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Abstract

Testing the stability of the electroweak vacuum in any extension of the Standard Model

Higgs sector is of great importance to verify the consistency of the theory. Multi-scalar

extensions as the Minimal Supersymmetric Standard Model generically lead to unstable

configurations in certain regions of parameter space. An exact minimization of the scalar

potential is rather an impossible analytic task. To give handy analytic constraints, a spe-

cific direction in field space has to be considered which is a simplification that tends to

miss excluded regions, however good to quickly check parameter points. We describe a

yet undescribed class of charge and color breaking minima as they appear in the Mini-

mal Supersymmetric Standard Model, exemplarily for the case of non-vanishing bottom

squark vacuum expectation values constraining the combination µYb in a non-trivial

way. Contrary to famous A-parameter bounds, we relate the bottom Yukawa coupling

with the supersymmetry breaking masses. Another bound can be found relating soft

breaking masses and µ only. The exclusions follow from the tree-level minimization

and can change dramatically using the one-loop potential. Estimates of the lifetime of

unstable configurations show that they are either extremely short- or long-lived.
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1 Introduction

A complete analysis of the vacuum structure in any quantum field theory needs a considera-

tion of the effective potential to all orders which is more than an honorable task. Important

contributions to the effective potential in the Standard Model and supersymmetrized ver-

sions at one and way more loops have been (partially) determined [1–6]. The more loops

the more difficult is also the task to find the global minimum which shall determine the

vacuum state of the theory. Numerical solutions to that problem exist in the Minimal Su-

persymmetric Standard Model (MSSM) where both the effective potential as well as the

(expected-to-be) global minimum are calculated and determined purely numerically [7, 8].

Supersymmetry (SUSY) generically tends to stabilize the potential as negative fermionic

loop contributions are compensated by the corresponding bosonic ones. The superpartner

spectrum on the other hand brings additional directions in scalar field space that potentially

invalidate the electroweak Higgs vacuum at the classical level. A physical viable supersym-

metric extension has to take care of the additional parameters in a way that the “desired”

vacuum is the true vacuum of the theory.

The consideration of the one-loop effective potential, which can be very efficiently done

via the famous formula of Coleman and Weinberg [1], leads to a first understanding of

non-trivial minima. We have

VCW =
1

64π2

∑

f

C f STr
h
M

4
f
(φ)
�

ln
�
M

2
f
(φ)/Q2
�
+ Pf (φ)
�i

, (1)

where the sum runs over all fields f in the loop and C f counts gauge degrees of freedom

like Cquark = 3 (spin degrees of freedom are covered by the supertrace STr). The field-

dependent mass eigenvalues M f (φ) are generically the eigenvalues of the Hessian matrix

of the full scalar potential and the field φ represents any type of scalar field value which

is still present in the masses (do not set remnant field values to zero, they correspond to

vacuum expectation values (vevs) at local or global minima of the potential). Additionally,

there is a polynomial Pf (φ) which is renormalization scheme dependent and in the most

common cases a constant. The renormalization scale is given by Q.

The one-loop potential is known to develop an imaginary part [8–11] which is of no im-

portance in the discussion of tunneling times from false to true vacua but opens the access

to non-standard vacua: an imaginary part in the one-loop effective potential is related to a
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non-convex tree-level potential at that point.1 A non-convex potential means that the sec-

ond derivative is negative which corresponds to a tachyonic mass eigenvalue M
2
f
(φ) < 0.

The tachyonic mass, however, would only be present at the minimum (which by definition

is locally convex). So, the existence of a non-convex direction points towards a minimum in

that direction unless the potential is unbounded from below, which would be even worse.

Finding the critical field value at which the non-convex direction opens is trivial as we shall

see. The question is rather whether the non-standard minimum is deeper than the stan-

dard one and therefore allows for a vacuum-to-vacuum transition which can be figured out

analytically under certain circumstances.

We first consider the loop corrected Higgs potential in the MSSM including SUSY loop

contributions from the third generation (s)fermions. The tree-level part is given by the mass

terms and the self-couplings which are gauge couplings. The one-loop part is given by the

logarithms of Eq. (1) which also follow from the direct calculation [11]. We borrow the

notation from [11] and define the effective potential as

Veff = V0 + V t̃
1
+ V t

1
+ V b̃

1
+ V b

1

= m2 tree
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(2)

where the abbreviations xt,b and yt,b are

x2
t
=

��Ath
0
u
−µ∗Yth

0∗
d

��2

eM4
t

+

�
m̃2

Q
− m̃2

t

�2

4 eM4
t

, yt =

��Yth
0
u

��2

eM2
t

, (3a)

x2
b
=

��Abh0
d
−µ∗Ybh0∗

u

��2

eM4
b

+

�
m̃2

Q
− m̃2

b

�2

4 eM4
b

, yb =

��Ybh0
d

��2

eM2
b

. (3b)

The soft SUSY breaking masses enter as m̃2
Q
, m̃2

t
and m̃2

b
and we defined eM2

t,b
= (m̃2

Q
+

m̃2
t,b
)/2. The trilinear soft breaking couplings in the up and down sector are given by At

and Ab, respectively. Yukawa couplings are denoted as Yt,b and µ is the µ parameter of

the superpotential in the MSSM. The mass parameters of the tree-level Higgs potential are

1It is actually related to a branch point of the logarithm in Eq. (1) that appears for a zero mass eigenvalue.
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m2 tree

11
= m2

Hd
+ |µ|2, m2 tree

22
= m2

Hu
+ |µ|2 and m2 tree

12
= Bµ with the soft breaking masses m2

Hu
and

m2
Hd

for the Hu and Hd doublet, respectively; Bµ is the soft breaking bilinear term ∼ Hu ·Hd.

We consider only third generation superfields which couple with large Yukawa couplings to

the Higgs doublets:

W = µ Hd ·Hu + Yt Hu ·QL T̄R− Yb Hd ·QLB̄R. (4)

The left-handed doublet field is QL = (TL, BL) and the two Higgs doublets Hu = (h
+
u
, h0

u
) and

Hd = (h
0
d
,−h−

d
); SU(2)L-invariant multiplication is denoted by the dot-product. The SU(2)L

singlets are put into the left-chiral supermultiplets T̄R = { t̃
∗
R
, t c

R
} and B̄R = {b̃

∗
R
, bc

R
} with the

charge conjugated Weyl spinors t c
R

and bc
R
.

The effective potential of Eq. (2) obviously develops an imaginary part beyond the branch

point of the logarithms ln(1±x+ y). We want to give a physical meaning of this branch point

without reference to an imaginary part of the effective potential, since 1

2
ln
�
(1±x+ y)2
�

does

not reveal any imaginary part—nevertheless, this logarithm gets singular where ∓x − y = 1

though the potential itself stays finite. This point determines (for fixed parameters) a critical

Higgs field value for which one mass eigenvalue gets tachyonic. The effective potential is

a function of the (classical) field values which correspond to vacuum expectation values at

the minimum. In the direction of the negative mass square, the potential drops down and

therefore develops a CCB vacuum.

Moreover, for certain parameters, the potential of Eq. (2) develops a second minimum

in the direction of a standard Higgs vev which always lies beyond the branch point of one

of the logarithms [11]. Expanding around this second minimum, one finds exactly one

negative sbottom mass square (in the region of large µ and tanβ) which hints towards a

global minimum including a sbottom vev. The second minimum as depicted in [11] is an

artifact of holding b̃L,R = 0: the global minimum lies at a point with both 〈 b̃L,R〉 6= 0 and

〈h0
u
〉 6= vu.

We take the existence of the critical field value serious and first figure out its meaning

for the development of such a CCB minimum. For simplification we now restrict ourselves

in the following to 〈 t̃ L〉 = 〈 t̃R〉= 0 and also do not consider stau vevs. Let us consider for the

moment a fixed value of the down-type Higgs field, h0
d
= vd and set Ab = 0. The critical field

value is then obtained by solving xb− yb = 1 with xb and yb given in Eq. (3):

h0
u

��
crit
=±

Y 2
b

v2
d
+M2

SUSY

µYb

, (5)

with m̃2
Q
= m̃2

b
= M2

SUSY
and µ, Yb as well as the Higgs field assumed to be real. The bottom
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Yukawa coupling suffers from SUSY threshold corrections and reads Yb = mb/[vd(1+∆b)]

with ∆b including the Higgsino corrections ∼ µAt tanβ [12–15], which can be dominant

over the gluino-induced threshold correction for large µ tanβ and large gluino mass. Both

gluino and higgsino contributions sum up together, ∆b =∆
gluino

b
+∆

higgsino

b
, where the inter-

esting one-loop contribution is given by [12–15]

∆
gluino

b
=

2αs

3π
µMG̃ tanβ I(m̃ b̃1

, m̃ b̃2
, MG̃), (6a)

∆
higgsino

b
=

Y 2
t

16π2
µAt tanβ I(m̃ t̃1

, m̃ t̃2
,µ), (6b)

with

I(m1, m2, m3) =
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1
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2
ln

m2
2

m2
1

+m2
2
m2

3
ln

m2
3

m2
2

+m2
1
m2

3
ln

m2
1

m2
3

(m2
1−m2

2)(m
2
1 −m2

3)(m
2
2 −m2

3)
.

There are also higher order calculations of ∆b available that are important for precision

analyses [16–18].

The gluino loop contribution (6a) decouples with the gluino mass if the other SUSY

parameters are fixed, but the higgsino one (6b) cannot be neglected for the desired values of

µ around the SUSY scale. For the numerical analysis in the course of this letter, we set MG̃ =

MSUSY which reduces Yb for positive µ. Moreover, we only include “active” third generation

squarks as superpartners and implicitly take any other superpartner heavy (all gauginos

besides the gluino which does not give a contribution to the effective Higgs potential at

one-loop).

There are handy exclusion limits, well-known for a long time, to simply check whether an

unwanted, charge and color breaking (CCB) minimum appears for a given set of parameters

in the MSSM. The constraints are on soft breaking trilinear couplings against soft breaking

mass parameters as

A2
t
< 3(m2

22
+ m̃2

Q
+ m̃2

t
), (7)

see e. g. [19–26].

Mostly studied, however, are such couplings of up-type squarks to the up-type Higgs or of

down-type sleptons to the down-type Higgs (where similar expression for down-type squarks

can be obtained by relabeling the parameters). Couplings to the “wrong” Higgs doublet are

mainly excluded in the analyses. The destabilizing contribution is always related to the

trilinear part of the scalar potential, e. g. ∼ µY ∗
b

h0
u
b̃∗

R
b̃L. It has been shown [11] that the

direction of the up-type Higgs field gets apparently destabilized from a (s)bottom loop effect.
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In [11] only the field direction of the neutral Higgs, h0
u
, was considered—we now want to

give a more complete view of the destabilizing effect leading to an analytic approximate

exclusion on the combination µYb in case the colored sbottom direction is included. Another

exclusion can be obtained using a different direction in field space, where also the down-type

Higgs scalar is needed.

In this letter, we describe in the following section how to derive the analytic expression

for the new CCB constraint from sbottom vevs and compare it to the numerical analysis of

the global minima in the quantum (e. g. loop corrected) theory. Finally, we conclude.

2 Finding CCB minima

So far, we only discussed features of the scalar (one-loop) Higgs potential from Eq. (2) as

described in [11]. In order to find the new (true) CCB vacuum, which hides behind the

critical Higgs field value, we add to the potential of Eq. (2) (evaluated at Q2 = M2
SUSY

) the

tree-level part of the sbottom potential,

V tree

b̃
= b̃∗

L
(m̃2

Q
+ |Ybh0

d
|2)b̃L + b̃∗

R
(m̃2

b
+ |Ybh0

d
|2)b̃R

−
�

b̃∗
L
(µ∗Ybh0†

u
− Abh0

d
)b̃R + h. c.
�
+ |Yb|

2|b̃L|
2|b̃R|

2+ D-terms.
(8)

As was already pointed out before [27, 28], the destabilizing term is always the trilinear

one, µY ∗
b

h0
u
b̃∗

R
b̃L, so we expect a new stability condition for the combination µYb taking

Ab = 0. Actually, we cannot ignore D-terms in the tree-level potential accordingly to the

neglect of all g2
1,2

terms in the derivation of the one-loop Higgs potential, since also the

Higgs self-couplings are ∼ g2
1,2

. However, we can simplify (as usually done) the discussion

considering so-called “D-flat” directions. Those directions are most probably that kind of

rays in field space in which unwanted minima develop. Non-D-flat directions are protected

by the quartic terms that will always take over. The full D-term potential for the Higgs and

sbottom scalar potential is given by

VD =
g2

1

8

�
|h0

u
|2− |h0

d
|2+

1

3
|b̃L |

2+
2

3
|b̃R|

2
�2

+
g2

2

8

�
|h0

u
|2− |h0

d
|2+ |b̃L |

2
�2
+

g2
3

6

�
|b̃L|

2 − |b̃R|
2
�2

.

(9)

We still ignore stop and stau fields and remark that the pure Higgs terms are already included

in Eq. (2). Nevertheless, we make use of Eq. (9) to set the interesting directions: with b̃L =
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b̃R ≡ b̃, we have the SU(3)c D-flat direction. Considering the three-field scenario, we can

reduce the degrees of freedom forcing all D-terms to vanish by the choice |h0
d
|2 = |h0

u
|2+ |b̃|2.

Still rather large quartic terms survive in the potential, namely the |Yb|
2 terms from the F -

term part in V tree

b̃
. For that observation, we also look into a non-D-flat direction keeping

g2
1+g2

2

8

�
|h0

u
|2 + |b̃|2
�2

, where the down-type Higgs is fixed at h0
d
= vd which is a constant and

small number especially for large tanβ ,2 and therefore neglected with respect to potentially

large field values of b̃ and h0
u
. Note that contrary to most previous considerations [26,27,29,

30] we are explicitly interested in b̃ 6= 0 though Ab = 0 and have t̃L,R = 0. In both ways we

are considering a combined non-standard vacuum in the mixed sbottom and up-type Higgs

direction instead of the pure down-down case.

Let us figure out the analytic bound analogously to the famous A-parameter bounds like

Uneq. (7), under which circumstances a CCB true vacuum appears. For that purpose, we

shall choose the most probable field configuration that makes all the D-terms vanish. In the

SU(3)c × SU(2)L × U(1)Y D-flat direction, we assign b̃L = b̃R = b̃ and h0
d

2
= h0

u

2
+ b̃2. We

consider only real fields and parameters now and in the following for simplicity. A different

but not uninteresting bound will be derived in a direction where we keep the hd field strength

at a fixed and small value, h0
d
= vd ≈ 0. That way, we cannot reduce the quartic terms but

still find a (new) analytic exclusion in the h0
u
= b̃ direction.

h
0
u = b̃ An exact analytic derivation of the exclusion limits from the stability of the elec-

troweak vacuum against formation of charge and color breaking minima is very easy to

obtain in the one-field scenario. We follow the standard procedure which was pictorially

reviewed in Ref. [8]. We collect the interesting parts of the tree-level potentials of Eqs. (2)

and (8),

V tree

b̃,h
= (M2− 2µYbh)b̃2 +m2h2+λb b̃4 +λhh4+λhbh2 b̃2, (10)

with M2 = m̃2
Q
+ m̃2

b
, m2 = m2

Hu
+ µ2 and the self-couplings λb = Y 2

b
+

g2
1+g2

2

8
, λh =

g2
1+g2

2

8
and

λhb =
g2

1+g2
2

4
. This simplifies via b̃ = h further to

V tree
h,h
= m̄2h2− Ah3+λh4, (11)

2With vd = v cosβ we denote the standard electroweak vev of the down-type Higgs.
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Figure 1: New exclusion limits including the formation of charge and color breaking minima with

both 〈 b̃〉 6= 0 and 〈h0
u〉 6= 0. The left plot shows exclusions in the µ-tanβ plane with At = −1800 GeV

which has been chosen conveniently to give the proper light Higgs mass within a few GeV and a com-

mon soft breaking mass MSUSY = 1 TeV. The small points are excluded by the numerical comparison

of the two minima (exclusion if CCB minimum deeper than trivial one). On the right-hand side we

depict the crucial dependence of the non-standard minimum on the (mis)alignment of sbottom field

and Higgs field value (b̃ = αh with h= h0
u, h0

d
= 0 and α ∈ {0.8,1,1.1} for a given excluded point.

with m̄2 = M2+m2, λ = λh+λb +λhb and A= 2µYb. We then find with the vev,

v = 〈h〉=
3A+
p

9A2 − 32m̄2λ

8λ
,

and the requirement3 that for stable configurations Vmin = V tree
h,h
(v) > 0, which is m̄2 > A2

4λ
,

the new condition as (m2
Hu

is negative!)

m2
Hu
+µ2+ m̃2

Q
+ m̃2

b
>

(µYb)
2

Y 2
b
+ (g2

1 + g2
2)/2

. (12)

Note that Yb has a non-trivial dependence on µ, tanβ and also At via ∆b, see Eqs. (6)

and [12–15]. The (g2
1
+ g2

2
)/2 contribution is the left-over from the non-D-flatness which

can be numerically of the same size as a threshold-resummed Yb, weakening the exclusion.

This bound, however, does not fit exactly to the numerical exclusion as can be seen from

Fig. 1 but provides an excellent approximation though actually 〈h〉 6= 〈 b̃〉. The numerical

exclusion limit shown in Fig. 1 agrees well with independent previous analyses on a similar

situation [31] and are a bit stricter than the final results of [11], whereas a similar necessary

3The potential of Eq. (11) reveals a strong first order phase transition, where the trivial minimum appears

to be V (h= 0) = 0. Stable configurations need the potential value to be larger than that one.
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condition was found for a slightly different direction in field space [32].

|h0

d
|2 = |h0

u|
2
+ |b̃|2 With the knowledge from above, it is straightforward to give a similar

exclusion in the D-flat direction |h0
d
|2 = |h0

u
|2+ |b̃|2. The remaining two-field scalar potential

(real fields and parameters, Ab = 0) can be further reduced aligning b̃ = αh0
u
= αh with a

(real) scaling parameter α:

VD-flat =

�
m2

11
(1+α2) +m2

22
± 2m2

12

p
1+α2+α2(m̃2

Q
+ m̃2

b
)

�
h2

− 2µYbα
2h3+ Y 2

b

�
2α2(1+α2) +α4

�
h4,

(13)

that can be easily mapped on the expression of Eq. (11) resulting in the requirement that for

stable configurations4

m2
11
(1+α2) +m2

22
± 2m2

12

p
1+α2+α2(m̃2

Q
+ m̃2

b
) >

µ2α2

2+ 3α2
. (14)

This exclusion translated into the µ-tanβ plane is shown in Fig. 2 where we also display

points that are excluded via the numerical minimization of the combined tree and one-

loop effective potential. To enhance the significance of this bound (which is basically tanβ -

independent), we have employed running squark parameters in the tree-level sbottom poten-

tial evaluated at the scale of the new minimum. Therefore, also corresponding parameters

in the analytic exclusion (soft SUSY breaking masses and µ) have been taken at the same

scale. Unfortunately, for the purpose of displaying the exclusion line, it is not clear at which

scale those parameters have to be evaluated. As the second minimum generically appears

around one order of magnitude above the SUSY scale, we have set a fixed renormalization

scale of 10 MSUSY and therefore blue dots and the reddish area on the left-hand side Fig. 2 do

not perfectly fit. Moreover, the excluded area by Uneq. (14) is not completely filled with ex-

cluded blue points as there the sbottom-tree plus Higgs-one-loop potential shows a different

behavior than the classical potential as also depicted in Fig. 3.

Unequations like (14) or (12) follow from the tree-level potential and can be determined

easily once a specific field line is selected. Going beyond tree-level changes the situation

severely as can be seen from Fig. 3. A configuration which is obviously unstable (right-hand

side) at the tree-level not even develops a second minimum considering the one-loop Higgs

potential (the complete one-loop potential including sbottom directions was not employed

4The sign ambiguity origins from the fact, that we only need to constrain |h0
d
|2 where the overall phase or

sign is not constrained.

8



µ/GeV

ta
n
β

5000450040003500300025002000

60

50

40

30

20

10

0

µ/GeV

ta
n
β

60005500500045004000350030002500

60

50

40

30

20

10

0

Figure 2: Exclusion in the µ-tanβ plane similar to the one shown in Fig. 1 (which is indicated by the

grayish area) for the D-flat direction |h0
d
|2 = |h0

u|
2+ | b̃|2. Blue dots have been excluded via numerical

comparison of the two minima (if so) using the one-loop Higgs potential and an improved sbottom

potential at the tree-level; the red line shows the exclusion of Uneq. (14) where the misalignment

parameter α has been “fitted” for optical agreement of the blue dots and the reddish area to be 0.75;

the actual α are different for each blue point. On the left-hand side, we have the −-sign and on the

right-hand side the +-sign of Uneq. (14).

for that purpose though should be available numerically). However, this effect is different

in the “positive” h0
d

direction where unstable configurations are driven towards more stable

ones as can be seen from the left-hand side of Fig. 3. Usage of the renormalization group

improved (tree-level) effective potential, where the couplings (Yukawa couplings and masses,

actually no gauge couplings are they are absent in the genuine D-flat direction) are evaluated

at a proper scale,5 hint towards less restrictive exclusions. Where the tree-only potentials

show non-trivial charge and color breaking minima, the loop-corrected potentials seem to

stabilize the standard vacuum against formation of false vacua.

Estimate of lifetime Are the developing charge and color breaking minima really a case

for anxiety? As long as the lifetime of the “standard” electroweak vacuum is (much) longer

than the present age of the universe, we basically do not have not worry and can take the

issue of vacuum metastability for future generations. We estimate the lifetime of the desired

vacuum for the scenarios provided in Figs. 1 and 3 using the triangle method of [34] and the

instable potentials shown in the figures. However, similar to the scenario discussed in [11],

5The choice of a proper renormalization scale is a bit vague and the decision whether to trust that choice

in order to discard certain configurations is tenuous. For our purpose, we stick to the suggestion of Ref. [33]

and choose a scale Q̂ =max
�
M

2
f
(h)
�

as the largest field-dependent mass eigenvalue of the loop-contributing

fields (in our case top and/or bottom (s)quark).
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Figure 3: For a given parameter point (µ = 4 TeV, tanβ = 40, At = 1.8 TeV), we show exemplarily the

behavior of the potential in the given direction in field space (and b̃ = 0.75h0
u). On the left-hand side,

the positive sign for h0
d

was chosen, where the plot on the right has h0
d
= −
Æ
|h0

u|
2 + | b̃|2 with real

fields and parameters in both cases. The “tree + 1-loop” line means inclusion of the one-loop Higgs

potential as of Eq. (2) plus the tree-level bottom squark potential (without D-terms each since they

vanish by definition of the direction) evaluated with running parameters (soft-breaking squark masses

and Yukawa couplings). For comparison, we show the “tree only” where the masses and couplings

of the potential have been evaluated at the SUSY scale MSUSY = 1 TeV and the “RG-improved tree”

potential where all soft masses and couplings are treated as running ones.

where the decay time was found to be ridiculously small (details on the estimate have been

given in [35]), we find our unstable solutions to be extremely short-lived concerning Fig. 1.

This is not true for the genuine D-flat scenario shown in Fig. 3; here the lifetime is many

orders the lifetime of the universe.

3 Conclusions

We have provided new (analytic) exclusion bounds in the MSSM from the formation of

CCB minima. Contrary to previous considerations, we did not constrain the soft-breaking

A-parameter by working in the direction of up or down fields only but connected the bot-

tom squark direction with the up-type Higgs field. This procedure gives a constraint on µYb,

where the bottom Yukawa coupling has an implicit dependence on the model parameters

via Yb = mb/[vd(1+∆b)]. Under certain simplifications we have derived an analytic bound

which is mostly in good agreement with the direct numerical exclusion from the minimiza-

tion of the full (i. e. tree-level sbottom plus one-loop Higgs) effective potential considered

in this letter. This bound complements existing CCB bounds and relates the bottom Yukawa

coupling to soft SUSY breaking parameters (and the µ-parameter of the superpotential)

10



which is qualitatively different from existing traditional CCB bounds. The bottom Yukawa

coupling itself depends nontrivially on the SUSY spectrum by virtue of threshold correc-

tions for large tanβ . A similar bound was found for the distinct direction in field space

where all the D-terms vanish. The corresponding unstable solutions are rather metastable

and very long-lived. Moreover, the comparison with quantum corrected potentials shows

that even the metastable configurations tend to be stabilized by the loop contributions. This

strengthens the previous bound in the explicit non-D-flat directions which stems from im-

mensely short-lived configurations that persist in the presence of quantum corrections and

is therefore more severe. The limitation to D-flat directions in the scalar potential as usually

performed probably misses additional potentially dangerous directions.

We constrained ourselves to cases with only one non-standard vev, accordingly the exclu-

sions would change once more directions are taken into account. In those cases, however,

the definition of flat directions suffers from ambiguities which makes the derivation of an

analytic bound similar to Eq. (12) unclear. Similarly, the constraints can be extended to

non-vanishing stop and stau vevs as has been done for the left-right mixing of staus [36].
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