Topological amplitudes in D decays to two pseudoscalars: a global analysis with linear $SU(3)_F$ breaking

Sarah Müller a,b, Ulrich Nierste b and Stefan Schacht b

a Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, D-76021 Karlsruhe, Germany
b Institut für Theoretische Teilchenphysik, Karlsruher Institut für Technologie, D-76128 Karlsruhe, Germany

We study decays of D^0, D^+, and D^+_s mesons into two pseudoscalar mesons by expressing the decay amplitudes in terms of topological amplitudes. Including consistently $SU(3)_F$ breaking to linear order, we show how the topological-amplitude decomposition can be mapped onto the standard expansion using reduced amplitudes characterized by $SU(3)$ representations. The tree and annihilation amplitudes can be calculated in factorization up to corrections which are quadratic in the color-counting parameter $1/N_c$. We find new sum rules connecting $D^+ \rightarrow K_S K^+$, $D^+_s \rightarrow K_S \pi^+$ and $D^+ \rightarrow K^+ \pi^0$, which test the quality of the $1/N_c$ expansion. Subsequently, we determine the topological amplitudes in a global fit to the data, taking the statistical correlations among the various measurements into account. We carry out likelihood ratio tests in order to quantify the role of specific topological contributions. While the $SU(3)_F$ limit is excluded with a significance of more than five standard deviations, a good fit (with $\Delta \chi^2 < 1$) can be obtained with less than 28% of $SU(3)_F$ breaking in the decay amplitudes. The magnitude of the penguin amplitude P_{break}, which probes the Glashow-Iliopoulos-Maiani (GIM) mechanism, is consistent with zero; the hypothesis $P_{\text{break}} = 0$ is rejected with a significance of just 0.7σ. We obtain the Standard-Model correlation between $B(D^0 \rightarrow K_L \pi^0)$ and $B(D^0 \rightarrow K_S \pi^0)$, which probes doubly Cabibbo-suppressed amplitudes, and find that $B(D^0 \rightarrow K_L \pi^0) < B(D^0 \rightarrow K_S \pi^0)$ holds with a significance of more than 4σ. We finally predict $B(D^+_s \rightarrow K_L K^+) = 0.012^{+0.007}_{-0.002}$ at 3σ CL.

I. INTRODUCTION

While there is a plethora of experimental information on hadronic charm decays, no theoretical method for dynamical, QCD-based predictions for the corresponding decay amplitudes is known. The best theoretical approach uses the approximate $SU(3)_F$ symmetry of the QCD Lagrangian to relate the amplitudes of different decay modes to each other. If one assumes this symmetry to be exact, one can express the amplitudes of all measured decay modes in terms of a smaller number of parameters, which are the reduced amplitudes characterized by $SU(3)_F$ quantum numbers. Then one can predict the less precisely measured branching fraction on the basis of exact $SU(3)_F$ or assess the validity of this assumption from the overall quality of the fit [1,13]. $SU(3)_F$ is broken, because the masses $m_{u,d,s}$ of the three lightest quarks are not equal. Comparing the differences among these masses with a typical hadronic scale one estimates $SU(3)_F$ breaking to be around 30%. In practice the quality of $SU(3)_F$ symmetry can be much better (e.g. in heavy-hadron spectroscopy) or much worse (e.g. in heavy-quark fragmentation) and should be critically assessed for each system to which it is applied. Linear (i.e. first-order) $SU(3)_F$ breaking can be rigorously included into the parameterization of the amplitudes, at the expense of a larger number of reduced amplitudes. In the case of $D \rightarrow PP'$, where $D = D^0$, D^+ or D^+_s and P, P' represent pseudoscalar mesons, such studies have been performed in Refs. [15–28]. (Remarkably, one can find relations between amplitudes which even hold to first order in $SU(3)_F$ breaking [29].) Since there are less $D \rightarrow PP'$ branching fractions than real parameters, there is a multi-dimensional space of solutions (all giving a perfect χ^2) for the latter. Many of these solutions involve reduced $SU(3)_F$-breaking amplitudes whose sizes are indeed of order 30% or less than the $SU(3)_F$-leading ones, giving evidence (but no proof) that the $SU(3)_F$ expansion works. The redundancy associated with the multi-dimensional space of solutions poses a challenge for the numerical method to find the best-fit solutions because of the many flat directions in the space of reduced amplitudes.

An alternative way to parameterize decay amplitudes involves topological amplitudes which are characterized by the flavor flow in the decays [5,9,11,13,17,19,28,30–32]. The building blocks of this approach are shown in Tab. I and Fig. [1]. The topological amplitudes permit an easy and intuitive implementation of $SU(3)_F$ relations. They further have the merit that they categorize the decays by dynamical criteria (i.e. whether the valence quark takes part in the weak interaction and which meson picks it up) and permit the combination of $SU(3)_F$ methods with other calculational methods. In this paper we take a first step in this direction and apply the $1/N_c$ expansion (first applied to D decays in Ref. [33]) to the tree (T) and annihilation (A) amplitudes of Tab. I ($N_c = 3$ is the number of colors.) T and A each factorize into...
the product of a form factor and a decay constant up to corrections of order $1/N_c^2$. We further include linear SU(3)$_F$ breaking in the topological-amplitude decomposition, similarly to the study of B decays in Ref. [19]. For fixed values of T and A (obtained by adding a chosen $1/N_c^2$ deviation to the factorized expressions) the number of fitted complex topological amplitudes is reduced from 17 to nine, so that the problem of flat directions is substantially alleviated.

The purpose of this paper is a systematic determination of the topological amplitudes including linear SU(3)$_F$ breaking from a global fit to $16 D \rightarrow PP'$ branching fractions and the measured strong-phase difference $\delta_{K^+\pi^-}$. For each topological amplitude we quantify the amount of SU(3)$_F$ breaking with statistical likelihood-ratio tests using the statistical package $myFitter$ [34]. The latter is especially convenient in order to include nonlinear constraints in a frequentist analysis using the SLSQP algorithm implemented in SciPy [35, 36]. As a novel feature our statistical analysis fully includes the statistical correlations between the different experimental inputs. The ranges of the topological amplitudes found by us are an important input for the prediction of CP asymmetries. However, the latter also involve quantities which cannot be extracted from branching fractions (SU(3)$_F$ triplet amplitudes), so that additional input is needed for this purpose. This is one reason why we do not include measurements of CP asymmetries in our fit input. The other reason is their sensitivity to new physics, whose quantification should be separated from the determination of hadronic parameters as much as possible. In this paper we also do not consider decays into final states with η or η', which involve additional parameters.

The paper is organized as follows: In Sec. II we present the parameterization of D decay amplitudes using topological amplitudes. We discuss the inclusion of linear SU(3)$_F$ breaking and the appearing parametric redundancies in the diagrammatic language. In Sec. III we combine the method with $1/N_c^2$ counting and define our measures of SU(3)$_F$ breaking. In Sec. IV we present the result of our fit. Finally, we conclude.

II. DIAGRAMMATIC PARAMETERIZATION OF CHARM DECAYS

A. Notation

We choose the following conventions for the meson states:

\begin{align}
\mid K^+ \rangle &= \mid u\bar{s} \rangle , & \mid K^0 \rangle &= \mid d\bar{s} \rangle , \\
\mid K^- \rangle &= -\mid s\bar{u} \rangle , & \mid K^0 \rangle &= \mid s\bar{d} \rangle , \\
\mid \pi^+ \rangle &= \mid u\bar{d} \rangle , & \mid \pi^0 \rangle &= \frac{1}{\sqrt{2}} (\mid d\bar{d} \rangle - \mid u\bar{u} \rangle) , \\
\mid \pi^- \rangle &= -\mid d\bar{u} \rangle , & \mid D^0 \rangle &= -\mid c\bar{u} \rangle , \\
\mid D^+ \rangle &= \mid c\bar{d} \rangle , & \mid D^+ \rangle &= \mid c\bar{s} \rangle .
\end{align}

Here the “=” sign means that the flavor quantum numbers of the meson state on the left-hand side equal those of the quark-antiquark state on the right-hand side. Tab. I shows the topological (flavor-flow) amplitudes. The cross denotes the W-boson exchange encoded in $\Delta C = 1$ Hamiltonian. We write the Cabibbo-favored (CF), singly Cabibbo-suppressed (SCS), and doubly Cabibbo suppressed (DCS) decays as

\begin{align}
\mathcal{A}_{\text{CF}}(d) &\equiv V^*_{c\bar{s}}V_{u\bar{d}}A(d) \equiv V^*_{c\bar{s}}V_{u\bar{d}} \sum_i c_i^d T_i , \\
\mathcal{A}_{\text{SCS}}(d) &\equiv \lambda_{u\bar{d}} A(d) \equiv \lambda_{u\bar{d}} \sum_i c_i^d T_i , \\
\mathcal{A}_{\text{DCS}}(d) &\equiv V^*_{c\bar{d}}V_{u\bar{s}}A(d) \equiv V^*_{c\bar{d}}V_{u\bar{s}} \sum_i c_i^d T_i .
\end{align}

Here, we defined

$$\lambda_{u\bar{d}} := (\lambda_u - \lambda_d)/2 := (V^*_{c\bar{s}}V_{u\bar{d}} - V^*_{c\bar{s}}V_{u\bar{d}})/2 ,$$

where $\lambda_u \simeq \lambda_s - \lambda_d$. T_i is a topological amplitude (see Tabs. I, II) and P_{break} labels the decay mode. There is a CKM-suppressed part $\propto V^*_{c\bar{s}}V_{u\bar{d}}$ in SCS amplitudes which can be safely neglected in all branching ratios.

In the limit of unbroken SU(3)$_F$ symmetry only the tree (T), annihilation (A), color-suppressed (C), and exchange (E) amplitudes are needed to parameterize all $D \rightarrow PP'$ decays. While the penguin amplitude $P_{a,b}$ (labeled with the quark flavor running in the loop) is also non-vanishing in unbroken SU(3)$_F$, it only appears in the combination

$$P_{\text{break}} \equiv P_a - P_b,$$

where we have adopted the notation of Ref. [27]. $T, A, C,$ and E are commonly fitted together with the penguin amplitude P_{break}, which vanishes in the SU(3)$_F$ limit [9, 11, 13, 19, 28, 37]. The normalization of the amplitudes is such that

\begin{align}
B(D \rightarrow P_1 P_2) &= |A^X(D \rightarrow P_1 P_2)|^2 \times \mathcal{P}(D, P_1, P_2) , \\
\mathcal{P}(D, P_1, P_2) &\equiv \tau_D \times \frac{1}{16\pi m_D} \times \sqrt{(m_D^2 - (m_{P_1} - m_{P_2})^2)(m_D^2 - (m_{P_1} + m_{P_2})^2)} .
\end{align}

with $X = \text{CF, SCS, DCS}$. In the following, we will only make use of the notation $A(d)$ without superscript, see Eqs. (6, 7, 8).

B. SU(3)$_F$-breaking

Any perturbative treatment starts with a subdivision of the Hamiltonian $H = H_0 + H_1$ into a piece H_0 treated
without approximation and the perturbation H_1. The S-matrix element of the transition $i \rightarrow f$ triggered by H_1 is

$$\langle f | T e^{-i\int d^4x H_W(x)} | i \rangle. \quad (13)$$

In our case H_0 is the QCD Hamiltonian with m_s and m_d set equal to m_d. H_1 consists of the weak $|\Delta C|=1$ Hamiltonian H_W and the SU(3)-breaking Hamiltonian

$$H_{SU(3)_{F}} = (m_s - m_d)\pi s,$$ \hspace{1cm} (14)

where isospin breaking is neglected. With our choice of H_0 the asymptotic states i, f are eigenstates of H_0 which are D^+ or D^0 mesons or two-pion states. To first order in H_W and zeroth and first order in $H_{SU(3)_{F}}$ the transition amplitude in Eq. (13) becomes

$$\langle f | -i \int d^4x H_W(x) | i \rangle +$$

$$\langle f | - \frac{1}{2} \int d^4x d^4y \int d^4x' H_W(x) H_{SU(3)_{F}}(y) | i \rangle. \quad (15)$$

The second piece accounts for the differences of amplitudes involving a D^*_s in the initial state or one or two kaons in the final state from their unflavored counterparts. The Feynman rule of $H_{SU(3)_{F}}$ is an $\bar{s}s$ vertex which we denote by a cross on the s-quark line. This approach is essentially identical to the one of Ref. [19], where B decays have been considered. $H_{SU(3)_{F}}$ also leads to $\eta-\eta'$ mixing. Using an $\eta-\eta'$ mixing angle in our diagrammatic method may lead to a double-counting of SU(3)

background effects and we do not consider final states with $\eta^{(')}$'s in the final state in this paper. The corresponding topological amplitudes are collected in Tab. [11].

We combine our topological amplitudes into a vector

$$p \equiv \left(T, T_1^{(1)}, T_2^{(1)}, T_3^{(1)}, A, A_1^{(1)}, A_2^{(1)}, A_3^{(1)}, C, C_1^{(1)}, C_2^{(1)}, C_3^{(1)}, E, E_1^{(1)}, E_2^{(1)}, E_3^{(1)}, P_{break} \right)^T. \quad (16)$$

Then we can write

$$Mp = A$$ \hspace{1cm} (17)

with a 17×17 coefficient matrix M and $A = (A(D^0 \rightarrow K^+K^-), \ldots A(D_s^+ \rightarrow K^0K^+))^T$ subsuming the decay amplitudes. The i-th column of M contains the coefficients c_i^q of Eqs. [6–8]. Tab. III shows A in the first column and lists the elements of M as table entries. We remark that the only final state with two identical mesons is $|\pi^0\pi^0\rangle$. In $D^0(p_D) \rightarrow \pi^0(p_1)\pi^0(p_2)$ two effects must be taken into account: first, each topological amplitude appears twice (with p_1 and p_2 interchanged, leading to a proper Bose-symmetrized state). Second, in the subsequent phase space integration one integrates the azimuthal angle over the interval $[0,\pi]$ rather the usual $[0,2\pi]$, because the two pions are indistinguishable. The resulting factor of $1/2$ in the decay rate (compared to the other listed decay rates) is accommodated through a factor of $1/\sqrt{2}$ on the amplitude level in Tab. [11]. E.g. the factor of $1/\sqrt{2}$ multiplying E is the result of the mentioned factors of 2 and $1/\sqrt{2}$ and two factors of $1/\sqrt{2}$ stemming from the $|\pi^0\rangle$ state in Eq. [3]. Note that it would be unwise to define the SU(3)$_F$ limit from some average of s and d diagrams, since with this choice the asymptotic states constructed from H_0 would not correspond to physical mesons. Furthermore, there would be far less zeros among the coefficients in Tab. III which would further complicate the analysis.

There is one more SU(3)$_F$-breaking topological amplitude, the penguin annihilation amplitude $P_{A\,break} \equiv PA_s - PA_d$ depicted in Fig [11]. While the dynamics described by this amplitude is different from the ones discussed so far, $P_{A\,break}$ enters the decay amplitudes in such a way that it can be absorbed into other amplitudes. Thus it is a redundant fit parameter, as explained in the following section.

C. Redundancies

The relationship between physical and topological amplitudes is not one-to-one. If no other dynamical information on the latter is used, the determination of p from A in Eq. [17] yields an infinite set of solutions describing the data equally well. A priori this feature renders fitted numerical values of $T, \ldots P_{break}$ meaningless and obscures the comparison of different analyses in the literature. There are two ways to address this problem:

<table>
<thead>
<tr>
<th>Name</th>
<th>Diagrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>![Diagram for T]</td>
</tr>
<tr>
<td>A</td>
<td>![Diagram for A]</td>
</tr>
<tr>
<td>C</td>
<td>![Diagram for C]</td>
</tr>
<tr>
<td>E</td>
<td>![Diagram for E]</td>
</tr>
<tr>
<td>P_d</td>
<td>![Diagram for P_d]</td>
</tr>
</tbody>
</table>
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Name & $s - d$ difference of topologies & denoted by Feynman rule \\
\hline
$T_1^{(1)}$ & \includegraphics[scale=0.5]{figure1.png} & \includegraphics[scale=0.5]{figure2.png} \\
$T_2^{(1)}$ & \includegraphics[scale=0.5]{figure3.png} & \includegraphics[scale=0.5]{figure4.png} \\
$T_3^{(1)}$ & \includegraphics[scale=0.5]{figure5.png} & \includegraphics[scale=0.5]{figure6.png} \\
$A_1^{(1)}$ & \includegraphics[scale=0.5]{figure7.png} & \includegraphics[scale=0.5]{figure8.png} \\
$A_2^{(1)}$ & \includegraphics[scale=0.5]{figure9.png} & \includegraphics[scale=0.5]{figure10.png} \\
$A_3^{(1)}$ & \includegraphics[scale=0.5]{figure11.png} & \includegraphics[scale=0.5]{figure12.png} \\
$C_1^{(1)}$ & \includegraphics[scale=0.5]{figure13.png} & \includegraphics[scale=0.5]{figure14.png} \\
$C_2^{(1)}$ & \includegraphics[scale=0.5]{figure15.png} & \includegraphics[scale=0.5]{figure16.png} \\
$C_3^{(1)}$ & \includegraphics[scale=0.5]{figure17.png} & \includegraphics[scale=0.5]{figure18.png} \\
$E_1^{(1)}$ & \includegraphics[scale=0.5]{figure19.png} & \includegraphics[scale=0.5]{figure20.png} \\
$E_2^{(1)}$ & \includegraphics[scale=0.5]{figure21.png} & \includegraphics[scale=0.5]{figure22.png} \\
$E_3^{(1)}$ & \includegraphics[scale=0.5]{figure23.png} & \includegraphics[scale=0.5]{figure24.png} \\
P_{break} & \includegraphics[scale=0.5]{figure25.png} & \includegraphics[scale=0.5]{figure26.png} \\
\hline
\end{tabular}
\caption{SU(3)$_F$-breaking topological amplitudes corresponding to the amplitudes in Tab. III. The Feynman rule for $H_{SU(3)_F}$ is the cross placed on an s line.}
\end{table}
one can either simply remove redundant parameters and quote numbers for the linear combinations of the topological amplitudes which are in one-to-one correspondence with the physical ones. Or one can use further theoretical (and experimental) input to constrain the topological amplitudes. We determine redundancies among $T_1, \ldots, P_{\text{break}}$ in this section and relegate the second approach to Sec. III.

The first redundancy is related to P_{break} of Fig. 1 which appears in SCS decays with the coefficients in Tab. IV The listed column of coefficients is linearly dependent on the four columns of coefficients of $E, E^{(1)}_{1,2,3}$ in Tab. III I.e. we can absorb P_{break} into the exchange amplitudes by redefining $E = \hat{E} - P_{\text{break}}, E^{(1)}_{1,2,3} = \hat{E}^{(1)}_{1,2,3} + P_{\text{break}}$. In Tab. III this redefinition is implicitly already performed, so that P_{break} is not shown there anymore. The physical meaning of $E, E^{(1)}_{1,2,3}$ changes accordingly, to be read as $\hat{E}, \hat{E}^{(1)}_{1,2,3}$ with the penguin annihilation mechanism included. However, $|P_{\text{break}}|$ is expected to be negligibly small: The corresponding Wilson

<table>
<thead>
<tr>
<th>Decay d</th>
<th>P_{break}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCS</td>
<td></td>
</tr>
<tr>
<td>$D^0 \to K^+ K^-$</td>
<td>1</td>
</tr>
<tr>
<td>$D^0 \to \pi^+ \pi^-$</td>
<td>1</td>
</tr>
<tr>
<td>$D^0 \to K^0 K^0$</td>
<td>-1</td>
</tr>
<tr>
<td>$D^0 \to \pi^0 \pi^0$</td>
<td>-1</td>
</tr>
<tr>
<td>$D^+ \to \pi^+ \pi^0$</td>
<td>0</td>
</tr>
<tr>
<td>$D^+ \to K^0 \pi^+$</td>
<td>0</td>
</tr>
<tr>
<td>$D^+ \to K^0 K^+$</td>
<td>0</td>
</tr>
<tr>
<td>$D^+ \to K^0 \pi^+$</td>
<td>0</td>
</tr>
<tr>
<td>$D^+ \to K^0 K^+$</td>
<td>0</td>
</tr>
</tbody>
</table>

FIG. 1: Penguin annihilation diagram.

\[
\begin{array}{cccccccccc}
 p & n_1 & n_2 & n_3 & n_4 & n_5 & n_6 & p - P_{\text{brk}} n_1 & p - A n_4 & p - A^{(1)} n_2 \\
 T & 1 & 1 & 0 & 1 & 0 & 0 & T - P_{\text{brk}} & T - A & T \\
 T^{(1)} & -1 & -1 & 1 & 0 & 0 & 0 & T^{(1)} - P_{\text{brk}} & T^{(1)} - A & T^{(1)} \\
 T^{(2)} & -1 & 0 & -1 & 0 & 0 & 0 & T^{(2)} - P_{\text{brk}} & T^{(2)} - A & T^{(2)} \\
 T^{(3)} & 0 & 0 & 0 & 0 & 1 & 0 & T^{(3)} & T^{(3)} & T^{(3)} \\
 E & 0 & 0 & 0 & 1 & -1 & 0 & A & A + A^{(3)} & A^{(1)} \\
 E^{(1)} & 0 & 0 & 1 & 0 & 0 & -1 & A^{(1)} & A^{(1)} & A^{(1)} \\
 E^{(2)} & 0 & 1 & 0 & 1 & 0 & 0 & A^{(2)} & A^{(2)} - A^{(3)} & 0 \\
 E^{(3)} & 0 & 0 & 0 & 0 & 1 & 0 & A^{(3)} & A^{(3)} & 0 \\
 C & -1 & -1 & 0 & -1 & 0 & 0 & C + P_{\text{brk}} & C + A & C \\
 C^{(1)} & 1 & 1 & -1 & 0 & 0 & 0 & C^{(1)} - P_{\text{brk}} & C^{(1)} - A & C^{(1)} \\
 C^{(2)} & 1 & 0 & 1 & 0 & 0 & 0 & C^{(2)} - P_{\text{brk}} & C^{(2)} - A & C^{(2)} \\
 C^{(3)} & 0 & 0 & 0 & 0 & 1 & 0 & C^{(3)} & C^{(3)} & C^{(3)} \\
 E & 0 & -1 & 0 & -1 & 0 & 0 & E & E + A & E \\
 E^{(1)} & 0 & 1 & 0 & -1 & 0 & 0 & E^{(1)} & E^{(1)} & E^{(1)} \\
 E^{(2)} & 0 & 0 & 1 & 0 & 0 & 0 & E^{(2)} & E^{(2)} & E^{(2)} \\
 E^{(3)} & 0 & 1 & 0 & 0 & 0 & 0 & E^{(3)} & E^{(3)} & E^{(3)} \\
 P_{\text{brk}} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & P_{\text{brk}} & P_{\text{brk}} \\
\end{array}
\]

TABLE V: The parameter vector \(p \) as defined in Eq. (16), vectors \(n \), spanning the kernel of the coefficient matrix \(M \) in Tab. III and several redefined parameter vectors, see Eqs. (18)–(20).

coefficient in \(H_W \) is small and the momentum flowing through the penguin loop is large (of order of the \(D^0 \) mass) so that the Glashow-Iliopoulos-Maiani (GIM) suppression will be effective.

Further redundancies are related to the fact that our coefficient matrix \(M \) in Eq. (17) does not have maximal rank. Considering first the SU(3)\(F \) limit ignoring \(T^{(1)} \), \(A^{(1)} \), \(C^{(1)} \), and \(E^{(1)} \) one observes that the remaining matrix in Tab. III linking \(T, C, A \) and \(E \) to the physical amplitudes has only rank three. I.e. one of \(T, C, A \) and \(E \) is redundant.

Redundancies of the diagrammatic approach in the SU(3)\(F \) limit are also discussed in Ref. 2, comparing to the SU(3)\(F \) parametrization in Ref. 7. The corresponding matching for \(B \) decays is done in Ref. 10. Note that the redundancies change when taking \(q(0) \) final states into account 14, 23, leading to more parameters but also additional sum rules 29.

Including SU(3)\(F \) breaking, the \(17 \times 17 \) matrix \(M \) in Tab. III has rank 11. Consequently \(p \) in Eq. (16) contains six redundant complex parameters. The remaining parametric redundancy contained in Tab. III can be systematically found and removed as follows. It is encoded in the six-dimensional kernel of the coefficient matrix. The 17-dimensional basis vectors of the kernel are given in column 2 to 7 of Tab. V if we redefine \(p \) in Eq. (16) as

\[
p_{\text{new}} = p + \sum_i c_i n_i, \quad c_i \in \mathbb{C}, \quad (18)
\]

this will not change \(M p \) in Eq. (17), i.e. the \(n_i \) define the “flat directions” in parameter space which correspond to the same \(A \). One can remove this redundancy by redefining the topological amplitudes and choosing 11 of them as new independent parameters. For example we can set

\[
p^{\text{new}} = p - P_{\text{break}} n_1 \quad (19)
\]

which gives the result in the first column after the double line in Tab. V. Subsequently, we can redefine the parameters in order to eliminate \(P_{\text{break}} \). In order to remove all redundancies in one step one can choose

\[
p^{\text{new}} = p - P_{\text{break}} n_1 - E^{(1)} n_2 - E^{(2)} n_3 - A n_4 - A^{(1)} n_5 - C^{(1)} n_6 \quad (20)
\]

and then perform redefinitions of the other parameters in order to remove

\[
P_{\text{break}}, E^{(1)}, E^{(2)}, A, A^{(1)}, C^{(1)} \quad (21)
\]

from the parameterization. Note the special form of \(n_3 \) which encodes the redundancy present in the SU(3)\(F \) limit. \(n_4 \) forces us to eliminate one of \(T, C, E \), or \(A \), while the other five eliminations involve SU(3)\(F \)-breaking amplitudes (e.g. those in Eq. (21)). The elimination of \(A \) only is also shown in Tab. V. Additionally, from \(n_5 \) we see that the coefficient vector of \(A^{(3)} \) is linearly dependent on the other annihilation coefficient vectors. Consequently, \(A^{(3)} \) can be absorbed by redefining annihilation amplitudes only, as shown also explicitly in Tab. V.

Note further that the \(n_i \) are linearly independent also when removing all but the first six elements. This means it is not possible to perform redefinitions without touching the tree or annihilation diagrams. Equivalently, the submatrix obtained by removing tree and annihilation diagrams from Tab. III has rank nine, which in this case equals the number of remaining parameters, i.e. the lower nine components of \(p \). This observation guides us to the approach of Sec. IIII calculating tree and annihilation amplitudes will also remove the redundancies.

After absorbing some topological amplitudes (e.g. those in Eq. (21)) into others the new amplitudes have lost their original meaning in terms of QCD dynamics. An important question in charm physics is the level of GIM cancellation between an \(s \) and \(d \) loop. In this paper we encounter \(P_{\text{break}} \) as a quantity probing the GIM mechanism. A naive quark-level calculation involves a suppression factor of \(m_s^2/m_d^2 \) and renders \(P_{\text{break}} \) negligibly small. Thus any information on the actual size of \(|P_{\text{break}}| \) may give insight into a possible non-perturbative enhancement of GIM-suppressed amplitudes. However, as shown above and exemplified in Tab. V the fit to
topological amplitudes alone cannot give this information, because P_{break} cannot be separated from the other parameters fitted from the data.

As we have seen above, the calculation of the kernel gives a method to remove redundant parameters. In the same way, the cokernel of M gives us information on “redundant” amplitudes, i.e. six sum rules fulfilled by the latter, all of which were found in Ref. [29]. In other words: if one did a Gaussian elimination to determine p from Eq. (17), one would end up with a 6×17 block of zeros in the transformed coefficient matrix M and linear combinations of physical amplitudes in the corresponding six entries of Δ. These linear combinations vanish by the SU(3)$_F$ sum rules of Ref. [29]. Thus the discussed redundancies are not the consequence of missing experimental information but of the symmetry relations underlying these sum rules. It is instructive to rederive these sum rules with our diagrammatic method, which is particularly straightforward and intuitive. We do this in Appendix D.

We checked that after the removal of all redundancies, the diagrammatic parameterization and the common expansion in terms of SU(3)$_F$ representations can be mapped onto each other, i.e. one can calculate one set of parameters when given the other one. The mapping can be obtained explicitly by inverting either the reduced coefficient matrix M or its counterpart in the SU(3)$_F$ method. Note that in the SU(3)$_F$ parameterization unphysical degrees of freedom are present in the very same way. Analogously, it is possible to redefine SU(3)$_F$ matrix elements in order to obtain a physical basis [23]. In Appendix B we give the inverse of the SU(3)$_F$ coefficient matrix of [23] and show the result of the extraction of the corresponding SU(3)$_F$ matrix elements for an example fit point of our diagrammatic analysis. So far our discussion of redundancies has assumed that the amplitudes in Δ are known. In practice, there is no information on most of their complex phases (and not all of them are physical). This feature introduces additional flat directions in the space of our fit parameters and is equally present in the SU(3)$_F$ method.

The discussion above has made clear that the topological-amplitude method is complete in the sense that it contains the full information contained in an SU(3)$_F$ analysis including SU(3)$_F$ breaking to linear order. It is also worthwhile to study this question from the viewpoint of QCD dynamics: are there any dynamical mechanisms which cannot be mapped onto topological amplitudes? As a first topic we discuss final-state rescattering, i.e. decays $D \rightarrow f' \rightarrow f$ passing through an on-shell intermediate state f'. The flavor flow for such a rescattering process is always a deformation of a diagram in Tab. [1] or Fig. [1] and is therefore included in the corresponding topological amplitude. Rescattering effects cannot be isolated from the “direct” $D \rightarrow f$ decay, because the dispersive part of $A(D \rightarrow f' \rightarrow f)$ cannot be separated from that of $A(D \rightarrow f)$ in a meaningful way. (Neglecting CP violation we can choose phase conventions such that the dispersive and absorptive parts of some amplitude equal its real and imaginary parts, respectively.) By the optical theorem the absorptive part of $A(D \rightarrow f)$ can be related to $A(D \rightarrow f')$ and the $f' \rightarrow f$ scattering amplitude, with summation over all intermediate states f'. This feature holds true for the topological amplitudes as well. The imaginary parts of the topological amplitudes found in our fit in Sec. IV are therefore a measure of the size of rescattering. The second topic of QCD dynamics addresses the proper description of meson states. The state of e.g. an energetic kaon can be expanded as

$$|K^0⟩ = |d\bar{s}⟩ + |d\bar{g}q⟩ + |d\bar{q}q⟩ + \ldots ,$$

where the notation implicitly contains convolution integrals over the kaon momentum fraction carried by the indicated partons. Our graphical description of the topological amplitudes only catches the first term in Eq. (22). The higher Fock states $|d\bar{g}q⟩, |d\bar{s}u⟩, \ldots$ are suppressed with powers of the kaon energy, but in view of the small energy release in D decays this suppression is unlikely to be realized numerically. We may wonder whether the contributions with additional qq pairs in Eq. (22) will require the introduction of further amplitude topologies, with extra quark lines connected with “sea” quarks in the mesons. An example is shown in Fig. [2]. However, it is easy to see that such diagrams are always obtained by forking a quark line of one of the topological amplitudes considered so far. For instance, the diagram in Fig. [2] is contained in P_{break}.

\section{III. Theoretical Input on Diagrammatic SU(3)$_F$ Breaking}

The great advantage of the flavor-flow parameterization over the plain SU(3)$_F$ approach is the opportunity to add dynamical input to constrain individual topologies. We use two different such inputs which are presented below.
TABLE VI: Coefficients of the parameters ($\delta_T - \delta_A, \ldots, P_{\text{break}}$) for the amplitudes $\mathcal{A}(d)$, which are obtained from $\mathcal{A}(d)$ by subtracting the factorized part, see Eq. (27). The table entries are the elements of the coefficient matrix \mathcal{M} in Eq. (34).

<table>
<thead>
<tr>
<th>Decay ampl. $\mathcal{A}(d)$</th>
<th>$\delta_T - \delta_A$</th>
<th>C</th>
<th>$C_1^{(1)} C_2^{(1)} C_3^{(1)}$</th>
<th>E</th>
<th>$E_1^{(1)}$</th>
<th>$E_2^{(1)}$</th>
<th>$E_3^{(1)}$</th>
<th>P_{break}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{A}(D^0 \rightarrow K^0 K^-)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{A}(D^0 \rightarrow \pi^+\pi^-)$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{A}(D^0 \rightarrow K^0 K^0)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{A}(D^0 \rightarrow \pi^+\pi^-)$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{A}(D^0 \rightarrow K^+\pi^-)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{A}(D^0 \rightarrow K^0\pi^+)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A. 1/N_c counting

The 1/N_c expansion [39] has first been applied to charm physics in Ref. [33]. We will apply 1/N_c counting to the tree and annihilation topologies, which are leading in 1/N_c. Here we exemplify the method for T:

$$T = T_{\text{fac}}^{\text{fac}} + \delta_T, \quad T_{\text{fac}}^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_1 f_s (m_D^2 - m_s^2) F_0^{D\pi}(m_s^2).$$

Here $a_1 = C_2 + C_1/N_c = 1.06$ in terms of the usual Wilson coefficients $C_{1,2}$ of H_W and the quoted value is penalized by two powers of 1/N_c. We parameterize this 1/N_c correction by the complex parameter δ_T in Eq. (23). Also the renormalization scale and scheme dependences of a_1 are suppressed by 1/N_c^2. By using Eq. (23) and the equivalent formulae for the other tree amplitudes $T + T_{1(2)}, \ldots, T_{4(5)}$ we trade four parameters for a single parameter δ_T with $|\delta_T/T_{\text{fac}}^{\text{fac}}| \lesssim 0.15$. SU(3)_F breaking in this small parameter is neglected, because it is smaller than the neglected second-order SU(3)_F-breaking effects.

$F_0^{D\pi}(m_s^2)$ entering $T_{\text{fac}}^{\text{fac}}$ is measured in semileptonic D decays, therefore the 1/N_c method uses additional experimental input, too. Also the A amplitudes factorize up to corrections of order 1/N_c^2. The factorization formulae for all tree and annihilation amplitudes can be found in Appendices C.1 and C.2, respectively. In analogy to δ_T we define the complex parameter

$$\delta_A = A - A_{\text{fac}}^{\text{fac}}$$

for the $O(1/N_c^2)$ corrections. $A_{\text{fac}}^{\text{fac}}$ depends on the form factor $F_0^{\pi K}(m_{D_s}^2)$, see Appendix C.2 for details.

In decay E, C, and P_{break} are formally suppressed by one power of 1/N_c with respect to T. However, E and C are enhanced by short-distance QCD effects residing in the Wilson coefficients: we write $H_W \propto C_1 Q_1 + C_2 Q_2 = (C_1 + C_2/N_c) Q_1 + 2 C_2 Q_8$ with the octet×octet operator $Q_8 \equiv \bar{\psi}_\mu T^\alpha c \theta^\dagger T^\gamma q$ and note that $(PP^\dagger)(Q_8|D)$ is 1/N_c suppressed. However, the Wilson coefficient 2C_2 = 2.4 almost exactly offsets the 1/N_c suppression, so that E and C can be almost as large as T. We therefore do not place a numerical constraint on $|E|, |C|$, or $|P_{\text{break}}|$ in our fit but rather keep them general.

With the added 1/N_c input the diagrammatic analysis becomes more constrained compared to the plain SU(3)_F approach. Factorization fixes the sizes of the
tree and annihilation amplitudes within roughly $\sim 15\%$ of T^{fac}, i.e. the size of the $1/N_c^2$ corrections. In the case of A the $1/N_c^2$ corrections quantified by δ_A include final-state rescattering effects \cite{24,40,44}, which are not proportional to the decay constant f_D which enters A^{fac}. We therefore do not normalize δ_A to A^{fac}, but instead allow $|\delta_A|$ to be as large as $|\delta_T|$. Factorization has also been used in Refs. \cite{25,45}, but only to estimate SU(3)$_F$ breaking. We instead use it to constrain the overall sizes of T and A. Note that we treat T^{fac} and A^{fac} beyond linear SU(3)$_F$ breaking, so that these factorized amplitudes violate the Grossman-Robinson SU(3)$_F$ sum rules \cite{25}.

The parameters δ_T and δ_A replace the first eight entries of \mathbf{p} in Eq. (16) as fit parameters. We use

$$
\mathbf{p}' = \begin{pmatrix} \delta_T, \delta_A, C, C_1^{(1)}, C_2^{(1)}, C_3^{(1)}, E, E_1^{(1)}, E_2^{(1)}, E_3^{(1)}, P_{\text{break}} \end{pmatrix}^T,
$$

comprising 11 parameters in total. We next derive the equivalent of Eq. (17) for this new set of parameters. To this end we define

$$
\tilde{A}(d) \equiv A(d) - A^{\text{fac}}(d),
$$

(27)

$$
A^{\text{fac}}(d) \equiv T^{\text{fac}}(d) + A^{\text{fac}}(d).
$$

(28)

The 17×11 coefficient matrix linking \mathbf{p}' to $\tilde{A} = \begin{pmatrix} \tilde{A}(D^0 \to K^+K^-), \ldots, \tilde{A}(D_s^+ \to K^0K^+) \end{pmatrix}^T$ has only rank 10. This has two implications: Firstly, there is still a redundant parameter. Secondly, there is a new sum rule among the physical amplitudes. Addressing the first point, the kernel has the 11-dimensional basis vector

$$
\mathbf{n} = (-1, -1, 1, 0, 0, 0, 1, 0, 0, 0, 0)^T,
$$

(29)

where the order of the entries is the same as in Eq. (26). The redefinition

$$
\mathbf{p}'' \equiv \mathbf{p}' + \delta_A \mathbf{n}
$$

(30)

with \mathbf{n} as in Eq. (29) absorbs δ_A into C, E and δ_T:

$$
\tilde{C} = C + \delta_A,
$$

(31)

$$
\tilde{E} = E + \delta_A,
$$

(32)

one observes that the physical amplitudes only depend on \tilde{C}, \tilde{E}, and $\delta_T - \delta_A$. Writing

$$
\tilde{\mathbf{p}} = \begin{pmatrix} \delta_T - \delta_A, \tilde{C}, C_1^{(1)}, C_2^{(1)}, C_3^{(1)}, \tilde{E}, E_1^{(1)}, E_2^{(1)}, E_3^{(1)}, P_{\text{break}} \end{pmatrix}^T,
$$

(33)

the desired equivalent of Eq. (17) reads

$$
\tilde{M} \tilde{\mathbf{p}} = \tilde{\mathbf{A}}.
$$

(34)

with the amplitudes of Eq. (27) on the RHS. The resulting 17×10 coefficient matrix \tilde{M} with rank 10 is shown in Tab. VII. Addressing the second point, we find the new sum rule

$$
\tilde{A}(D^+ \to \bar{K}^0K^+) - \tilde{A}(D_s^+ \to K^0\pi^+) = 2\sqrt{2}\tilde{A}(D^+ \to K^+\pi^0) = 0,
$$

(35)

from the cokernel of \tilde{M}. It tests the $1/N_c$ counting and is violated by terms which are linear in SU(3)$_F$ breaking, but suppressed by two powers of $1/N_c$.

The $1/N_c^2$ corrections parametrized by $\delta_{T,A}$ are varied in smaller ranges than the other fit parameters. If we consider them fixed, there remain nine unknown complex parameters in Eq. (26) and a corresponding coefficient matrix with rank nine, implying a new sum rule. We combine the new rule with the one in Eq. (35) as:

$$
\tilde{A}(D^+ \to \bar{K}^0K^+) - \tilde{A}(D_s^+ \to K^0\pi^+) = 2(\delta_T - \delta_A),
$$

(36)

$$
\tilde{A}(D^+ \to K^+\pi^0) = \frac{1}{\sqrt{2}}(\delta_T - \delta_A).
$$

(37)

The amplitudes in Eq. (35) are related to those with $K_{S,L}$ in the final state as

$$
A(D^+ \to K_{S,L}K^+) = \frac{1}{\sqrt{2}}A(D^+ \to \bar{K}^0K^+),
$$

(38)

$$
A(D_s^+ \to K_{S,L}\pi^0) = \frac{1}{\sqrt{2}}A(D_s^+ \to K^0\pi^+),
$$

(39)

The corresponding branching ratios read:

$$
B(D^+ \to K_{S,L}K^+) = |\lambda_{0d}|^2 P(D^+, K^0, K^+) \times
$$

$$
|A^{\text{fac}}(D^+ \to \bar{K}^0K^+) + (\delta_T - \delta_A) + P_{\text{break}}|^2,
$$

(40)

$$
B(D_s^+ \to K_{S,L}\pi^+) = |\lambda_{ad}|^2 P(D_s^+, K^0, \pi^+) \times
$$

$$
|A^{\text{fac}}(D_s^+ \to K^0\pi^+) - (\delta_T - \delta_A) + P_{\text{break}}|^2,
$$

(41)

$$
B(D^+ \to K^+\pi^0) = |V_{us}V_{us}|^2 P(D^+, K^+, \pi^0) \times
$$

$$
|A^{\text{fac}}(D^+ \to K^+\pi^0) + (\delta_T - \delta_A)|^2,
$$

(42)

with $P(D, P_1, P_2)$ as defined in Eq. (12). Eqs. (40,42) permit to probe our combined SU(3)$_F$ and $1/N_c$ expansion quantitatively, since a too large value of $|\delta_T - \delta_A|$ extracted from Eqs. (40,42) would falsify the method. Furthermore, the size of $|P_{\text{break}}|$ gives insight into an important issue of QCD dynamics, the size of the GIM suppression in the difference between strange and down loops.

In Tab. VII we show example fits to the branching ratios Eqs. (40,42) only, testing the dependence of the fit result on the $1/N_c$ corrections and the broken penguin. In the first place, we illustrate that the data can easily be accommodated for realistic values of δ_T, δ_A and P_{break} (point 0). Taking these parameters out of the fit (point 1)
Table VII: Fits to the branching ratios and Appendices C 1 and C 2. The χ^2_P and adjusting at 7 results in a bad description of the data which is rejected † hypothesis. are the number of degrees of freedom compared to the fit scenario of point 0. The significance of rejection takes point 0 as null measures in analogy to Ref. [23]. We define of the diagrammatic approach, we introduce the following † B. Measuring diagrammatic SU(3)$_F$ breaking

In order to describe SU(3)$_F$ breaking in the framework of the diagrammatic approach, we introduce the following measures in analogy to Ref. [23]. We define

$$\delta_X^{T, \Lambda} \equiv \max_{\Delta} \left| \frac{A_T^X (d)}{A(d)} \right|,$$

where $T = C, E, P_{\text{break}}$ and $A_T^X (d)$ is the part of the amplitude of decay d stemming from the corresponding SU(3)$_F$-breaking parameter(s) only. $A(d)$ denotes the full amplitude of decay d. The parameters defined in Eq. (43) give a measure for the maximal SU(3)$_F$-breaking contribution to the full amplitude from each topology.

A measure of the maximal SU(3)$_F$ breaking residing in any of the topologies C, E and P_{break} is therefore

$$\delta_X^{\text{topo}} \equiv \max_d \left| \frac{\sum_{T, \Lambda} A_T^X (d)}{A(d)} \right|. \quad (44)$$

Note that the SU(3)$_F$ breaking stemming from our calculation of the T and A topologies using factorization is not included in the definition Eq. (44).

Furthermore, we quantify the relative SU(3)$_F$ breaking

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Example fit point with minimal } \chi^2 : & \text{Point 0} & \text{Point 1} & \text{Point 2} & \text{Point 3} & \text{Exp. Data} \\
\hline
\text{Applied Conditions:} & \text{None} & P_{\text{break}} = \delta_T = \delta_A = 0 & \delta_T = \delta_A = 0 & P_{\text{break}} = 0 & \text{—} \\
\hline
| P_{\text{break}} / T^{\text{fac}} | & 0.25 & 0.54 & 0 & — \\
\arg(P_{\text{break}}) & 4.33 & 2.21 & 0 & — \\
| \delta_T / T^{\text{fac}} | & 0.11 & 0 & 0.15 & — \\
\arg(\delta_T) & 3.07 & 0 & 3.55 & — \\
| \delta_A / A^{\text{fac}} | & 0.09 & 0 & 0.11 & — \\
\arg(\delta_A) & 0.67 & 0 & 6.28 & — \\
F_0^{DK}(0) / F_0^{D\pi}(0) & 0.96 & 1.01 & 0.95 & 0.97 & — \\
F_0^{DK}(0) & 0.74 & 0.72 & 0.74 & 0.74 & — \\
F_0^{D\pi}(0) & 0.64 & 0.64 & 0.64 & 0.64 & — \\
| F_0^{K\pi}(m_{D(s)}^2) | & 2.39 & 1.99 & 4.50 & 1.62 & — \\
\arg(F_0^{K\pi}(m_{D(s)}^2)) & 1.71 & 4.99 & 5.13 & 3.92 & — \\
\hline
T^{\text{fac}} / 10^{-6} \text{ GeV} & 2.52 & 2.52 & 2.52 & 2.52 & — \\
\hline
T^{\text{fac}}(D^+ \to K^0 P^+) / 10^{-6} \text{ GeV} & 3.40 & 3.34 & 3.40 & 3.40 & — \\
T^{\text{fac}}(D^+_s \to K^0 P^+) / 10^{-6} \text{ GeV} & -2.53 & -2.68 & -2.51 & -2.57 & — \\
T^{\text{fac}}(D^+_s \to K^+ P^0) / 10^{-6} \text{ GeV} & 2.22 & 2.22 & 2.22 & 2.22 & — \\
A^{\text{fac}}(D^+ \to K^0 P^+) / 10^{-6} \text{ GeV} & -0.18 + i 1.22 & 0.28 - i 0.99 & 0.94 - i 2.12 & -0.59 - i 0.59 & — \\
A^{\text{fac}}(D^+_s \to K^+ P^0) / 10^{-6} \text{ GeV} & 0.10 - i 0.68 & -0.16 + i 0.55 & -0.53 + i 1.19 & 0.33 + i 0.33 & — \\
\hline
B(D^+ \to K_S K^+) / 10^{-3} & 2.83 & 4.04 & 2.85 & 2.83 & 2.83 \pm 0.16 \text{ [46]} \\
B(D^+_s \to K_S P^+) / 10^{-3} & 1.22 & 1.22 & 1.23 & 1.22 & 1.22 \pm 0.06 \text{ [46,45]} \\
B(D^+ \to K^+ P^0) / 10^{-4} & 1.83 & 1.83 & 1.72 & 1.83 & 1.83 \pm 0.26 \text{ [46]} \\
\hline
\chi^2 & 0.00 & 63.93 & 0.20 & 0.00 & — \\
\nu & — & 5 & 3 & 2 & — \\
\hline
\text{Significance of rejection} & — & 7.0 \sigma & 0.03 \sigma & 0.0 \sigma & — \\
\hline
\end{array}
\]
of C and E topologies by the measures

$$\delta_X^{C(1)}/\bar{C} \equiv \left| \frac{C^{(1)}}{C} \right|, \quad \delta_X^{E(1)}/\bar{E} \equiv \left| \frac{E^{(1)}}{E} \right|,$$ \hspace{1cm} (45)

respectively. In the fit we always demand all the above measures to be $\leq 50\%$. In δ_X^{E} and δ_X^{topo} we ignore $B(D^0 \to \bar{K}^0 K^0)$ when taking the maximum, because this branching ratio vanishes in the SU(3)$_F$ limit. Note that $E^{(1)}_3$ appears in the omitted channel $D^0 \to \bar{K}^0 K^0$ only, therefore $\delta_X^{E}=0$ is insensitive to the size of $E^{(1)}_3 \neq 0$. Furthermore, in case an amplitude vanishes at some point in parameter space we also exclude it from the calculation of the maxima in Eqs. [33] and [44].

IV. FIT TO BRANCHING RATIO MEASUREMENTS

In our global fit we use the available measured branching fractions and the strong phase difference $\delta_{X+\pi}$ and impose the theoretical constraints quoted in Sec. [III] 18 fit parameters are related to topological amplitudes:

$$|\bar{C}/T_{\text{fac}}|, \text{ arg}(\bar{C}), \quad |\bar{E}/T_{\text{fac}}|, \text{ arg}(\bar{E}),$$

$$|C^{(1)}_i|, \text{ arg}(C^{(1)}_i), \quad |E^{(1)}_i|, \text{ arg}(E^{(1)}_i),$$

$$|P_{\text{break}}/T_{\text{fac}}|, \text{ arg}(P_{\text{break}}),$$

with $i = 1, 2, 3$ and T_{fac} is calculated from Eq. (24). We normalize to T_{fac} rather than $T = T_{\text{fac}} + \delta_T$, because our fit is only sensitive to the combination $\delta_T - \delta_A$ and therefore leaves δ_T undetermined. These 18 quantities are supplied by four parameters measuring the $1/N_c^2$ corrections to the tree and annihilation diagrams:

$$|\delta_T|/T_{\text{fac}}, \quad \text{ arg}(\delta_T), \quad |\delta_A|/T_{\text{fac}}, \quad \text{ arg}(\delta_A).$$

In addition we need five parameters related to form factors:

$$F_0^{D,K}(0)/F_0^{D_0}(0), \quad F_0^{DK}(0), \quad F_0^{D^+}(0), \quad |F_0^{K^+}(m_{D^0}^2)|, \text{ arg}(F_0^{K^+}(m_{D^0}^2)),$$

and set $F_0^{K^0}(m_{D^0}^2) = F_0^{K^0}(m_{D^0}^2)$. Altogether these are 27 real parameters, which are fitted to 16 measured branching ratios and one strong phase. The experimental input values, including the respective correlations, are listed in Appendix A. The number of parameters is larger than the number of observables. However, the 27 parameters are subject to 10 constraints on the maximal size of linear SU(3)$_F$ breaking, see Sec. [III]B and the bounds $|\delta_{\tau_3}| \leq 0.15 T_{\text{fac}}$. At the global minimum we obtain $\chi^2 = 0.0$, i.e., the parameterization and theoretical input is in perfect agreement with the data. The data are both compatible with our chosen bound on SU(3)$_F$ breaking (i.e. all measures defined in Sec. [III]B are smaller than 50%) and the six Grossman-Robinson SU(3)$_F$ sum rules [29].

In order to study the relative importance of the topological amplitudes for the description of the data, we perform likelihood ratio tests. We look at several scenarios where some of the parameters of our fit are fixed. In order to keep the fit simple, we assume the validity of Wilks’ theorem [51], i.e., we calculate the p-value according to

$$p = 1 - P_{\nu/2} \left(\Delta \chi^2 / 2 \right),$$

with the normalized lower incomplete Gamma function $P_{\nu/2}$ depending on the number ν of relatively fixed parameters compared to the full fit. For a general discussion of the assumptions underlying Eq. [46] see Ref. [34].

The results of our likelihood ratio tests are shown in Tab. [VIII]. This table shows at which significance we can reject a certain hypothesis. For example, we can reject $P_{\text{break}} = 0$ at only $\sim 0.7\sigma$, implying that $P_{\text{break}} = 0$ is well consistent with the data. However, the fit shows a clear need for SU(3)$_F$ breaking: the SU(3)$_F$-limit fit with $P_{\text{break}} = E^{(1)}_3 = C^{(1)}_3 = 0$ is rejected at $> 5\sigma$. Looking at the SU(3)$_F$ breaking in specific topological amplitudes we find a slight tendency towards a stronger SU(3)$_F$ breaking in the color-suppressed tree than in the exchange diagrams.

In Figs. [3, 4] we show plots of the fit parameters, measures of SU(3)$_F$ breaking and fit predictions for observables. We see that in the multi-parameter space the best-fit solutions cover broad regions and typically several disconnected best-fit regions exist. Considering that there are more parameters than fitted quantities the large degeneracy of the best-fit region is not surprising. It is most to quote best-fit values for the parameters, because one can move in a wide valley with $\Delta \chi^2 = 0$. We suspect that the alternative approach of a Bayesian analysis would single out a small portion of this $\Delta \chi^2 = 0$ valley as a consequence of the Bayesian prior placed on the fit parameters and the central limit theorem of statistics. Therefore Frequentist analyses like ours are more adequate to the problem.

The phase of \bar{C} significantly deviates from 0 and π (see Fig. 3(b)), which points to large rescattering effects. The fit results for $|\bar{C}/T_{\text{fac}}|$ and $|\bar{E}/T_{\text{fac}}|$, see Fig. 3 show disconnected regions at 95% CL. \bar{C} and \bar{E} are suppressed by $1/N_c$ but involve a large Wilson coefficient ~ 2.4 as discussed in Sec. [III]A. Thus, only solutions with $|\bar{C}/T_{\text{fac}}|, |\bar{E}/T_{\text{fac}}| \leq 1$ are consistent with $1/N_c$ counting, which singles out one of the three regions in the $|\bar{C}/T_{\text{fac}}| - |\bar{E}/T_{\text{fac}}|$ plane.

The needed maximum size of total SU(3)$_F$ breaking on the amplitude is given by $\delta_X^{\text{topo}} \sim 30\%$ in agreement with Ref. [23], as can be read off Fig. 4(d). Note that δ_X^{topo} as well as δ_T do not measure the average but the maximal size of SU(3)$_F$ breaking in one of the 17 decay channels except for $D^0 \to \bar{K}^0 K^0$, see Sec. [III]B. Thus, these measures are very conservative and could in principle be biased by a single channel. However, the need for
SU(3)$_F$ breaking in individual parameters can be considerably smaller than 30%, e.g., $|E_i^{(1)}| \sim 0$, $|C_i^{(1)}| \sim 0$ is well allowed at 1σ, see Figs. 6(a) and 5(c) respectively. Also a $|P_{\text{break}}/T|$ below 5% already gives very good fits, see Fig. 6(a). In Fig. 6(c) we see that the same is consistently the case for $\delta^{\prime}_\chi(t_{\text{break}})$.

From Figs. 4(a) and 4(b) we again see the slight tendency for larger SU(3)$_F$ breaking in the color-suppressed tree topologies compared to the exchange diagrams.

As illustrated in Tab. VII discussed in Sec. III A around Eqs. (40)-(42), the broken penguin P_{break} is correlated with the parameter $\delta_T - \delta_A$ quantifying $1/N_c^2$ corrections to factorizable amplitudes. This feature can be verified in Fig. 6(c) which shows this correlation. A vanishing penguin $P_{\text{break}} \sim 0$ is allowed at the price of $1/N_c$ breaking corrections of order $\gtrsim 15\%$. Note again that this correlation heavily depends on the poorly measured form factor $F_{0}^{K\pi}(m_{D_{0}}^2)$. Interestingly, the fit result for $F_{0}^{K\pi}(m_{D_{0}}^2)$, see Fig. 7, is not completely flat, showing its nontrivial influence on the branching ratios of charm decays. The branching ratio $B(D^+ \to K^+\pi^0)$ depends on no topological parameters besides δ_T and δ_A. Its fit result, which is given in Fig. 5(a), shows that our assumptions on the ranges for δ_T and δ_A are loose enough to accommodate the measured branching fraction. However, large fit results for $B(D^+ \to K^+\pi^0)$ are slightly disfavored.

We may next ask whether we can use our fit output to predict individual branching fractions better than they are currently measured. Our general finding is as in Fig. 5(a) the fit output for the $\Delta\chi^2$ profiles essentially tracks the fit input. To find non-trivial predictions for future measurements we must study correlations between at least two observables. A nice result is shown in Fig. 5(b) revealing the correlation of $B(D^0 \to K_L\pi^0)$ and $B(D^+ \to K_S\pi^0)$. In the SU(3)$_F$ limit the branching ratios are strongly correlated through their parametric dependence

\[
B(D^0 \to K_S\pi^0) \sim |E - C^2| + 2\lambda^2|E - C|^2, \quad (47)
\]

\[
B(D^0 \to K_L\pi^0) \sim |E - C^2| - 2\lambda^2|E - C|^2, \quad (48)
\]

which implies $B(D^0 \to K_L\pi^0) \lesssim B(D^0 \to K_S\pi^0)$. This relation is a priori absent once SU(3)$_F$-breaking effects are included, because the latter can be larger than $|E - C|$. However, the global fit rejects this possibility: in Fig. 9(b) the region corresponding to 95% CL entirely satisfies $B(D^0 \to K_L\pi^0) < B(D^0 \to K_S\pi^0)$. Performing a dedicated likelihood ratio test we find that $B(D^0 \to K_L\pi^0) < B(D^0 \to K_S\pi^0)$ holds with a significance of more than 4σ. Our fit excludes a large region of the $B(D^0 \to K_S\pi^0) - B(D^0 \to K_L\pi^0)$ plane which is still allowed by the individual measurements. To quantify our findings further we define

\[
R(D^0) = \frac{B(D^0 \to K_S\pi^0) - B(D^0 \to K_L\pi^0)}{B(D^0 \to K_S\pi^0) + B(D^0 \to K_L\pi^0)} \quad (49)
\]

and quote the confidence intervals in the first row of Tab. IX. The ratio of the magnitudes of the DCS and CF amplitudes is listed in the third row of this table. Fig. 9 visualizes these confidence intervals and also shows the prediction of Refs. [52, 53], which is the black dot corresponding to $R(D^0) = 2\tan^2\theta_C$ (where θ_C is the Cabibbo angle). The result is quoted without uncertainty in these papers and Refs. [54, 55] argues that corrections from SU(3) breaking to this relations are small. Refs. [54, 55] arrives at this conclusion by calculating the amplitudes in QCD factorization [56, 57], which is a calculational method valid for values of m_c much larger than the hadronic scale governing the infrared structure of the decays. Our fit permits sizable corrections to $R(D^0) = 2\tan^2\theta_C$ from the SU(3) breaking contributions, so that future measurements will give insight into

\[\text{TABLE VIII: Results of several likelihood ratio tests. Shown are the obtained } \chi^2, \text{ the relative degrees of freedom (dof) of the hypothesis compared to the full fit, and the significance at which the hypothesis can be rejected.}\]

\[
\begin{array}{cccc}
\text{Hypothesis} & \text{Significance of rejection} & \Delta \chi^2 & \text{dof} \\
\hline
P_{\text{break}} = 0 & 0.7\sigma & 1.3 & 2 \\
P_{\text{break}} = E_i^{(1)} = C_i^{(1)} = 0 \forall i & > 5\sigma & 431.4 & 14 \\
E_i^{(1)} = 0 \forall i & 3.0\sigma & 20.3 & 6 \\
E = E_i^{(1)} = 0 \forall i & > 5\sigma & 156.4 & 8 \\
C_i^{(1)} = 0 \forall i & 4.5\sigma & 34.1 & 6 \\
C = C_i^{(1)} = 0 \forall i & > 5\sigma & 266931.2 & 8 \\
\end{array}
\]

In order to find the correct relative signs in Eqs. (47) and (48) one must define $K_{S,L}$ correctly. Eqs. (17) and (18) comply with $|K_{S,L}| = C_i\ |\vec{K}_{0}^i| = -C_P \ |\vec{K}_{0}^0|$ entailing $|K_{S,L}| \approx (|\vec{K}_{0}^0| - |\vec{K}_{0}^i|)/\sqrt{2}$. We have checked our results by studying the full decay chain $D^0 \to$ $\bar{K}^0 \to \pi^+\pi^-\pi^0$, from which the K^0 sign conventions drop out.
the size of SU(3) breaking and the viability of QCD factorization in charm physics.

Another test of doubly Cabibbo-suppressed contributions involves the decays $D^+_s \to K_{S,L} K^+$. We study

$$R(D^+_s) = \frac{B(D^+_s \to K_S K^+) - B(D^+_s \to K_L K^+)}{B(D^+_s \to K_S K^+) + B(D^+_s \to K_L K^+)}$$

(50)

and predict the not yet measured observables $R(D^+_s)$ and $B(D^+_s \to K_L K^+)$, see Tab. IX and Fig. 9. Again comparing our result with the prediction in Ref. 53 we find much larger uncertainties. Thus also in $D^+_s \to K_{S,L} K^+$ future data will test the accuracy of QCD factorization assumed in Ref. 53.

V. CONCLUSION

We have studied the decay amplitudes of D mesons into two pseudoscalar mesons with the topological-amplitude approach. To this end we have incorporated linear SU(3)$_F$ breaking into the method and have shown that the topological-amplitude method can be mapped onto the standard decomposition of the decay amplitudes in terms of reduced amplitudes characterized by SU(3)$_F$ representations. Unlike plain SU(3)$_F$ analyses the topological-amplitude method permits the use of a 1/N_c expansion to calculate the factorizable tree and non-factorizable amplitudes in terms of form factors and decay constants, up to corrections of order 1/N_c^2. This additional theoretical input allows us to new sum rules between the branching fractions of $D^+ \to K_S K^+$, $D^+_s \to K_S \pi^+$ and $D^+ \to K^+ \pi^0$. This sum rule correlates the non-factorizable 1/N_c^2 terms with the penguin amplitude P_{break}. The latter quantity is of prime interest to understand the dynamics of flavour-changing neutral current transitions in the charm sector, because P_{break} is suppressed by the GIM mechanism and vanishes in the limit $m_s = m_q$.

We have then performed a global fit using all available branching ratios and the experimental information on the strong phase difference $\delta_{K^+ \pi^-}$. In our analysis we have included the information on correlations between experimental errors. It is possible to find a perfect fit, with a large parameter region satisfying $\chi^2 = 0$. This means that current data comply with i) the Grossman-Robinson sum rules [29], ii) our chosen upper bound of 50% on SU(3)$_F$ breaking, and iii) our assumption that the 1/N_c^2 corrections to the factorizable amplitudes are smaller than 15% of the factorized tree amplitude. The main phenomenological results of our paper are various likelihood ratio tests addressing the sizes of the topological amplitudes and their SU(3)$_F$ breaking (Tab. VIII and Figs. 3–6). Importantly, we find that there is no evidence for an enhanced broken penguin. The hypothesis $P_{\text{break}} = 0$ is rejected at below 1σ only, i.e., insignificantly. Improvements of $B(D^+ \to K_S K^+)$, $B(D^+_s \to K_S \pi^+)$, $B(D^+ \to K^+ \pi^0)$ and especially the form factor $F_0^{K^+}(m_{D^+_s})$ could advance our knowledge of the GIM mechanism in charm by pinning down the proportions of broken penguin and 1/N_c^2 corrections. The current status is summarized in Fig. 6(c). While the SCS branching ratios $B(D^+ \to K_S K^+)$ and $B(D^+_s \to K_S \pi^+)$ are known at a precision of $\lesssim 6\%$ the relative uncertainty of the DCS branching ratio $B(D^+ \to K^+ \pi^0)$ is about 14% and leaves room for improvement. As the latter is the only charm decay into kaons and pions which depends on factorizable contributions only, it is very important to improve its measurement. With a simultaneously improved $F_0^{K^+}(m_{D^+_s})$, the branching ratio $B(D^+ \to K^+ \pi^0)$ serves as a test of factorization in charm decays.

We observe a slightly larger SU(3)$_F$ breaking in color-suppressed tree than in exchange diagrams. In no channel more than $\lesssim 30\%$ SU(3)$_F$ breaking is needed to describe the data (not considering $D^0 \to K_S K_L$, which is forbidden in the SU(3)$_F$ limit); this finding agrees with the plain SU(3)$_F$ analysis of Ref. 23. However, as a matter of principle one cannot decide whether or not the actual SU(3)$_F$ breaking is larger than this. This can potentially only be achieved by future QCD calculations on the lattice [58]. In the data, there is no indication of this to be the case.

With our topological-amplitude fit it is further possible to make predictions for branching fractions which can be probed by future measurements. Despite our conservative ranges for the SU(3)$_F$ breaking parameters, we find a correlation between $B(D^0 \to K_L \pi^0)$ and $B(D^0 \to K_S \pi^0)$ probing the doubly Cabibbo-suppressed contributions to these modes: Fig. 8 entails the prediction $B(D^0 \to K_L \pi^0) < B(D^0 \to K_S \pi^0)$ at more than 4σ.

Acknowledgments

We thank Philipp Frings, Gudrun Hiller and Martin Jung for useful discussions. The fits are performed using the Python version of the software package myFitter [54]. STS thanks Martin Wiebusch for myFitter support and the provision of myFitter-python-0.2-beta. The Feynman diagrams are drawn using Jaxodraw [55, 56]. The presented work is supported by BMBF under contract no. 05H12VKF.
FIG. 3: SU(3)$_{R}$ limit topologies. In Figs. (e) and (f) the dashed (solid) line denotes the 68% (95%) C.L. contour.
FIG. 4: $\Delta \chi^2$ profile of the parameters $\delta'_X^{C,E,P_{\text{break}}}$ measuring SU(3)$_F$-breaking in C, E, and P_{break} (a,b,c) and of δ'_X^{topo} defined in Eq. (44), which quantifies the overall SU(3)$_F$-breaking (d).
FIG. 5: SU(3)$_F$-breaking color-suppressed tree (a,b) and exchange (c,d) topologies.

FIG. 6: The broken penguin (a,b) and its correlation to parameters measuring the 1/N_c corrections (c). In Fig. (c) the dashed (solid) line denotes the 68% (95%) C.L. contour and the region to the right of the contours is allowed.
FIG. 7: The form factor \(F^\pi_0(m^2_{D(\omega)}) \).

FIG. 8: \(\Delta \chi^2 \) profile of \(\mathcal{B}(B^+ \to K^+\pi^0) \) (a) and correlation between \(\mathcal{B}(D^0 \to K_L\pi^0) \) and \(\mathcal{B}(D^0 \to K_S\pi^0) \) (b). In Fig. (a) the red dashed (solid) line indicates the 1\(\sigma \) (2\(\sigma \)) experimental error. In Fig. (b) the dashed (solid) lines are the 68\% (95\%) C.L. contours of our fit and the dark (light) gray shading denotes the 68\% (95\%) C.L. region of the measurements. Here, the solid red line corresponds to \(\mathcal{B}(D^0 \to K_L\pi^0) = \mathcal{B}(D^0 \to K_S\pi^0) \).
FIG. 9: Blue: Our results for several observables probing doubly Cabibbo-suppressed amplitudes (see Eqs. (49) and (50)). The lines correspond to 1σ (dashed), 2σ (solid) and 3σ (dashed-dotted) confidence intervals, respectively. The experimental error in $R(D^0)$ is obtained by Gaussian error propagation from Tab. X. The results from other groups [52–55] are shown in black. In case of $R(D^0)$ (a) and $|A_{\text{DCS}}(D^0 \to K^0\pi^0)/A_{\text{CF}}(D^0 \to \bar{K}^0\pi^0)|$ (b) no errors are given in Refs. [52–55].
TABLE X: Input data for charm meson branching ratios and B
of the following branching fractions:

<table>
<thead>
<tr>
<th>Observable</th>
<th>Measurement</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(D^0 \rightarrow K^+ K^-)$</td>
<td>$(3.96 \pm 0.08) \times 10^{-3}$</td>
<td>[10]</td>
</tr>
<tr>
<td>$B(D^0 \rightarrow \pi^+ \pi^-)$</td>
<td>$(1.40 \pm 0.026) \times 10^{-3}$</td>
<td>[10]</td>
</tr>
<tr>
<td>$B(D^0 \rightarrow K_S K_S)$</td>
<td>$(0.17 \pm 0.04) \times 10^{-3}$</td>
<td>[10]</td>
</tr>
<tr>
<td>$B(D^0 \rightarrow \pi^0 \pi^0)$</td>
<td>$(0.820 \pm 0.035) \times 10^{-3}$</td>
<td>[10]</td>
</tr>
<tr>
<td>$B(D^+ \rightarrow \pi^0 \pi^0)$</td>
<td>$(1.19 \pm 0.06) \times 10^{-3}$</td>
<td>[10]</td>
</tr>
<tr>
<td>$B(D^+ \rightarrow K^+ K^-)$</td>
<td>$(2.83 \pm 0.16) \times 10^{-2}$</td>
<td>[10]</td>
</tr>
<tr>
<td>$B(D^+_s \rightarrow K_S \pi^+)/(B(D^+ \rightarrow K^+ K^-)$</td>
<td>$(8.12 \pm 0.28) \times 10^{-2}$</td>
<td>[10]</td>
</tr>
<tr>
<td>$B(D^+_s \rightarrow K^+ \pi^0)/(B(D^+ \rightarrow K_S K^+)$</td>
<td>$(4.2 \pm 1.4) \times 10^{-2}$</td>
<td>[10]</td>
</tr>
</tbody>
</table>

CF branching ratios

$B(D^0 \rightarrow K^+ \pi^-)$	$(3.88 \pm 0.05) \times 10^{-2}$	[10]
$B(D^0 \rightarrow K_S \pi^0)$	$(1.19 \pm 0.04) \times 10^{-2}$	[10]
$B(D^0 \rightarrow K_L \pi^0)$	$(1.00 \pm 0.07) \times 10^{-2}$	[10]
$B(D^+ \rightarrow K_S \pi^0)$	$(1.47 \pm 0.07) \times 10^{-2}$	[10]
$B(D^+ \rightarrow K_L \pi^0)$	$(1.46 \pm 0.05) \times 10^{-2}$	[10]
$B(D^+_s \rightarrow K_S K^+)$	$(1.50 \pm 0.05) \times 10^{-2}$	[10]

DCS branching ratios

| $B(D^0 \rightarrow K^+ \pi^-)$ | 0.00449 ± 0.00004 | [61] |
| $B(D^+ \rightarrow K^+ \pi^0)$ | $(1.83 \pm 0.26) \times 10^{-4}$ | [10] |

$K^+ \pi^-$ strong phase difference

$\delta_{K^+ \pi^-} (6.45 \pm 0.65)^\circ$ | [61] |

TABLE XI: Correlation coefficients for D^0 branching ratios

<table>
<thead>
<tr>
<th>B_{D^0}</th>
<th>$B_{\overline{D}^0}$</th>
<th>B_{D^+}</th>
<th>$B_{\overline{D}^+}$</th>
<th>$B_{K^+ K^+}$</th>
<th>$B_{K^+ \pi^0}$</th>
<th>$B_{K^+ \pi^+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{D^0}</td>
<td>1.00</td>
<td>0.38</td>
<td>0.03</td>
<td>0.09</td>
<td>0.60</td>
<td>0.21</td>
</tr>
<tr>
<td>$B_{\overline{D}^0}$</td>
<td>0.38</td>
<td>1.00</td>
<td>0.03</td>
<td>0.09</td>
<td>0.62</td>
<td>0.22</td>
</tr>
<tr>
<td>B_{D^+}</td>
<td>0.03</td>
<td>0.03</td>
<td>1.00</td>
<td>0.01</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>$B_{\overline{D}^+}$</td>
<td>0.09</td>
<td>0.09</td>
<td>0.01</td>
<td>1.00</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>$B_{K^+ K^+}$</td>
<td>0.60</td>
<td>0.62</td>
<td>0.05</td>
<td>0.14</td>
<td>1.00</td>
<td>0.35</td>
</tr>
<tr>
<td>$B_{K^+ \pi^0}$</td>
<td>0.21</td>
<td>0.22</td>
<td>0.03</td>
<td>0.05</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

TABLE XII: Correlation coefficients for D^+ branching ratios

<table>
<thead>
<tr>
<th>B_{D^+}</th>
<th>$B_{\overline{D}^+}$</th>
<th>$B_{K^+ K^+}$</th>
<th>$B_{K^+ \pi^0}$</th>
<th>$B_{K^+ \pi^+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{D^+}</td>
<td>1.00</td>
<td>0.75</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>$B_{\overline{D}^+}$</td>
<td>0.75</td>
<td>1.00</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>$B_{K^+ K^+}$</td>
<td>0.05</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Appendix A: Input Data

We give the input data used in the fits, including the correlation coefficients, in Tabs. XI and XIV For details on the input values for the form factors see Appendices XI and C2

Appendix B: Mapping of the topological on the SU(3)$_F$ parameterization

As discussed in Sec. IIC the topological flavor-flow parameterization and the linear SU(3)$_F$ expansion can be mapped onto each other after the removal of redundancies in each parameterization. Both redundant parameters and redundant decay amplitudes have to be removed in order to obtain two corresponding 11×11 regular coefficient matrices. Then, the mapping can be calculated by inverting one or the other coefficient matrix. We choose to omit the redundant amplitudes

$D^0 \rightarrow \pi^0 \pi^0, \quad D^0 \rightarrow K^- \pi^+, \quad D^0 \rightarrow K^+ \pi^-$, \quad (B1)$

$D^0 \rightarrow K^0 \pi^0, \quad D^+ \rightarrow K^0 \pi^+, \quad D^+ \rightarrow K^+ \pi^0$, \quad (B2)$

using the sum rules presented in Sec. D. We next calculate the redefined SU(3)$_F$ matrix elements in terms of the remaining decay amplitudes by inverting the SU(3)$_F$ coefficient matrix given in Tabs. I and V of Ref. P32. The result for this inverse matrix is given in Tab. XVII. In order to illustrate how to read Tab. XVII we exemplify

$$A_{27}^{15} = \frac{2\sqrt{2}}{3} A(D^+ \rightarrow K^0 \pi^+) + \frac{\sqrt{3}}{3} A(D_s^+ \rightarrow K^0 K^+) \quad (B3)$$

Inserting the expansions of $A(D^+ \rightarrow K^0 \pi^+)$ and $A(D_s^+ \rightarrow K^0 K^+)$ in terms of topological amplitudes into Eq. B3 gives the desired expression of the SU(3)$_F$ matrix element A_{27}^{15} in terms of the topological amplitudes. In Tabs. XV and XVI we give two numerical examples for the mapping. Note that in the matching we implicitly disregard higher order SU(3)$_F$-breaking effects which are included in the approximate factorization formulas. Strictly speaking, these invalidate the linear SU(3)$_F$ sum rules, see also Sec. IIIA. However, this can be safely neglected as we only aim at a description of the data at linear SU(3)$_F$ breaking here.

While the exemplified topological-amplitude fit points respect the SU(3)$_F$ power counting, the SU(3)$_F$ breaking matrix elements can nevertheless be quite large, like
TABLE XIII: Correlation between \(B(D^0 \to K^+ \pi^-) / B(D^0 \to K^- \pi^+) \) and \(\delta_K \) used in our fit.

<table>
<thead>
<tr>
<th>(F_0^{DK}(0))</th>
<th>0.737 ± 0.005</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_0^{D^*}(0))</td>
<td>0.638 ± 0.012</td>
</tr>
<tr>
<td>(F_0^{DK}(0))</td>
<td>(1 ± 5%) \times F_0^{D^*}(0)</td>
</tr>
</tbody>
</table>

TABLE XIV: Numerical input for the form factors. The form factor \(F_0^{DK}(0) \) is varied flatly within the theory uncertainty [70]. Table adapted from [71]. Our average.

\(|\overline{B}_1^0| \sim 0.7\) in Tab. XV in case of example point I. This shows that several small SU(3)\(_F \) breaking parameters of the topological-amplitude fit can add up to a larger SU(3)\(_F \) breaking matrix element of the group-theoretical approach. However, as demonstrated by the example point II in Tab. XVII there are also solutions where both diagrammatic and group theoretic language give SU(3)\(_F \) breaking \(\lesssim 50\% \).

Appendix C: Approximate factorization formulas

Below, we give the 1/\(N_c \)-leading expressions for the tree and annihilation diagrams. Corrections of higher order in the 1/\(N_c \)-expansion are parameterized by \(\delta_T \) and \(\delta_A \) introduced in Sec. IIIA.

1. Factorization of tree amplitudes

We use the following expressions for the 1/\(N_c \)-leading contributions to the tree diagrams. SU(3)\(_F \) breaking in the 1/\(N_c^2 \) corrections is of higher order in our power counting and neglected, i.e., we use a flavor-universal correction parameter \(\delta_T \). In our fit we vary

\[0 \leq |\delta_T| \leq 0.15 \frac{\text{T}}{\text{fac}}, \]

\[0 \leq \arg(\delta_T) \leq 2\pi, \]

with \(\frac{\text{T}}{\text{fac}} \) defined in Eq. (24) and \(\delta_T = T - \frac{\text{T}}{\text{fac}} \), see Eq. (23). The 1/\(N_c \)-leading, factorizable contributions to the SCS tree amplitudes are altogether given as:

\[T_{\text{fac}}^{D^0 \to K^+ K^-} = \frac{G_F}{\sqrt{2}} a_{1} f_K (m_D^2 - m_K^2) F_0^{DK}(m_K^2), \]

\[T_{\text{fac}}^{D^0 \to \pi^+ \pi^-} = -\frac{G_F}{\sqrt{2}} a_{1} f_{\pi} (m_D^2 - m_\pi^2) F_0^{D\pi}(m_\pi^2), \]

\[T_{\text{fac}}^{D^0 \to D^+ \pi^-} = -\frac{G_F}{\sqrt{2}} a_{1} f_{\pi} (m_D^2 - m_\pi^2) F_0^{D\pi}(m_\pi^2), \]

where\(a_{1} \) is the axial coupling constant.

TABLE XV: Fit example point I and corresponding point in the SU(3)\(_F \) decomposition with linear SU(3)\(_F \) breaking. The values quoted for \(\overline{A}_{1}^0 \) and \(\overline{B}_1^0 \) in the last column are normalized to the largest SU(3)\(_F \) limit matrix element. The fit is only sensitive to \(\delta_T \) and \(\delta_A \) in the combination \((\delta_T - \delta_A) / T_{\text{fac}} = 0.29 \pm 0.02i \).

\[T_{\text{fac}}^{D^+ \to K^+ K^0} = \frac{G_F}{\sqrt{2}} a_{1} f_K (m_D^2 - m_K^2) F_0^{DK}(m_K^2), \]

\[T_{\text{fac}}^{D^0 \to \pi^+ K^0} = -\frac{G_F}{\sqrt{2}} a_{1} f_{\pi} (m_D^2 - m_K^2) F_0^{DK}(m_K^2). \]

The 1/\(N_c \)-leading, factorizable contributions to the CF tree amplitudes are given as:

\[T_{\text{fac}}^{D^+ \to K^+ \pi^-} = \frac{G_F}{\sqrt{2}} a_{1} f_{\pi} (m_D^2 - m_K^2) F_0^{DK}(m_K^2), \]

\[T_{\text{fac}}^{D^0 \to K^- \pi^0} = \frac{G_F}{\sqrt{2}} a_{1} f_{\pi} (m_D^2 - m_K^2) F_0^{DK}(m_K^2). \]
TABLE XVI: Fit example point II and corresponding point in the SU(3)$_F$ decomposition with linear SU(3)$_F$ breaking. Cf. Tab. [XV] for the notation. The fit is only sensitive to δ_T and δ_A in the combination $(\delta_T - \delta_A)/T^{\text{fac}} = 0.30 \pm 1.38$.

\[
T_{D^+ \rightarrow K^0 \pi^+}^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_1 f_K (m_D^2 - m_K^2) F_0^{DK} (m_K^2). \tag{C9}
\]

The $1/N_c$-leading, factorizable contributions to the DCS tree amplitudes are given as:

\[
T_{D^+ \rightarrow K^0 \pi^+}^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_1 f_K (m_D^2 - m_K^2) F_0^{DK} (m_K^2). \tag{C10}
\]

\[
T_{D^+ \rightarrow K^+ \pi^-}^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_1 f_K (m_D^2 - m_K^2) F_0^{DK} (m_K^2). \tag{C11}
\]

The matrix element of the vector current can be parameterized by the vector and scalar form factor as [69]

\[
\langle P | V^\mu | D \rangle = F_{+}^{D \rightarrow P} (q^2) \left[p^\mu_D + p_D^\mu - \frac{m_D^2 - m_K^2}{q^2} q^\mu \right] + F_0^{DK} (q^2) \frac{m_D^2 - m_K^2}{q^2} q^\mu, \tag{C13}
\]

with the vector form factor $F_{+}^{D \rightarrow P}$ and the scalar form factor F_0^{DK} obeying [69] [72]

\[
\langle P | S | D \rangle = F_0^{DK} (q^2) \frac{m_D^2 - m_K^2}{m_c - m_p}. \tag{C14}
\]

Here the same renormalization scheme and scale must be used for S and $m_c - m_p$.

We calculate the form factors that appear in the tree amplitudes using the overall scaling factor appearing in the z-parameterization, i.e., a pole factor [69] [72]

\[
F_0^{DK} (m_P^2) = \frac{F_0^{DK} (0)}{1 - m_P^2/m_{D^{*0}}^2 (2317)^\pm}, \tag{C15}
\]

\[
F_0^{D_s \rightarrow K^0 \pi^+}^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_1 f_K (m_D^2 - m_K^2) F_0^{DK} (m_K^2). \tag{C9}
\]

\[
F_0^{DK} (m_P^2) = \frac{F_0^{DK} (0)}{1 - m_P^2/m_{D_s}^2 (2400)^\pm}, \tag{C16}
\]

\[
F_0^{D_s \rightarrow K^0 \pi^0}^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_1 f_K (m_D^2 - m_K^2) F_0^{DK} (m_K^2). \tag{C9}
\]

The used input values for $F_0^{DK} (0)$, $F_0^{D_s \rightarrow K^0 \pi^+}$ and $F_0^{D_s \rightarrow K^0 \pi^0}$ are given in Tab. [XIV].

As we assume isospin symmetry in the topological-amplitude decomposition we ignore the smallish isospin breaking between charged and neutral masses of kaons and pions for consistency. We use the neutral masses in all amplitudes. However, in the phase space factors of the branching ratios we take the isospin mass splittings into account.

\[
m_{D^{*0}} (2317)^\pm = (2317.8 \pm 0.6) \text{ MeV}, \tag{C18}
\]

\[
m_{D_s} (2400)^\pm = (2403 \pm 40) \text{ MeV}. \tag{C19}
\]

2. Factorization of annihilation amplitudes

We use the following expressions for the $1/N_c$-leading contributions to the annihilation diagrams. As in the case of tree amplitudes we vary δ_A of Eq. (25) as

\[
0 \leq |\delta_A| \leq 0.15 T^{\text{fac}}, \tag{C20}
\]

\[
0 \leq \arg(\delta_A) \leq 2\pi. \tag{C21}
\]
The $1/N_c$-leading, factorizable contributions \cite{33} to the SCS annihilation amplitudes are given as:

\[A_{D^+ \rightarrow K^0 K^+}^{\text{fac}} = 0, \]
\[A_{D^+_s \rightarrow K^0 \pi^+}^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_1 f_{D_s} F_0^{K\pi}(m_{D_s}^2) \left(m_K^2 - m_\pi^2 \right), \]
\[A_{D^+_s \rightarrow K^+ \pi^0}^{\text{fac}} = -\frac{G_F}{\sqrt{2}} \frac{1}{\sqrt{2}} a_1 f_{D_s} F_0^{K\pi}(m_{D_s}^2) \left(m_K^2 - m_\pi^2 \right). \]

The $1/N_c$-leading, factorizable contribution to the CF annihilation amplitude is given as:

\[A_{D^+ \rightarrow K^0 K^+}^{\text{fac}} = 0. \]

The $1/N_c$-leading, factorizable contributions to the DCS annihilation amplitudes are given as:

\[A_{D^+ \rightarrow K^0 \pi^+}^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_1 f_{D} F_0^{K\pi}(m_{D}^2) \left(m_K^2 - m_\pi^2 \right), \]
\[A_{D^+ \rightarrow K^+ \pi^0}^{\text{fac}} = -\frac{G_F}{\sqrt{2}} \frac{1}{\sqrt{2}} a_1 f_{D} F_0^{K\pi}(m_{D}^2) \left(m_K^2 - m_\pi^2 \right). \]

Note that the $1/N_c$-leading SCS annihilation amplitude $A_{D^+ \rightarrow K^0 K^+}^{\text{fac}}$ and the $1/N_c$-leading CF annihilation amplitude $A_{D^+ \rightarrow K^0 K^+}^{\text{fac}}$ can be neglected due to isospin symmetry \cite{73}. However, the corresponding $1/N_c^2$ corrections are of course taken into account (as for the others) and specified in Tab. VI.

Constraints on $|F_0^{K\pi}(m_{D_s}^2)|$ can be taken from τ decays. In order to accommodate the measurements of $\tau \rightarrow K_S \pi^- \nu_\tau$ from Belle \cite{49} we vary the form factor in the interval

\[1 \lesssim |F_0^{K\pi}(m_{D_s}^2)| \lesssim 4.5, \]
\[0 \lesssim \arg \left(F_0^{K\pi}(m_{D_s}^2) \right) \lesssim 2\pi, \]

setting

\[F_0^{K\pi}(m_{D_s}^2) = F_0^{K\pi}(m_{D}^2). \]

Appendix D: Diagrammatic representation of sum rules

In Tabs. XVIII\[XXIII\] we give the diagrammatic representation of the six Grossman-Robinson SU(3)$_F$ sum rules which hold to linear order in SU(3)$_F$ breaking \cite{29}.
<table>
<thead>
<tr>
<th>ME / A</th>
<th>$D^0 \to K^+ K^-$</th>
<th>$D^0 \to \pi^+ \pi^-$</th>
<th>$D^0 \to K^0 K^0$</th>
<th>$D^+ \to K^0 \pi^+$</th>
<th>$D^- \to K^0 \pi^-$</th>
<th>$D^0 \to K^0 \pi^0$</th>
<th>$D^+ \to K^+ \pi^0$</th>
<th>$D^- \to K^+ \pi^-$</th>
<th>$D^0 \to K^0 K^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{2/3}^{13}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_{8}^{15}</td>
<td>$- \frac{5}{\sqrt{2}}$</td>
<td>$\frac{5}{\sqrt{2}}$</td>
<td>0</td>
<td>0</td>
<td>$\frac{5}{\sqrt{2}}$</td>
<td>0</td>
<td>0</td>
<td>$\frac{5}{\sqrt{2}}$</td>
<td>$- \frac{1}{\sqrt{2}}$</td>
</tr>
<tr>
<td>A_{8}^{6}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}$</td>
</tr>
<tr>
<td>B_{3}^{1}</td>
<td>16 $\sqrt{2/3}$</td>
<td>$\frac{16}{\sqrt{3}}$</td>
<td>- $10\sqrt{2/3}$</td>
<td>0</td>
<td>$2\sqrt{2/3}$</td>
<td>$2\sqrt{2/3}$</td>
<td>0</td>
<td>$- 4\sqrt{2/3}$</td>
<td>0</td>
</tr>
<tr>
<td>B_{3}^{3}</td>
<td>$20\sqrt{2/3}$</td>
<td>$20\sqrt{2/3}$</td>
<td>$10\sqrt{2/3}$</td>
<td>$20\sqrt{2/3}$</td>
<td>$10\sqrt{2/3}$</td>
<td>$- 20\sqrt{2/3}$</td>
<td>0</td>
<td>$- 20\sqrt{2/3}$</td>
<td>0</td>
</tr>
<tr>
<td>B_{3}^{6}</td>
<td>$-20\sqrt{2/3}$</td>
<td>$20\sqrt{2/3}$</td>
<td>0</td>
<td>$2\sqrt{2/3}$</td>
<td>$-20\sqrt{2/3}$</td>
<td>$18\sqrt{2/3}$</td>
<td>$-2\sqrt{2/3}$</td>
<td>$-40\sqrt{2/3}$</td>
<td>$60\sqrt{2/3}$</td>
</tr>
<tr>
<td>B_{8}^{15}</td>
<td>$-460\sqrt{2/3}$</td>
<td>$-20\sqrt{2/3}$</td>
<td>$-840\sqrt{2/3}$</td>
<td>$-78\sqrt{2/3}$</td>
<td>$78\sqrt{2/3}$</td>
<td>$460\sqrt{2/3}$</td>
<td>$78\sqrt{2/3}$</td>
<td>$-24\sqrt{2/3}$</td>
<td>$92\sqrt{2/3}$</td>
</tr>
<tr>
<td>B_{8}^{15}</td>
<td>$20\sqrt{2/3}$</td>
<td>$-10\sqrt{2/3}$</td>
<td>$10\sqrt{2/3}$</td>
<td>$28\sqrt{2/3}$</td>
<td>$-20\sqrt{2/3}$</td>
<td>$-6\sqrt{2/3}$</td>
<td>$-32\sqrt{2/3}$</td>
<td>$60\sqrt{2/3}$</td>
<td>$-4\sqrt{2/3}$</td>
</tr>
<tr>
<td>B_{27}^{24}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B_{27}^{24}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$14\sqrt{3}$</td>
<td>0</td>
<td>$-\sqrt{3}$</td>
<td>$-14\sqrt{3}$</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE XVII: The inverse of the SU(3)$_F$ coefficient matrix given in Tabs. I and V of [23] which is used in order to map the fit example points of the topological approach onto the SU(3)$_F$ parameterization in Tabs. XV and XVI.
<table>
<thead>
<tr>
<th>Decay amplitude</th>
<th>T</th>
<th>C</th>
<th>E</th>
<th>P_{break}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+\frac{1}{\sqrt{2}}A(D^0 \to \pi^+\pi^-)$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>0</td>
<td>$-\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
</tr>
<tr>
<td>$+A(D^0 \to \pi^0\pi^0)$</td>
<td>0</td>
<td>$-\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$-\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
</tr>
<tr>
<td>$-A(D^+ \to \pi^0\pi^+)$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table XVIII: Diagrammatic representation of sum rule I, $\frac{1}{\sqrt{2}}A(D^0 \to \pi^+\pi^-) + A(D^0 \to \pi^0\pi^0) - A(D^+ \to \pi^0\pi^+) = 0$.

<table>
<thead>
<tr>
<th>Decay amplitude</th>
<th>T</th>
<th>$T^{(1)}_1$</th>
<th>C</th>
<th>$C^{(1)}_1$</th>
<th>E</th>
<th>$E^{(1)}_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{\sqrt{2}}A(D^0 \to K^-\pi^+)$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
</tr>
<tr>
<td>$+A(D^0 \to \bar{K}^0\pi^0)$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
</tr>
<tr>
<td>$-\frac{1}{\sqrt{2}}A(D^+ \to \bar{K}^0\pi^+)$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$\frac{1}{\sqrt{2}} \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table XIX: Diagrammatic representation of sum rule II, $\frac{1}{\sqrt{2}}A(D^0 \to K^-\pi^+) + A(D^0 \to \bar{K}^0\pi^0) - \frac{1}{\sqrt{2}}A(D^+ \to \bar{K}^0\pi^+) = 0$.

<table>
<thead>
<tr>
<th>Decay amplitude</th>
<th>T</th>
<th>$T^{(1)}_2$</th>
<th>A</th>
<th>$A^{(1)}_2$</th>
<th>C</th>
<th>$C^{(1)}_2$</th>
<th>E</th>
<th>$E^{(1)}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(D^0 \to K^+\pi^-)$</td>
<td>1×$\scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>1×$\scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
</tr>
<tr>
<td>$\sqrt{2}A(D^0 \to K^0\pi^0)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1×$\scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>1×$\scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$-1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$-1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
</tr>
<tr>
<td>$-A(D^+ \to K^0\pi^+)$</td>
<td>0</td>
<td>0</td>
<td>$-1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$-1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$-1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$-1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$-\sqrt{2}A(D^+ \to K^+\pi^0)$</td>
<td>$-1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>$-1 \times \scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>1×$\scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>1×$\scalebox{0.3}[1]{\text{Diagram}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table XX: Diagrammatic representation of sum rule III, $A(D^0 \to K^+\pi^-) + \sqrt{2}A(D^0 \to K^0\pi^0) - A(D^+ \to K^0\pi^+) - \sqrt{2}A(D^+ \to K^+\pi^0) = 0$.
TABLE XXI: Diagrammatic representation of sum rule IV, $A(D^0 \to K^- K^+) - A(D^0 \to \pi^+ \pi^-) - A(D^0 \to K^- \pi^+) - A(D^0 \to K^+ \pi^-) = 0$.

<table>
<thead>
<tr>
<th>Decay amplitude</th>
<th>T</th>
<th>$T_{1}^{(1)}$</th>
<th>$T_{2}^{(1)}$</th>
<th>E</th>
<th>$E_{1}^{(1)}$</th>
<th>$E_{2}^{(1)}$</th>
<th>P_{break}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(D^0 \to K^+ K^-)$</td>
<td>$1 \times$</td>
</tr>
<tr>
<td>$-A(D^0 \to \pi^+ \pi^-)$</td>
<td>$1 \times$</td>
<td>0</td>
<td>0</td>
<td>$1 \times$</td>
<td>0</td>
<td>0</td>
<td>$-1 \times$</td>
</tr>
<tr>
<td>$-A(D^0 \to K^- \pi^+)$</td>
<td>$-1 \times$</td>
<td>$-1 \times$</td>
<td>0</td>
<td>$-1 \times$</td>
<td>$-1 \times$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$-A(D^0 \to K^+ \pi^-)$</td>
<td>$-1 \times$</td>
<td>0</td>
<td>$-1 \times$</td>
<td>0</td>
<td>$-1 \times$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Decay amplitude</td>
<td>T</td>
<td>$T_1^{(1)}$</td>
<td>$T_2^{(1)}$</td>
<td>$T_3^{(1)}$</td>
<td>A</td>
<td>$A_1^{(1)}$</td>
<td>$A_2^{(1)}$</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>$-A(D^+ \to \bar{K}^0 K^+)$</td>
<td>$-1 \times$</td>
<td>$-1 \times$</td>
<td>$-1 \times$</td>
<td>0</td>
<td>$1 \times$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$A(D_s^+ \to K^0 \pi^+)$</td>
<td>$-1 \times$</td>
<td>0</td>
<td>0</td>
<td>$-1 \times$</td>
<td>$1 \times$</td>
<td>$1 \times$</td>
<td>$1 \times$</td>
</tr>
<tr>
<td>$A(D^+ \to K^0 \pi^+)$</td>
<td>$1 \times$</td>
<td>$1 \times$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$-A(D_s^+ \to K^0 K^+)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-1 \times$</td>
<td>$-1 \times$</td>
<td>0</td>
</tr>
<tr>
<td>$-A(D^+ \to K^0 \pi^+)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-1 \times$</td>
<td>0</td>
<td>$-1 \times$</td>
</tr>
<tr>
<td>$A(D_s^+ \to K^0 K^+)$</td>
<td>$1 \times$</td>
<td>0</td>
<td>$1 \times$</td>
<td>$1 \times$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE XXII: Diagrammatic representation of sum rule V, $-A(D^+ \to \bar{K}^0 K^+) + A(D_s^+ \to K^0 \pi^+) + A(D^+ \to K^0 \pi^+) - A(D_s^+ \to \bar{K}^0 K^+) - A(D^+ \to \bar{K}^0 \pi^+) + A(D_s^+ \to K^0 \pi^+) = 0$.

\[
\sqrt{2} A(D^+ \rightarrow \pi^0 \pi^+) - A(D^+ \rightarrow \bar{K}^0 K^+) - \sqrt{2} A(D_s^+ \rightarrow K^+ \pi^0) + A(D^+ \rightarrow \bar{K}^0 \pi^+) - A(D_s^+ \rightarrow K^0 K^+) + \sqrt{2} A(D^+ \rightarrow K^+ \pi^0) = 0.
\]

Decay amplitude	\(T \)	\(T_1^{(1)} \)	\(T_2^{(1)} \)	\(A \)	\(A_1^{(1)} \)	\(A_2^{(1)} \)	\(A_3^{(1)} \)	\(C \)	\(C_1^{(1)} \)	\(C_2^{(1)} \)	\(C_3^{(1)} \)	\(P_{\text{break}} \)	
\(\sqrt{2} A(D^+ \rightarrow \pi^0 \pi^+) \)	\(-1\times\)	0	0	0	0	0	-1×	0	0	0	0	0	0
\(-A(D^+ \rightarrow \bar{K}^0 K^+) \)	\(-1\times\)	-1×	-1×	1×	0	0	1×	0	0	0	0	0	0
\(-\sqrt{2} A(D_s^+ \rightarrow K^+ \pi^0) \)	0	0	0	1×	1×	1×	0	1×	0	0	1×	1×	0
\(A(D^+ \rightarrow \bar{K}^0 \pi^+) \)	\(1\times\)	1×	0	0	0	0	0	1×	0	0	0	0	0
\(-A(D_s^+ \rightarrow \bar{K}^0 K^+) \)	0	0	0	-1×	-1×	-1×	0	-1×	-1×	-1×	0	0	0
\(+\sqrt{2} A(D^+ \rightarrow K^+ \pi^0) \)	\(1\times\)	0	1×	-1×	-1×	0	-1×	0	0	0	0	0	0

TABLE XXIII: Diagrammatic representation of sum rule VI, \(+\sqrt{2} A(D^+ \rightarrow \pi^0 \pi^+) - A(D^+ \rightarrow \bar{K}^0 K^+) - \sqrt{2} A(D_s^+ \rightarrow K^+ \pi^0) + A(D^+ \rightarrow \bar{K}^0 \pi^+) - A(D_s^+ \rightarrow K^0 K^+) + \sqrt{2} A(D^+ \rightarrow K^+ \pi^0) = 0 \).