
(
0, ac , 1

) (
G
(
0, 1

c , 1
)

+G
(
a, ab , 1

))
+ 1

2G
(
0, bc , 1

) (
−G

(
0, bac , 1

)
+G(a, b, 1) +G

(
a, ac , 1

))
+ 1

2G(0, b, 1)
(
G
(
0, ba , 1

)
+G(a, c, 1)

)
+G

(
0, ab , 1

) (
1
4G(0, a, 1)− 1

2G
(
0, 1

b , 1
)

+ 1
2G(a, 0, 1)− 1

2G
(
a, ac , 1

))
+G

(
0, cb , 1

) (
−1

2G
(
0, cab , 1

)
+ 1

2G
(
a, ab , 1

)
+ 1

2G(a, c, 1)
)

+G
(
a, ab , 1

) (
1
2G
(
c
b , 0, 1

)
− 1

2G
(
a
c , 0, 1

))
+G(a, 0, 1)

(
−G

(
c
b , 0, 1

)
+ 1

2G
(
c
b ,
a
b , 1
)

+ 1
2G
(
c
b , c, 1

)
+ 1

2G(b, c, 1)− 1
2G
(
a
c ,

a
b , 1
))

+G(a, c, 1)
(

1
2G
(
c
b , 0, 1

)
+ 1

2G(b, 0, 1)
)

+G(0, a, 1)
(
G
(
0, cb , 1

)
− 1

2G
(
0, acb , 1

)
− 3

4G(0, b, 1) + 1
4G
(
0, ac , 1

)
+G

(
0, bc , 1

)
− 1

2G
(
0, abc , 1

)
−3

4G(0, c, 1)− 1
2G
(
a
b ,

a
c , 1
)

+ 1
2G
(
c
b ,
a
b , 1
)

+ 1
2G
(
c
b , c, 1

)
+ 1

2G(b, c, 1)− 1
2G
(
a
c ,

a
b , 1
)

+ 1
2G
(
b
c , b, 1

)
+ 1

2G
(
b
c ,
a
c , 1
)

+ 1
2G(c, b, 1)

)
+G(0, c, 1)

(
1
2G
(
0, ca , 1

)
− 1

2G(a, 0, 1)− 1
2G(a, b, 1)−G

(
b
c ,
a
c , 1
))

+G(0, 0, a, 1)
(
G
(
b
a , 1
)

+G
(
c
a , 1
)

+G
(
ac
b , 1

)
−G

(
c
ab , 1

)
−G

(
1
c , 1
)

+G
(
ab
c , 1

)
−G

(
b
ac , 1

))
+G

(
1
b , 1
) (
G
(
0, 0, ab , 1

)
−G(0, 0, a, 1)

)
+G

(
c
ab , 1

)
G
(
0, 0, cb , 1

)
−G

(
ab
c , 1

)
G
(
0, 0, cb , 1

)
−G

(
b
a , 1
)
G(0, 0, b, 1) +G

(
1
c , 1
)
G
(
0, 0, ac , 1

)
−G

(
ac
b , 1

)
G
(
0, 0, bc , 1

)
+G

(
b
ac , 1

)
G
(
0, 0, bc , 1

)
−G

(
c
a , 1
)
G(0, 0, c, 1)

+G
(
b
c , 1
) (
−1

2G(c, 1)G
(
0, ac , 1

)
−G(0, 0, a, 1)− 1

2G(0, a, b, 1)− 1
2G
(
0, a, ac , 1

))
+G

(
a
b , 1
) (

1
2G
(
b
c , 1
)
G(0, b, 1) + 1

2G(0, 0, a, 1)

−1
2G(0, 0, b, 1) + 1

2G
(
0, a, ac , 1

)
− 1

2G
(
0, b, bc , 1

))
+G(c, 1)

(
1
2G(0, 0, a, 1)− 1

2G
(
0, 0, ac , 1

)
− 1

2G(0, a, b, 1) + 1
2G
(
0, ac ,

b
c , 1
))

+G
(
c
b , 1
) (

1
2G
(
a
c , 1
)
G(0, c, 1)−G(0, 0, a, 1)− 1

2G
(
0, a, ab , 1

)
− 1

2G(0, a, c, 1) +G(a, 0, 0, 1)− 1
2G
(
a, 0, ab , 1

)
− 1

2G(a, 0, c, 1)

−1
2G
(
a, ab , 0, 1

)
− 1

2G(a, c, 0, 1)
)

+G(b, 1)
(
−1

2G
(
c
b , 1
)
G
(
0, ab , 1

)
+ 1

2G(0, 0, a, 1)− 1
2G
(
0, 0, ab , 1

)
− 1

2G(0, a, c, 1)

+1
2G
(
0, ab ,

c
b , 1
)

+ 1
2G
(
0, cb ,

a
b , 1
)
− 1

2G(a, 0, c, 1)− 1
2G(a, c, 0, 1) + 1

2G
(
c
b , 0,

a
b , 1
))

+G
(
a
c , 1
) (

1
2G(0, 0, a, 1)− 1

2G(0, 0, c, 1)

+1
2G
(
0, a, ab , 1

)
− 1

2G
(
0, cb , c, 1

)
− 1

2G
(
0, c, cb , 1

)
+ 1

2G
(
a, 0, ab , 1

)
+ 1

2G
(
a, ab , 0, 1

)
− 1

2G
(
c
b , 0, c, 1

))
+G(a, 1)

(
−1

2G
(
0, 0, ab , 1

)
+3

2G(0, 0, c, 1)− 1
2G
(
0, ab , 0, 1

)
+ 1

2G
(
0, ab ,

a
c , 1
)
− 1

2G
(
0, cb ,

a
b , 1
)
− 1

2G
(
0, cb , c, 1

)
− 1

2G(0, b, c, 1) + 1
2G
(
0, ac ,

a
b , 1
)
− 1

2G
(
0, bc , b, 1

)
−1

2G
(
0, bc ,

a
c , 1
)

+ 1
2G(0, c, 0, 1) + 1

2G(0, c, b, 1) +G
(
c
b , 0, 0, 1

)
− 1

2G
(
c
b , 0,

a
b , 1
)
− 1

2G
(
c
b , 0, c, 1

)
− 1

2G
(
c
b ,
a
b , 0, 1

)
− 1

2G
(
c
b , c, 0, 1

)
−1

2G(b, 0, c, 1)− 1
2G(b, c, 0, 1) + 1

2G
(
a
c , 0,

a
b , 1
)

+ 1
2G
(
a
c ,

a
b , 0, 1

))
. (E.17)

– 32 –

For the complete expressions at weight four, see the attached file gtolrules.m.

References

[1] H. Poincaré, “Sur les groupes des équations linéaires,” Acta mathematica, vol. 4, p. 215, 1883.

[2] K.-T. Chen, “Iterated path integrals,” Bull. Amer. Math. Soc., vol. 83, pp. 831–879, 09 1977.

[3] A. B. Goncharov, “Multiple polylogarithms, cyclotomy and modular complexes,” Math Res.
Letters, vol. 5, pp. 497–516, July 1998.

[4] A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, “Classical Polylogarithms for
Amplitudes and Wilson Loops,” Phys. Rev. Lett., vol. 105, p. 151605, 2010.

[5] R. K. Ellis and G. Zanderighi, “Scalar one-loop integrals for QCD,” JHEP, vol. 02, p. 002,
2008.

[6] E. Remiddi and J. A. M. Vermaseren, “Harmonic polylogarithms,” Int. J. Mod. Phys.,
vol. A15, pp. 725–754, 2000.

[7] T. Gehrmann and E. Remiddi, “Two loop master integrals for γ∗ → 3 jets: The Planar
topologies,” Nucl. Phys., vol. B601, pp. 248–286, 2001.

[8] U. Aglietti and R. Bonciani, “Master integrals with 2 and 3 massive propagators for the 2
loop electroweak form-factor - planar case,” Nucl. Phys., vol. B698, pp. 277–318, 2004.

[9] R. Bonciani, G. Degrassi, and A. Vicini, “On the Generalized Harmonic Polylogarithms of
One Complex Variable,” Comput. Phys. Commun., vol. 182, pp. 1253–1264, 2011.

[10] J. Ablinger, J. Blumlein, and C. Schneider, “Harmonic Sums and Polylogarithms Generated
by Cyclotomic Polynomials,” J. Math. Phys., vol. 52, p. 102301, 2011.

[11] J. M. Henn, K. Melnikov, and V. A. Smirnov, “Two-loop planar master integrals for the
production of off-shell vector bosons in hadron collisions,” JHEP, vol. 1405, p. 090, 2014.

[12] F. Caola, J. M. Henn, K. Melnikov, and V. A. Smirnov, “Non-planar master integrals for the
production of two off-shell vector bosons in collisions of massless partons,” JHEP, vol. 09,
p. 043, 2014.

[13] C. G. Papadopoulos, D. Tommasini, and C. Wever, “Two-loop Master Integrals with the
Simplified Differential Equations approach,” JHEP, vol. 01, p. 072, 2015.

[14] T. Gehrmann, J. M. Henn, and N. A. L. Presti, “Analytic form of the two-loop planar
five-gluon all-plus-helicity amplitude in QCD,” 2015. arXiv:1511.05409.

[15] C. G. Papadopoulos, D. Tommasini, and C. Wever, “The Pentabox Master Integrals with the
Simplified Differential Equations approach,” 2015. arXiv:1511.09404.

[16] C. Duhr, “Mathematical aspects of scattering amplitudes,” in Theoretical Advanced Study
Institute in Elementary Particle Physics: Journeys Through the Precision Frontier:
Amplitudes for Colliders (TASI 2014) Boulder, Colorado, June 2-27, 2014, 2014.

[17] S. Laporta and E. Remiddi, “Analytic treatment of the two loop equal mass sunrise graph,”
Nucl.Phys., vol. B704, pp. 349–386, 2005.

[18] S. Bloch and P. Vanhove, “The elliptic dilogarithm for the sunset graph,” 2013.
arXiv:1309.5865.

[19] S. Caron-Huot and K. J. Larsen, “Uniqueness of two-loop master contours,” JHEP, vol. 1210,
p. 026, 2012.

– 33 –

[20] C. Duhr, H. Gangl, and J. R. Rhodes, “From polygons and symbols to polylogarithmic
functions,” Journal of High Energy Physics, vol. 10, p. 75, Oct. 2012.

[21] A. von Manteuffel and C. Studerus, “Massive planar and non-planar double box integrals for
light Nf contributions to gg → tt,” JHEP, vol. 10, p. 037, 2013.

[22] T. Gehrmann, A. von Manteuffel, and L. Tancredi, “The two-loop helicity amplitudes for
qq′ → V1V2 → 4 leptons,” JHEP, vol. 09, p. 128, 2015.

[23] R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel, and C. Studerus, “Light-quark
two-loop corrections to heavy-quark pair production in the gluon fusion channel,” JHEP,
vol. 12, p. 038, 2013.

[24] R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, F. Moriello, and V. A. Smirnov,
“Next-to-leading order QCD corrections to the decay width H âĘŠ ZÎş,” JHEP, vol. 08,
p. 108, 2015.

[25] T. Gehrmann, S. Guns, and D. Kara, “The rare decay H → Zγ in perturbative QCD,”
JHEP, vol. 09, p. 038, 2015.

[26] J. Vollinga and S. Weinzierl, “Numerical evaluation of multiple polylogarithms,” Comput.
Phys. Commun., vol. 167, p. 177, 2005.

[27] T. Gehrmann and E. Remiddi, “Numerical evaluation of two-dimensional harmonic
polylogarithms,” Comput. Phys. Commun., vol. 144, pp. 200–223, 2002.

[28] R. E. Crandall, “Note on fast polylogarithm computation,” 2006.

[29] D. J. B. Jonathan M. Borwein, David M. Bradley and P. Lisonek, “Special Values of Multiple
Polylogarithms,” Trans. of the Am. Math. Soc., vol. 353, n. 3, pp. 907–941, 2001.

[30] M. E. Hoffman, “Algebraic Aspects of Multiple Zeta Values,” Sept. 2003.
arXiv:math/0309425.

[31] C. Duhr, “Hopf algebras, coproducts and symbols: an application to Higgs boson
amplitudes,” JHEP, vol. 08, p. 043, 2012.

[32] B. S. Institution, The C standard: incorporating Technical Corrigendum 1 : BS ISO/IEC
9899/1999. John Wiley, 2003.

[33] L. Lewin, Polylogarithms and associated functions. North Holland, 1981.

[34] E. Panzer, “Algorithms for the symbolic integration of hyperlogarithms with applications to
Feynman integrals,” Comput. Phys. Commun., vol. 188, pp. 148–166, 2014.

[35] U. D. Jentschura, P. J. Mohr, G. Soff, and E. J. Weniger, “Convergence acceleration via
combined nonlinear-condensation transformations,” Computer Physics Communications,
vol. 116, pp. 28–54, Jan. 1999.

[36] E. J. Weniger, “Nonlinear sequence transformations for the acceleration of convergence and
the summation of divergent series,” ArXiv Mathematics e-prints, June 2003.
arXiv:math/0306302.

[37] R. Borghi and E. J. Weniger, “Convergence Analysis of the Summation of the Euler Series by
Padé Approximants and the Delta Transformation,” ArXiv e-prints, May 2014.
arXiv:1405.2474.

[38] D. Maitre, “HPL, a mathematica implementation of the harmonic polylogarithms,” Comput.
Phys. Commun., vol. 174, pp. 222–240, 2006.

– 34 –

[39] T. Huber and D. Maitre, “HypExp: A Mathematica package for expanding hypergeometric
functions around integer-valued parameters,” Comput. Phys. Commun., vol. 175,
pp. 122–144, 2006.

[40] C. G. Papadopoulos, “Simplified differential equations approach for Master Integrals,” JHEP,
vol. 07, p. 088, 2014.

[41] S. Catani and M. H. Seymour, “A General algorithm for calculating jet cross-sections in NLO
QCD,” Nucl. Phys., vol. B485, pp. 291–419, 1997. [Erratum: Nucl. Phys.B510,503(1998)].

[42] T. Binoth and G. Heinrich, “An automatized algorithm to compute infrared divergent
multiloop integrals,” Nucl. Phys., vol. B585, pp. 741–759, 2000.

– 35 –

