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Abstract

We compute the next-to-leading order QCD corrections to the production of two Z-bosons in

the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections

provide distinct and, potentially, the dominant part of the N3LO QCD contributions to Z-pair

production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives

the dominant contribution from loops of five light quarks, that are included in our computation in

the massless approximation. We find that QCD corrections increase the gg → ZZ production cross

section by O(50%− 100%) depending on the values of the renormalization and factorization scales

used in the leading order computation, and the collider energy. The large corrections to gg → ZZ

channel increase the pp → ZZ cross section by about six to eight percent, exceeding the estimated

theoretical uncertainty of the recent NNLO QCD calculation.
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I. INTRODUCTION

Production of pairs of vector bosons in proton collisions is one of the most interesting

processes studied by ATLAS and CMS during the LHC Run I [? ? ? ]. Indeed, pp → ZZ,

pp → W+W−, and pp → γγ were instrumental for the discovery of the Higgs boson. As

the focus of Higgs physics shifts from the discovery to precision studies of the Higgs boson

properties, di-boson production processes become essential for constraining anomalous Higgs

boson couplings, for measuring the quantum numbers of the Higgs boson and for studying

the Higgs boson width, see Refs. [? ? ? ? ]. Additionally, these processes provide important

tests of our understanding of the Standard Model and can be used to constrain anomalous

electroweak gauge boson couplings.

Production of electroweak gauge boson pairs occurs mainly due to quark-antiquark annihila-

tion qq̄ → V1V2. This contribution is known through next-to-next-to-leading order (NNLO)

in perturbative QCD [? ? ? ? ? ? ]. However, as was pointed out in Refs. [? ? ? ], there

is a sizable contribution from the gluon annihilation channel gg → V1V2, whose significance

depends on the selection cuts. For example, aggressive cuts applied to pp → W+W− to

separate the Higgs boson signal from the continuum background can increase the fraction

of gluon fusion events in the background sample [? ]. Since gg → V1V2 is a one-loop process

and since production of electroweak boson pairs at leading order (LO) occurs only in the qq̄

channel, the gluon fusion contribution to pp → V1V2 through NNLO only needs to be known

at leading order, i.e. the one-loop approximation. Thus, all existing numerical estimates of

the significance of the gluon fusion mechanism in weak boson pair production ignore radia-

tive corrections to gg → ZZ that are, potentially, quite large [? ]. The need to have an

accurate estimate of QCD corrections to gluon fusion processes for the Higgs width [? ? ]

and generic off-shell measurements [? ? ? ] was strongly emphasized in Ref. [? ].

In this paper, we will focus on the calculation of the next-to-leading order (NLO) QCD

corrections to the gluon fusion contribution to pp → ZZ process. The largest contribution

to gg → ZZ comes from quarks of the first two generations; these quarks can be taken to be

massless. The situation is more complicated for quarks of the third generation. Ideally, we

would like to include the (massless) bottom quark contribution and ignore the contribution

of the massive top quark since, at leading order, the top-quark contributions change the

2



cross section by only about 1% (cf. Refs. [? ? ]).1 We can separate bottom and top

contributions everywhere except in triangle diagrams that involve anomalous correlators of

vector and axial currents. In these triangle diagrams, when bottom and top contributions are

combined, the residual contributions are suppressed by the top quark mass, provided that we

can assume it to be larger than any other energy scale in the problem. Unfortunately, in these

diagrams top and bottom contributions can not be separated because the resulting theory

is anomalous. To deal with this issue, we adopt the following strategy: we include quarks of

the first two generations and the b-quark in our calculation in the massless approximation

and we neglect all triangle diagrams whose contribution is then naturally associated with

the quark contributions to gg → ZZ process. We note that the evaluation of the NLO QCD

corrections to top quark mediated contribution to gg → ZZ process is not yet possible

because the relevant two-loop amplitudes are not available. However, such contributions

were recently studied in Ref. [? ] in the approximation of a very large mass of the top

quark. In that calculation quite large QCD corrections were found.

Computing NLO QCD corrections to gg → ZZ process is challenging because it is loop-

induced. For this reason, the NLO QCD computation requires two-loop virtual matrix

elements for gg → ZZ and one-loop matrix elements for gg → ZZg processes. The recent

progress in calculating two-loop integrals with two massless and two massive external lines

[? ? ? ? ? ] made it possible to compute the required two-loop scattering amplitudes. Such

amplitudes were calculated recently for qq̄ → V1V2 [? ? ] and gg → V1V2 [? ? ] processes.

The second ingredient that we need is the gg → ZZg amplitude. Since this is a one-

loop amplitude, it can be calculated in a relatively standard way, at least as a matter of

principle. In fact, such calculations were performed in the past [? ? ] and used to predict

the production cross section for pp → ZZ + j. Automatic tools for one-loop computations

can also deal with this process [? ? ]. Nevertheless, it is a non-trivial computation since,

if we aim at calculating the NLO QCD corrections to gg → ZZ → 4l, we require fast and

stable calculation of helicity amplitudes for gg → ZZg process that includes decays of Z-

bosons to leptons and can be extrapolated to soft and collinear kinematics of the final state

gluon. Because of that, we decided to construct our own implementation of the scattering

1 Contribution of the top quark loop becomes non-negligible in the region of high four-lepton invariant

masses m4l > 2mt.
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amplitude for gg → ZZg using the unitarity methods [? ? ? ? ? ].2

The paper is organized as follows. In Section ?? we present a brief review of the calculation

of the two-loop scattering amplitude for gg → ZZ process. In Section ?? we discuss the cal-

culation of the one-loop helicity amplitudes for gg → ZZg and present numerical results for

a kinematic point. In Section ?? we present numerical results for gg → ZZ contribution to

pp → ZZ process at 8 and 13 TeV LHC at leading and next-to-leading order in perturbative

QCD. We conclude in Section ??.

II. THE TWO-LOOP SCATTERING AMPLITUDES FOR gg → ZZ

We start with a brief discussion of the two-loop scattering amplitudes for gg → ZZ process.

Helicity amplitudes for this process were recently computed in Refs. [? ? ]. In these

references, each of the two independent helicity amplitudes for the process gg → ZZ → 4l

was written as linear combinations of nine form factors that depend on the Mandelstam

invariants of the “prompt” process gg → ZZ and the invariant masses of the two Z bosons.

The form factors are expressed in terms of polylogarithmic functions, including both ordinary

and Goncharov polylogarithms.

In this paper we use the results of Ref. [? ] which are implemented in a C++ code that

can produce numerical results with arbitrary precision. In order to detect possible numer-

ical instabilities, the code compares numerical evaluations obtained with different (double,

quadruple and, if required, arbitrary) precision settings. If the results differ beyond a chosen

tolerance, the precision is automatically increased. Of course, switching to arbitrary preci-

sion increases the evaluation time substantially. Fortunately, we found that for phenomeno-

logically relevant situations, the number of points where the code switches to arbitrary

precision is negligible. Such points originate from kinematic regions where the two Z-bosons

have either vanishing kinetic energies or vanishing transverse momenta. The amplitude

squared is integrable in both of these regions, but, in practice, it can become numerically

unstable. Since the contribution of these regions to the gg → ZZ cross section is relatively

small, cutting them away, in principle, leads to an opportunity to perform stable numerical

2 For recent reviews see Refs. [? ? ].
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integration of the two-loop virtual correction over the four-lepton phase-space, resorting to

quadruple precision only. However, we found that the improvement in performance achieved

by cutting away the problematic regions is rather limited, so we used the default arbitrary

precision implementation of the two-loop amplitude in practice.

Since the gg → ZZ amplitude is one of the most complicated amplitudes that are currently

known analytically, it is interesting to point out that the required evaluation times are

acceptable for phenomenological needs. Indeed, calculation of all helicity amplitudes requires

about two seconds per phase-space point in quadruple precision and, since the phase-space

for gg → ZZ is relatively simple, one does not need excessively large number of points to

sample it with good precision.

For further reference we provide numerical results for the finite remainder of the one- and

two-loop scattering amplitudes defined in qt-subtraction scheme, see Ref. [? ]. The numerical

results are presented for the choice of the renormalization scale µ =
√
s, where s is the

partonic center-of-mass energy squared. The qt-subtraction scheme [? ] is discussed in

detail in Ref. [? ]. We consider the kinematical point

g(p1) + g(p2) → (Z/γ)(p34) + (Z/γ)(p56) → e−(p3) + e+(p4) + µ−(p5) + µ+(p6)

with (in GeV units)

p1 = (99.5173068698129, 99.5173068698129, 0, 0),

p2 = (99.5173068698129,−99.5173068698129, 0, 0),

p3 = (45.1400347869485, 43.4878610174890,−9.85307698310431, 7.02463939683013),

p4 = (55.6586029753540,−27.4053916434553, 48.1951275617684, 4.90451560725290),

p5 = (36.2015682945089, 34.5902512456859,−8.01242197258994, 7.06180995747356),

p6 = (62.0344076828144,−50.6727206197196,−30.3296286060742,−18.9909649615566),

(1)

and define a normalized amplitude through the following equation

d σgg→(Z/γ)(Z/γ)→4l =
(N2

c − 1)
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Note that in Eq.(??) all the color factors have been factored out and dLIPS4 is the standard

Lorentz-invariant phase-space of the four final leptons. The color-stripped amplitude admits
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