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We study decays of D0, D+, and D+
s mesons into two pseudoscalar mesons by expressing the

decay amplitudes in terms of topological amplitudes. Including consistently SU(3)F breaking to
linear order, we show how the topological-amplitude decomposition can be mapped onto the stan-
dard expansion using reduced amplitudes characterized by SU(3) representations. The tree and
annihilation amplitudes can be calculated in factorization up to corrections which are quadratic in
the color-counting parameter 1/Nc. We find new sum rules connecting D+ → KSK

+, D+
s → KSπ

+

and D+ → K+π0, which test the quality of the 1/Nc expansion. Subsequently, we determine the
topological amplitudes in a global fit to the data, taking the statistical correlations among the var-
ious measurements into account. We carry out likelihood ratio tests in order to quantify the role of
specific topological contributions. While the SU(3)F limit is excluded with a significance of more
than five standard deviations, a good fit (with ∆χ2 < 1) can be obtained with less than 28% of
SU(3)F breaking in the decay amplitudes. The magnitude of the penguin amplitude Pbreak, which
probes the Glashow Iliopoulos Maiani (GIM) mechanism, is consistent with zero; the hypothesis
Pbreak = 0 is rejected with a significance of just 0.7σ. We obtain the Standard-Model correlation
between B(D0 → KLπ

0) and B(D0 → KSπ
0), which probes doubly Cabibbo-suppressed amplitudes,

and find that B(D0 → KLπ
0) < B(D0 → KSπ

0) holds with a significance of more than 4σ. We
finally predict B(D+

s → KLK
+) = 0.012+0.007

−0.002 at 3σ CL.

I. INTRODUCTION

While there is a plethora of experimental information
on hadronic charm decays, no theoretical method for dy-
namical, QCD-based predictions for the corresponding
decay amplitudes is known. The best theoretical ap-
proach uses the approximate SU(3)F symmetry of the
QCD Lagrangian to relate the amplitudes of different
decay modes to each other. If one assumes this sym-
metry to be exact, one can express the amplitudes of
all measured decay modes in terms of a smaller number
of parameters, which are the reduced amplitudes char-
acterized by SU(3)F quantum numbers. Then one can
predict the less precisely measured branching fraction
on the basis of exact SU(3)F or assess the validity of
this assumption from the overall quality of the fit [1–14].
SU(3)F is broken, because the masses mu,d,s of the three
lightest quarks are not equal. Comparing the differences
among these masses with a typical hadronic scale one
estimates SU(3)F breaking to be around 30%. In prac-
tice the quality of SU(3)F symmetry can be much better
(e.g. in heavy-hadron spectroscopy) or much worse (e.g.
in heavy-quark fragmentation) and should be critically
assessed for each system to which it is applied. Linear
(i.e. first-order) SU(3)F breaking can be rigorously in-
cluded into the parameterization of the amplitudes, at
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the expense of a larger number of reduced amplitudes.
In the case of D → PP ′, where D = D0, D+ or D+

s

and P , P ′ represent pseudoscalar mesons, such studies
have been performed in Refs. [15–28]. (Remarkably, one
can find relations between amplitudes which even hold
to first order in SU(3)F breaking [29].) Since there are
less D → PP ′ branching fractions than real parameters,
there is a multi-dimensional space of solutions (all giv-
ing a perfect χ2) for the latter. Many of these solutions
involve reduced SU(3)F -breaking amplitudes whose sizes
are indeed of order 30% or less than the SU(3)F -leading
ones, giving evidence (but no proof) that the SU(3)F
expansion works. The redundancy associated with the
multi-dimensional space of solutions poses a challenge
for the numerical method to find the best-fit solutions
because of the many flat directions in the space of re-
duced amplitudes.

An alternative way to parameterize decay amplitudes
involves topological amplitudes which are characterized
by the flavor flow in the decays [5, 8–11, 13–17, 19, 28, 30–
32]. The building blocks of this approach are shown in
Tab. I and Fig. 1. The topological amplitudes permit an
easy and intuitive implementation of SU(3)F relations.
They further have the merit that they categorize the de-
cays by dynamical criteria (i.e. whether the valence quark
takes part in the weak interaction and which meson picks
it up) and permit the combination of SU(3)F methods
with other calculational methods. In this paper we take
a first step in this direction and apply the 1/Nc expan-
sion (first applied to D decays in Ref. [33]) to the tree
(T ) and annihilation (A) amplitudes of Tab. I. (Nc = 3
is the number of colors.) T and A each factorize into
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the product of a form factor and a decay constant up
to corrections of order 1/N2

c . We further include linear
SU(3)F breaking in the topological-amplitude decompo-
sition, similarly to the study of B decays in Ref. [19]. For
fixed values of T and A (obtained by adding a chosen
1/N2

c deviation to the factorized expressions) the num-
ber of fitted complex topological amplitudes is reduced
from 17 to nine, so that the problem of flat directions is
substantially alleviated.

The purpose of this paper is a systematic determi-
nation of the topological amplitudes including linear
SU(3)F breaking from a global fit to 16D → PP ′ branch-
ing fractions and the measured strong-phase difference
δK+π− . For each topological amplitude we quantify the
amount of SU(3)F breaking with statistical likelihood-
ratio tests using the statistical package myFitter [34].
The latter is especially convenient in order to include
nonlinear constraints in a frequentist analysis using the
SLSQP algorithm implemented in SciPy [35, 36]. As
a novel feature our statistical analysis fully includes the
statistical correlations between the different experimental
inputs. The ranges of the topological amplitudes found
by us are an important input for the prediction of CP
asymmetries. However, the latter also involve quanti-
ties which cannot be extracted from branching fractions
(SU(3)F triplet amplitudes), so that additional input is
needed for this purpose. This is one reason why we do not
include measurements of CP asymmetries in our fit in-
put. The other reason is their sensitivity to new physics,
whose quantification should be separated from the deter-
mination of hadronic parameters as much as possible. In
this paper we also do not consider decays into final states
with η or η′, which involve additional parameters.

The paper is organized as follows: In Sec. II we present
the parameterization of D decay amplitudes using topo-
logical amplitudes. We discuss the inclusion of linear
SU(3)F breaking and the appearing parametric redun-
dancies in the diagrammatic language. In Sec. III we
combine the method with 1/Nc counting and define our
measures of SU(3)F breaking. In Sec. IV we present the
result of our fit. Finally, we conclude.

II. DIAGRAMMATIC PARAMETERIZATION
OF CHARM DECAYS

A. Notation

We choose the following conventions for the meson
states:
∣∣K+

〉
= |us̄〉 ,

∣∣K0
〉

= |ds̄〉 , (1)∣∣K−
〉

= − |sū〉 ,
∣∣K̄0

〉
=
∣∣sd̄
〉
, (2)

∣∣π+
〉

=
∣∣ud̄
〉
,

∣∣π0
〉

=
1√
2

(∣∣dd̄
〉
− |uū〉

)
, (3)

∣∣π−
〉

= − |dū〉 ,
∣∣D0

〉
= − |cū〉 , (4)∣∣D+

〉
=
∣∣cd̄
〉
,

∣∣D+
s

〉
= |cs̄〉 . (5)

Here the “=” sign means that the flavor quantum num-
bers of the meson state on the left-hand side equal
those of the quark-antiquark state on the right-hand
side. Tab. I shows the topological (flavor-flow) ampli-
tudes. The cross denotes the W -boson exchange encoded
in the ∆C = 1 Hamiltonian. We write the Cabibbo-
favored (CF), singly Cabibbo-suppressed (SCS), and
doubly Cabibbo suppressed (DCS) decays as

ACF(d) ≡ V ∗csVudA(d) ≡ V ∗csVud
∑

i

cdi Ti , (6)

ASCS(d) ≡ λsdA(d) ≡ λsd
∑

i

cdi Ti , (7)

ADCS(d) ≡ V ∗cdVusA(d) ≡ V ∗cdVus
∑

i

cdi Ti . (8)

Here, we defined

λsd := (λs − λd)/2 := (V ∗csVus − V ∗cdVud)/2 , (9)

where λsd ' λs ' −λd. Ti is a topological amplitude (see
Tabs. I, II) and cdi is the corresponding coefficient from
Tab. III and d = D → PP ′ labels the decay mode. There
is a CKM-suppressed part ∝ V ∗cbVub in SCS amplitudes
which can be safely neglected in all branching ratios.

In the limit of unbroken SU(3)F symmetry only the
tree (T ), annihilation (A), color-suppressed (C), and ex-
change (E) amplitudes are needed to parameterize all
D → PP ′ decays. While the penguin amplitude Ps,d,b
(labeled with the quark flavor running in the loop) is
also non-vanishing in unbroken SU(3)F , it only appears
in the combination

Pbreak ≡ Ps − Pd, (10)

where we have adopted the notation of Ref. [27]. T ,A,C,
and E are commonly fitted together with the penguin
amplitude Pbreak, which vanishes in the SU(3)F limit [9–
11, 13, 19, 28, 37]. The normalization of the amplitudes
is such that

B(D → P1P2) = |AX(D → P1P2)|2 × P(D,P1, P2) ,

(11)

P(D,P1, P2) ≡ τD ×
1

16πm3
D

×
√

(m2
D − (mP1 −mP2)2)(m2

D − (mP1 +mP2)2) .

(12)

with X = CF,SCS,DCS. In the following, we will only
make use of the notation A(d) without superscript, see
Eqs. (6–8).

B. SU(3)F -breaking

Any perturbative treatment starts with a subdivision
of the Hamiltonian H = H0 +H1 into a piece H0 treated
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Name Diagrams

T c

ū/d̄

u

d̄

ū/d̄

d

A

c

d̄

d̄
u/d

ū/d̄

u

C c

ū/d̄

d

ū/d̄

d̄

u

E
c

ū

d
ū/d̄

u/d

d̄

Pd

c

ū/d̄

d

u
ū/d̄

u/d

ū/d̄

TABLE I: SU(3)F -limit topological amplitudes.

without approximation and the perturbation H1. The
S-matrix element of the transition i→ f triggered by H1

is

〈f | T e−i
∫
d4xH1(x) |i〉 . (13)

In our case H0 is the QCD Hamiltonian with mu and
ms set equal to md. H1 consists of the weak |∆C| = 1
Hamiltonian HW and the SU(3)F -breaking Hamiltonian

H���SU(3)F = (ms −md)ss, (14)

where isospin breaking is neglected. With our choice of
H0 the asymptotic states i, f are eigenstates of H0 which
are D+ or D0 mesons or two-pion states. To first order in
HW and zeroth and first order in H���SU(3)F the transition
amplitude in Eq. (13) becomes

〈f | − i
∫
d4xHW (x) |i〉+

〈f | − 1

2

∫∫
d4xd4yT HW (x)H���SU(3)F (y) |i〉 . (15)

The second piece accounts for the differences of ampli-
tudes involving a D+

s in the initial state or one or two
kaons in the final state from their unflavored counter-
parts. The Feynman rule of H���SU(3)F is an ss vertex which
we denote by a cross on the s-quark line. This approach
is essentially identical to the one of Ref. [19], where B
decays have been considered. H���SU(3)F also leads to η–
η′ mixing. Using an η–η′ mixing angle in our diagram-
matic method may lead to a double-counting of SU(3)F -
breaking effects and we do not consider final states with

η(′)’s in the final state in this paper. The correspond-
ing topological amplitudes are collected in Tab. II. We
combine our topological amplitudes into a vector

p ≡
(
T, T

(1)
1 , T

(1)
2 , T

(1)
3 , A,A

(1)
1 , A

(1)
2 , A

(1)
3 ,

C, C
(1)
1 , C

(1)
2 , C

(1)
3 , E,E

(1)
1 , E

(1)
2 , E

(1)
3 , Pbreak

)T
. (16)

Then we can write

Mp = A (17)

with a 17 × 17 coefficient matrix M and

A =
(
A(D0 → K+K−), . . .A(D+

s → K0K+)
)T

sub-
suming the decay amplitudes. The i-th column of M
contains the coefficients cdi of Eqs. (6–8). Tab. III shows
A in the first column and lists the elements of M as table
entries. We remark that the only final state with two
identical mesons is

∣∣π0π0
〉
. In D0(pD) → π0(p1)π0(p2)

two effects must be taken into account: first, each
topological amplitude appears twice (with p1 and p2

interchanged, leading to a proper Bose-symmetrized
state). Second, in the subsequent phase space inte-
gration one integrates the azimuthal angle over the
interval [0, π] rather the usual [0, 2π], because the two
pions are indistinguishable. The resulting factor of 1/2
in the decay rate (compared to the other listed decay

rates) is accommodated through a factor of 1/
√

2 on

the amplitude level in Tab. III. E.g. the factor of 1/
√

2
multiplying E is the result of the mentioned factors of 2
and 1/

√
2 and two factors of 1/

√
2 stemming from the∣∣π0

〉
state in Eq. (3). Note that it would be unwise to

define the SU(3)F limit from some average of s and d
diagrams, since with this choice the asymptotic states
constructed from H0 would not correspond to physical
mesons. Furthermore, there would be far less zeros
among the coefficients in Tab. III which would further
complicate the analysis.

There is one more SU(3)F -breaking topological am-
plitude, the penguin annihilation amplitude PAbreak ≡
PAs − PAd depicted in Fig. 1. While the dynamics de-
scribed by this amplitude is different from the ones dis-
cussed so far, PAbreak enters the decay amplitudes in
such a way that it can be absorbed into other ampli-
tudes. Thus it is a redundant fit parameter, as explained
in the following section.

C. Redundancies

The relationship between physical and topological am-
plitudes is not one-to-one. If no other dynamical infor-
mation on the latter is used, the determination of p from
A in Eq. (17) yields an infinite set of solutions describ-
ing the data equally well. A priori this feature renders
fitted numerical values of T, . . . Pbreak meaningless and
obscures the comparison of different analyses in the lit-
erature. There are two ways to address this problem:
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Name s− d difference of topologies denoted by Feynman rule

T
(1)
1

c s − c d

T
(1)
2

c
s̄

− c
d̄

T
(1)
3

c

s̄

− c

ū/d̄

A
(1)
1

c

s̄

−

c

d̄

A
(1)
2

c
s̄

−
c

d̄

A
(1)
3

c

s̄

s

−

c

d̄

d

C
(1)
1

c

s

− c

d

C
(1)
2

c
s̄

− c
d̄

C
(1)
3

c

s̄

− c

ū/d̄

E
(1)
1

c
s

−
d

c

E
(1)
2

c

s̄

−
c

d̄

E
(1)
3

c s̄

s −
c ū/d̄

u/d

Pbreak

c

s
−

c

d

TABLE II: SU(3)F -breaking topological amplitudes corresponding to the amplitudes in Tab. III. The Feynman rule for H���SU(3)F

is the cross placed on an s line.
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Decay ampl. A(d) T T
(1)
1 T

(1)
2 T

(1)
3 A A

(1)
1 A

(1)
2 A

(1)
3 C C

(1)
1 C

(1)
2 C

(1)
3 E E

(1)
1 E

(1)
2 E

(1)
3 Pbreak

SCS

A(D0 → K+K−) 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1

A(D0 → π+π−) −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1

A(D0 → K̄0K0) 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 0

A(D0 → π0π0) 0 0 0 0 0 0 0 0 − 1√
2

0 0 0 1√
2

0 0 0 − 1√
2

A(D+ → π0π+) − 1√
2

0 0 0 0 0 0 0 − 1√
2

0 0 0 0 0 0 0 0

A(D+ → K̄0K+) 1 1 1 0 −1 0 0 −1 0 0 0 0 0 0 0 0 1

A(D+
s → K0π+) −1 0 0 −1 1 1 1 0 0 0 0 0 0 0 0 0 1

A(D+
s → K+π0) 0 0 0 0 − 1√

2
− 1√

2
− 1√

2
0 − 1√

2
0 0 − 1√

2
0 0 0 0 − 1√

2

CF

A(D0 → K−π+) 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

A(D0 → K̄0π0) 0 0 0 0 0 0 0 0 1√
2

1√
2

0 0 − 1√
2
− 1√

2
0 0 0

A(D+ → K̄0π+) 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

A(D+
s → K̄0K+) 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0

DCS

A(D0 → K+π−) 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0

A(D0 → K0π0) 0 0 0 0 0 0 0 0 1√
2

0 1√
2

0 − 1√
2

0 − 1√
2

0 0

A(D+ → K0π+) 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0

A(D+ → K+π0) 1√
2

0 1√
2

0 − 1√
2

0 − 1√
2

0 0 0 0 0 0 0 0 0 0

A(D+
s → K0K+) 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0

TABLE III: The coefficients of the decomposition of the physical amplitudes (including SU(3)F breaking) in terms of the
topological amplitudes as in Eqs. (6–8). The table entries are the elements of the coefficient matrix M in Eq. (17).

c

ū

u/d

ū/d̄

u/d

ū/d̄

FIG. 1: Penguin annihilation diagram.

one can either simply remove redundant parameters and
quote numbers for the linear combinations of the topolog-
ical amplitudes which are in one-to-one correspondence
with the physical ones. Or one can use further theo-
retical (and experimental) input to constrain the topo-
logical amplitudes. We determine redundancies among
T, . . . Pbreak in this section and relegate the second ap-
proach to Sec. III.

The first redundancy is related to PAbreak of Fig. 1,
which appears in SCS decays with the coefficients in
Tab. IV. The listed column of coefficients is linearly de-

pendent on the four columns of coefficients of E, E
(1)
1,2,3

in Tab. III. I.e. we can absorb PAbreak into the exchange

amplitudes by redefining E = Ê − PAbreak, E
(1)
1,2,3 =

Decay d PAbreak

SCS

D0 → K+K− 1

D0 → π+π− 1

D0 → K̄0K0 −1

D0 → π0π0 − 1√
2

D+ → π0π+ 0

D+ → K̄0K+ 0

D+
s → K0π+ 0

D+
s → K+π0 0

TABLE IV: The coefficients of the topological amplitude

PAbreak which is absorbed into E, E
(1)
1,2,3 in Tab. III as ex-

plained in Sec. II C.

Ê
(1)
1,2,3 +PAbreak. In Tab. III this redefinition is implicitly

already performed, so that PAbreak is not shown there

anymore. The physical meaning of E, E
(1)
i changes ac-

cordingly, to be read as Ê, Ê
(1)
i with the penguin anni-

hilation mechanism included. However, |PAbreak| is ex-
pected to be negligibly small: The corresponding Wilson
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p n1 n2 n3 n4 n5 n6 p− Pbrkn1 p−An4 p−A(1)
3 n5

T 1 1 0 1 0 0 T − Pbrk T −A T

T
(1)
1 -1 -1 1 0 0 0 T

(1)
1 + Pbrk T

(1)
1 T

(1)
1

T
(1)
2 -1 0 -1 0 0 0 T

(1)
2 + Pbrk T

(1)
2 T

(1)
2

T
(1)
3 0 0 0 0 0 -1 T

(1)
3 T

(1)
3 T

(1)
3

A 0 0 0 1 -1 0 A 0 A+A
(1)
3

A
(1)
1 0 0 1 0 0 -1 A

(1)
1 A

(1)
1 A

(1)
1

A
(1)
2 0 1 -1 0 1 0 A

(1)
2 A

(1)
2 A

(1)
2 −A

(1)
3

A
(1)
3 0 0 0 0 1 0 A

(1)
3 A

(1)
3 0

C -1 -1 0 -1 0 0 C + Pbrk C +A C

C
(1)
1 1 1 -1 0 0 0 C

(1)
1 − Pbrk C

(1)
1 C

(1)
1

C
(1)
2 1 0 1 0 0 0 C

(1)
2 − Pbrk C

(1)
2 C

(1)
2

C
(1)
3 0 0 0 0 0 1 C

(1)
3 C

(1)
3 C

(1)
3

E 0 -1 0 -1 0 0 E E +A E

E
(1)
1 0 1 -1 0 0 0 E

(1)
1 E

(1)
1 E

(1)
1

E
(1)
2 0 0 1 0 0 0 E

(1)
2 E

(1)
2 E

(1)
2

E
(1)
3 0 1 0 0 0 0 E

(1)
3 E

(1)
3 E

(1)
3

Pbrk 1 0 0 0 0 0 0 Pbrk Pbrk

TABLE V: The parameter vector p as defined in Eq. (16),
vectors ni spanning the kernel of the coefficient matrix M
in Tab. III, and several redefined parameter vectors, see
Eqs. (18–20).

coefficient in HW is small and the momentum flowing
through the penguin loop is large (of order of the D0

mass) so that the Glashow-Iliopoulos-Maiani (GIM) [38]
suppression will be effective.

Further redundancies are related to the fact that our
coefficient matrix M in Eq. (17) does not have maxi-
mal rank. Considering first the SU(3)F limit ignoring

T
(1)
i , A

(1)
i , C

(1)
i , and E

(1)
i one observes that the remain-

ing matrix in Tab. III linking T , C, A and E to the
physical amplitudes has only rank three. I.e. one of T ,
C, A and E is redundant.

Redundancies of the diagrammatic approach in the
SU(3)F limit are also discussed in Ref. [9], comparing to
the SU(3)F parametrization in Ref. [7]. The correspond-
ing matching for B decays is done in Ref. [10]. Note that
the redundancies change when taking η(′) final states into
account [14, 23], leading to more parameters but also ad-
ditional sum rules [29].

Including SU(3)F breaking, the 17×17 matrix M in
Tab. III has rank 11. Consequently p in Eq. (16) con-
tains six redundant complex parameters. The remaining
parametric redundancy contained in Tab. III can be sys-
tematically found and removed as follows. It is encoded
in the six-dimensional kernel of the coefficient matrix.
The 17-dimensional basis vectors of the kernel are given
in column 2 to 7 of Tab. V. If we redefine p in Eq. (16)

as

pnew ≡ p +
∑

i

cini , ci ∈ C , (18)

this will not change Mp in Eq. (17), i.e. the ni define
the “flat directions” in parameter space which correspond
to the same A. One can remove this redundancy by
redefining the topological amplitudes and choosing 11 of
them as new independent parameters. For example we
can set

p̃new ≡ p− Pbreakn1 (19)

which gives the result in the first column after the double
line in Tab. V. Subsequently, we can redefine the param-
eters in order to eliminate Pbreak. In order to remove all
redundancies in one step one can choose

p̂new ≡ p− Pbreakn1 − E(1)
3 n2 − E(1)

2 n3−
An4 −A(1)

3 (n4 + n5)− C(1)
3 n6 (20)

and then perform redefinitions of the other parameters
in order to remove

Pbreak , E
(1)
3 , E

(1)
2 , A ,A

(1)
3 , C

(1)
3 (21)

from the parameterization. Note the special form of n4

which encodes the redundancy present in the SU(3)F
limit. n4 forces us to eliminate one of T , C, E, or A,
while the other five eliminations involve SU(3)F -breaking
amplitudes (e.g. those in Eq. (21)). The elimination of A
only is also shown in Tab. V. Additionally, from n5 we see

that the coefficient vector of A
(1)
3 is linearly dependent on

the other annihilation coefficient vectors. Consequently,

A
(1)
3 can be absorbed by redefining annihilation ampli-

tudes only, as shown also explicitly in Tab. V.
Note further that the ni are linearly independent also

when removing all but the first six elements. This means
it is not possible to perform redefinitions without touch-
ing the tree or annihilation diagrams. Equivalently, the
submatrix obtained by removing tree and annihilation
diagrams from Tab. III has rank nine, which in this case
equals the number of remaining parameters, i.e. the lower
nine components of p. This observation guides us to the
approach of Sec. III: calculating tree and annihilation
amplitudes will also remove the redundancies.

After absorbing some topological amplitudes (e.g.
those in Eq. (21)) into others the new amplitudes have
lost their original meaning in terms of QCD dynamics.
An important question in charm physics is the level of
GIM cancellation between an s and d loop. In this pa-
per we encounter Pbreak as a quantity probing the GIM
mechanism. A naive quark-level calculation involves a
suppression factor of m2

s/m
2
c and renders Pbreak negligi-

bly small. Thus any information on the actual size of
|Pbreak| may give insight into a possible non-perturbative
enhancement of GIM-suppressed amplitudes. However,
as shown above and exemplified in Tab. V the fit to
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topological amplitudes alone cannot give this informa-
tion, because Pbreak cannot be separated from the other
parameters fitted from the data.

As we have seen above, the calculation of the kernel
gives a method to remove redundant parameters. In the
same way, the cokernel of M gives us information on “re-
dundant” amplitudes, i.e. six sum rules fulfilled by the
latter, all of which were found in Ref. [29]. In other
words: if one did a Gaussian elimination to determine p
from Eq. (17), one would end up with a 6×17 block of
zeros in the transformed coefficient matrix M and linear
combinations of physical amplitudes in the correspond-
ing six entries of A. These linear combinations vanish
by the SU(3)F sum rules of Ref. [29]. Thus the discussed
redundancies are not the consequence of missing exper-
imental information but of the symmetry relations un-
derlying these sum rules. It is instructive to rederive
these sum rules with our diagrammatic method, which is
particularly straightforward and intuitive. We do this in
Appendix D.

We checked that after the removal of all redundan-
cies, the diagrammatic parameterization and the com-
mon expansion in terms of SU(3)F representations can
be mapped onto each other, i.e. one can calculate one set
of parameters when given the other one. The mapping
can be obtained explicitly by inverting either the reduced
coefficient matrix M or its counterpart in the SU(3)F
method. Note that in the SU(3)F parameterization un-
physical degrees of freedom are present in the very same
way. Analogously, it is possible to redefine SU(3)F ma-
trix elements in order to obtain a physical basis [23]. In
Appendix B we give the inverse of the SU(3)F coefficient
matrix of [23] and show the result of the extraction of the
corresponding SU(3)F matrix elements for an example fit
point of our diagrammatic analysis. So far our discussion
of redundancies has assumed that the amplitudes in A
are known. In practice, there is no information on most
of their complex phases (and not all of them are physi-
cal). This feature introduces additional flat directions in
the space of our fit parameters and is equally present in
the SU(3)F method.

The discussion above has made clear that the
topological-amplitude method is complete in the sense
that it contains the full information contained in an
SU(3)F analysis including SU(3)F breaking to linear or-
der. It is also worthwhile to study this question from
the viewpoint of QCD dynamics: are there any dynam-
ical mechanisms which cannot be mapped onto topolog-
ical amplitudes? As a first topic we discuss final-state
rescattering, i.e. decays D → f ′ → f passing through an
on-shell intermediate state f ′. The flavor flow for such a
rescattering process is always a deformation of a diagram
in Tab. I or Fig. 1 and is therefore included in the cor-
responding topological amplitude. Rescattering effects
cannot be isolated from the “direct” D → f decay, be-
cause the dispersive part of A(D → f ′ → f) cannot
be separated from that of A(D → f) in a meaningful
way. (Neglecting CP violation we can choose phase con-

FIG. 2: Example for a SU(3)F -breaking diagram involving
sea quarks which can be absorbed into Pbreak, see Tab. II.

ventions such that the dispersive and absorptive parts of
some amplitude equal its real and imaginary parts, re-
spectively.) By the optical theorem the absorptive part
of A(D → f) can be related to A(D → f ′) and the
f ′ → f scattering amplitude, with summation over all
intermediate states f ′. This feature holds true for the
topological amplitudes as well. The imaginary parts of
the topological amplitudes found in our fit in Sec. IV
are therefore a measure of the size of rescattering. The
second topic of QCD dynamics addresses the proper de-
scription of meson states. The state of e.g. an energetic
kaon can be expanded as

∣∣K0
〉

= |ds̄〉+ |ds̄g〉+ |ds̄qq̄〉+ . . . , (22)

where the notation implicitly contains convolution inte-
grals over the kaon momentum fraction carried by the
indicated partons. Our graphical description of the topo-
logical amplitudes only catches the first term in Eq. (22).
The higher Fock states |ds̄g〉 , |ds̄uū〉 , . . . are suppressed
with powers of the kaon energy, but in view of the small
energy release in D decays this suppression is unlikely
to be realized numerically. We may wonder whether the
contributions with additional qq̄ pairs in Eq. (22) will
require the introduction of further amplitude topologies,
with extra quark lines connected with “sea” quarks in
the mesons. An example is shown in Fig. 2. However, it
is easy to see that such diagrams are always obtained by
forking a quark line of one of the topological amplitudes
considered so far. For instance, the diagram in Fig. 2 is
contained in Pbreak.

III. THEORETICAL INPUT ON
DIAGRAMMATIC SU(3)F BREAKING

The great advantage of the flavor-flow parameteriza-
tion over the plain SU(3)F approach is the opportunity to
add dynamical input to constrain individual topologies.
We use two different such inputs which are presented be-
low.
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Decay ampl. Ã(d) δT − δA C̃ ≡ C + δA C
(1)
1 C

(1)
2 C

(1)
3 Ẽ ≡ E + δA E

(1)
1 E

(1)
2 E

(1)
3 Pbreak

SCS

Ã(D0 → K+K−) 1 0 0 0 0 1 1 1 0 1

Ã(D0 → π+π−) −1 0 0 0 0 −1 0 0 0 1

Ã(D0 → K̄0K0) 0 0 0 0 0 0 −1 −1 1 0

Ã(D0 → π0π0) 0 − 1√
2

0 0 0 1√
2

0 0 0 − 1√
2

Ã(D+ → π0π+) − 1√
2

− 1√
2

0 0 0 0 0 0 0 0

Ã(D+ → K̄0K+) 1 0 0 0 0 0 0 0 0 1

Ã(D+
s → K0π+) −1 0 0 0 0 0 0 0 0 1

Ã(D+
s → K+π0) 0 − 1√

2
0 0 − 1√

2
0 0 0 0 − 1√

2

CF

Ã(D0 → K−π+) 1 0 0 0 0 1 1 0 0 0

Ã(D0 → K̄0π0) 0 1√
2

1√
2

0 0 − 1√
2

− 1√
2

0 0 0

Ã(D+ → K̄0π+) 1 1 1 0 0 0 0 0 0 0

Ã(D+
s → K̄0K+) 0 1 1 0 1 0 0 0 0 0

DCS

Ã(D0 → K+π−) 1 0 0 0 0 1 0 1 0 0

Ã(D0 → K0π0) 0 1√
2

0 1√
2

0 − 1√
2

0 − 1√
2

0 0

Ã(D+ → K0π+) 0 1 0 1 0 0 0 0 0 0

Ã(D+ → K+π0) 1√
2

0 0 0 0 0 0 0 0 0

Ã(D+
s → K0K+) 1 1 0 1 1 0 0 0 0 0

TABLE VI: Coefficients of the parameters (δT − δA, . . . Pbreak) for the amplitudes Ã(d), which are obtained from A(d) by

subtracting the factorized part, see Eq. (27). The table entries are the elements of the coefficient matrix M̃ in Eq. (34).

A. 1/Nc counting

The 1/Nc expansion [39] has first been applied to
charm physics in Ref. [33]. We will apply 1/Nc counting
to the tree and annihilation topologies, which are leading
in 1/Nc. Here we exemplify the method for T :

T =T fac + δT , (23)

T fac ≡GF√
2
a1fπ(m2

D −m2
π)FDπ0 (m2

π) . (24)

Here a1 = C2+C1/Nc = 1.06 in terms of the usual Wilson
coefficients C1,2 of HW and the quoted value corresponds
to next-to-leading order in the NDR scheme at a scale of
1.5 GeV. It is important to note that the color exchange
between the two quark lines in the T diagram in Tab. I is
penalized by two powers of 1/Nc. We parameterize this
1/N2

c correction by the complex parameter δT in Eq. (23).
Also the renormalization scale and scheme dependences
of a1 are suppressed by 1/N2

c . By using Eq. (23) and
the equivalent formulae for the other tree amplitudes

T + T
(1)
1 , . . . we trade four parameters for a single pa-

rameter δT with |δT /T fac| ≤ 0.15. SU(3)F breaking in
this small parameter is neglected, because it is smaller
than the neglected second-order SU(3)F -breaking effects.

FDπ0 (m2
π) entering T fac is measured in semileptonic D de-

cays, therefore the 1/Nc method uses additional exper-
imental input, too. Also the A amplitudes factorize up
to corrections of order 1/N2

c . The factorization formulae
for all tree and annihilation amplitudes can be found in
Appendices C 1 and C 2, respectively. In analogy to δT
we define the complex parameter

δA = A−Afac (25)

for the O(1/N2
c ) corrections. Afac depends on the form

factor FKπ0 (m2
D(s)

), see Appendix C 2 for details.

E, C, and Pbreak are formally suppressed by one power
of 1/Nc with respect to T . However, E and C are en-
hanced by short-distance QCD effects residing in the
Wilson coefficients: we write HW ∝ C1Q1 + C2Q2 =
(C1 +C2/Nc)Q1 + 2C2Q8 with the octet×octet operator
Q8 ≡ uγµT acq′γµT aq and note that 〈PP ′|Q8 |D〉 is 1/Nc
suppressed. However, the Wilson coefficient 2C2 = 2.4
almost exactly offsets the 1/Nc suppression, so that E
and C can be almost as large as T . We therefore do not
place a numerical constraint on |E|, |C|, or |Pbreak| in
our fit but rather keep them general.

With the added 1/Nc input the diagrammatic anal-
ysis becomes more constrained compared to the plain
SU(3)F approach. Factorization fixes the sizes of the
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tree and annihilation amplitudes within roughly ∼ 15%
of T fac, i.e. the size of the 1/N2

c corrections. In the case
of A the 1/N2

c corrections quantified by δA include final-
state rescattering effects [24, 40–44], which are not pro-
portional to the decay constant fD which enters Afac.
We therefore do not normalize δA to Afac, but instead
allow |δA| to be as large as |δT |. Factorization has also
been used in Refs. [28, 45], but only to estimate SU(3)F
breaking. We instead use it to constrain the overall sizes
of T and A. Note that we treat T fac and Afac beyond lin-
ear SU(3)F breaking, so that these factorized amplitudes
violate the Grossman-Robinson SU(3)F sum rules [29].

The parameters δT and δA replace the first eight entries
of p in Eq. (16) as fit parameters. We use

p′ ≡
(
δT , δA, C, C

(1)
1 , C

(1)
2 , C

(1)
3 ,

E,E
(1)
1 , E

(1)
2 , E

(1)
3 , Pbreak

)T
, (26)

comprising 11 parameters in total. We next derive the
equivalent of Eq. (17) for this new set of parameters. To
this end we define

Ã(d) ≡ A(d)−Afac(d) , (27)

Afac(d) ≡ T fac(d) +Afac(d) . (28)

The 17 × 11 coefficient matrix linking p′ to

Ã =
(
Ã(D0 → K+K−), . . . Ã(D+

s → K0K+)
)T

has

only rank 10. This has two implications: Firstly, there
is still a redundant parameter. Secondly, there is a new
sum rule among the physical amplitudes. Addressing
the first point, the kernel has the 11-dimensional basis
vector

n = (−1,−1, 1, 0, 0, 0, 1, 0, 0, 0, 0)
T
, (29)

where the order of the entries is the same as in Eq. (26).
The redefinition

p′′ ≡ p′ + δA n (30)

with n as in Eq. (29) absorbs δA into C, E and δT :
setting

C̃ = C + δA , (31)

Ẽ = E + δA , (32)

one observes that the physical amplitudes only depend

on C̃, Ẽ, and δT − δA. Writing

p̃ ≡
(
δT − δA, C̃, C(1)

1 , C
(1)
2 , C

(1)
3 ,

Ẽ, E
(1)
1 , E

(1)
2 , E

(1)
3 , Pbreak

)T
, (33)

the desired equivalent of Eq. (17) reads

M̃ p̃ = Ã. (34)

with the amplitudes of Eq. (27) on the RHS. The result-

ing 17 × 10 coefficient matrix M̃ with rank 10 is shown
in Tab. VI. Addressing the second point, we find the new
sum rule

Ã(D+ → K̄0K+)− Ã(D+
s → K0π+)−

2
√

2Ã(D+ → K+π0) = 0 , (35)

from the cokernel of M̃ . It tests the 1/Nc counting and
is violated by terms which are linear in SU(3)F breaking,
but suppressed by two powers of 1/Nc.

The 1/N2
c corrections parametrised by δT,A are varied

in smaller ranges than the other fit parameters. If we
consider them fixed, there remain nine unknown complex
parameters in Eq. (26) and a corresponding coefficient
matrix with rank nine, implying a new sum rule. We
combine the new rule with the one in Eq. (35) as:

Ã(D+ → K̄0K+)− Ã(D+
s → K0π+)

= 2 (δT − δA) , (36)

Ã(D+ → K+π0) =
1√
2

(δT − δA) . (37)

The amplitudes in Eq. (35) are related to those with
KS,L in the final state as

A(D+ → KS,LK
+) = ∓ 1√

2
A(D+ → K̄0K+) , (38)

A(D+
s → KS,Lπ

+) =
1√
2
A(D+

s → K0π+) , (39)

The corresponding branching ratios read:

B(D+ → KS,LK
+) = |λsd|2 P(D+,K0,K+)×

∣∣Afac(D+ → K̄0K+) + (δT − δA) + Pbreak

∣∣2 , (40)

B(D+
s → KS,Lπ

+) = |λsd|2 P(D+
s ,K

0, π+)×
∣∣Afac(D+

s → K0π+)− (δT − δA) + Pbreak

∣∣2 , (41)

B(D+ → K+π0) = |V ∗cdVus|2 P(D+,K+, π0)×
∣∣Afac(D+ → K+π0) + (δT − δA)

∣∣2 , (42)

with P(D,P1, P2) as defined in Eq. (12). Eqs. (40–42)
permit to probe our combined SU(3)F and 1/Nc expan-
sion quantitatively, since a too large value of |δT − δA|
extracted from Eqs. (40–42) would falsify the method.
Furthermore, the size of |Pbreak| gives insight into an
important issue of QCD dynamics, the size of the GIM
suppression in the difference between strange and down
loops.

In Tab. VII we show example fits to the branching
ratios Eqs. (40)–(42) only, testing the dependence of the
fit result on the 1/N2

c corrections and the broken penguin.
In the first place, we illustrate that the data can easily

be accommodated for realistic values of δT , δA and Pbreak

(point 0). Taking these parameters out of the fit (point 1)
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Example fit point with minimal χ2: Point 0 Point 1 Point 2 Point 3 Exp. Data

Applied Conditions: None Pbreak = δT = δA = 0 δT = δA = 0 Pbreak = 0 —

|Pbreak/T
fac| 0.25 0 0.54 0 —

arg(Pbreak) 4.33 0 2.21 0 —

|δT |/T fac 0.11 0 0 0.15 —

arg(δT ) 3.07 0 0 3.55 —

|δA|/Afac 0.09 0 0 0.11 —

arg(δA) 0.67 0 0 6.28 —

FDsK0 (0)/FDπ0 (0) 0.96 1.01 0.95 0.97 —

FDK0 (0) 0.74 0.72 0.74 0.74 —

FDπ0 (0) 0.64 0.64 0.64 0.64 —

|FKπ0 (m2
D(s)

)| 2.39 1.99 4.50 1.62 —

arg(FKπ0 (m2
D(s)

)) 1.71 4.99 5.13 3.92 —

T fac/10−6 GeV 2.52 2.52 2.52 2.52 —

T fac(D+ → K̄0K+)/10−6 GeV 3.40 3.34 3.40 3.40 —

T fac(D+
s → K0π+)/10−6 GeV −2.53 −2.68 −2.51 −2.57 —

T fac(D+ → K+π0)/10−6 GeV 2.22 2.22 2.22 2.22 —

Afac(D+
s → K0π+)/10−6 GeV −0.18 + i 1.22 0.28− i 0.99 0.94− i 2.12 −0.59− i 0.59 —

Afac(D+ → K+π0)/10−6 GeV 0.10− i 0.68 −0.16 + i 0.55 −0.53 + i 1.19 0.33 + i 0.33 —

B(D+ → KSK
+)/10−3 2.83 4.04 2.85 2.83 2.83± 0.16 [46]

B(D+
s → KSπ

+)/10−3 1.22 1.22 1.23 1.22 1.22± 0.06 †[46–48]

B(D+ → K+π0)/10−4 1.83 1.83 1.72 1.83 1.83± 0.26 [46]

χ2 0.00 63.93 0.20 0.00 —

ν — 5 3 2 —

Significance of rejection — 7.0σ 0.03σ 0.0σ —

TABLE VII: Fits to the branching ratios B(D+ → KSK
+), B(D+

s → KSπ
+), B(D+ → K+π0) only, without taking correlations

and additional constraints on SU(3)F breaking, see Sec. III B, into account. The form factors are varied as described in Sec. IV
and Appendices C 1 and C 2. The χ2 is the one taking into account the three given branching ratios and form factors only. ν
are the number of degrees of freedom compared to the fit scenario of point 0. The significance of rejection takes point 0 as null
hypothesis. †Our average.

results in a bad description of the data which is rejected
at 7σ. It is possible to describe the data with an enhanced
broken penguin only (point 2) but also with Pbreak = 0
and adjusting δT and δA (point 3). A better knowledge
of the form factor FKπ0 (m2

D(s)
), see Appendix C 2, is cru-

cial in order to disentangle an enhanced penguin from
1/N2

c corrections. This could be provided by future high
statistics measurements of τ decays [49, 50].

B. Measuring diagrammatic SU(3)F breaking

In order to describe SU(3)F breaking in the framework
of the diagrammatic approach, we introduce the following
measures in analogy to Ref. [23]. We define

δ′,TX ≡ maxd

∣∣∣∣
ATX(d)

A(d)

∣∣∣∣ , (43)

where T = C,E, Pbreak and ATX(d) is the part of the
amplitude of decay d stemming from the corresponding
SU(3)F -breaking parameter(s) only. A(d) denotes the
full amplitude of decay d. The parameters defined in
Eq. (43) give a measure for the maximal SU(3)F -breaking
contribution to the full amplitude from each topology.

A measure of the maximal SU(3)F breaking residing
in any of the topologies C, E and Pbreak is therefore

δ′,topo
X ≡ maxd

∣∣∣∣
∑
T ATX(d)

A(d)

∣∣∣∣ . (44)

Note that the SU(3)F breaking stemming from our
calculation of the T and A topologies using factorization
is not included in the definition Eq. (44).

Furthermore, we quantify the relative SU(3)F breaking
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of C and E topologies by the measures

δ
C

(1)
i /C̃

X ≡
∣∣∣∣∣
C

(1)
i

C̃

∣∣∣∣∣ , δ
E

(1)
i /Ẽ

X ≡
∣∣∣∣∣
E

(1)
i

Ẽ

∣∣∣∣∣ , (45)

respectively. In the fit we always demand all the above

measures to be ≤ 50%. In δ′,EX and δ′,topo
X we ignore

B(D0 → K̄0K0) when taking the maximum, because this
branching ratio vanishes in the SU(3)F limit. Note that

E
(1)
3 appears in the omitted channel D0 → K̄0K0 only,

therefore δ′,EX = 0 is insensitive to the size of E
(1)
3 6= 0.

Furthermore, in case an amplitude vanishes at some point
in parameter space we also exclude it from the calculation
of the maxima in Eqs. (43) and (44).

IV. FIT TO BRANCHING RATIO
MEASUREMENTS

In our global fit we use the available measured branch-
ing fractions and the strong phase difference δK+π− and
impose the theoretical constraints quoted in Sec. III. 18
fit parameters are related to topological amplitudes:

|C̃/T fac|, arg(C̃), |Ẽ/T fac|, arg(Ẽ),

|C(1)
i |, arg(C

(1)
i ), |E(1)

i |, arg(E
(1)
i ),

|Pbreak/T
fac|, arg(Pbreak),

with i = 1, 2, 3 and T fac is calculated from Eq. (24). We
normalize to T fac rather than T = T fac + δT , because
our fit is only sensitive to the combination δT − δA and
therefore leaves δT undetermined. These 18 quantities
are supplied by four parameters measuring the 1/N2

c cor-
rections to the tree and annihilation diagrams:

|δT |/T fac, arg(δT ), |δA|/T fac, arg(δA) .

In addition we need five parameters related to form fac-
tors:

FDsK0 (0)/FDπ0 (0), FDK0 (0), FDπ0 (0),
|FKπ0 (m2

D)|, arg(FKπ0 (m2
D)) ,

and set FKπ0 (m2
Ds

) = FKπ0 (m2
D). Altogether these are 27

real parameters, which are fitted to 16 measured branch-
ing ratios and one strong phase. The experimental input
values, including the respective correlations, are listed in
Appendix A. The number of parameters is larger than
the number of observables. However, the 27 parame-
ters are subject to 10 constraints on the maximal size of
linear SU(3)F breaking, see Sec. III B, and the bounds
|δT,A| ≤ 0.15T fac. At the global minimum we obtain
χ2 = 0.0, i.e., the parameterization and theoretical input
is in perfect agreement with the data. Thus the data
are both compatible with our chosen bound on SU(3)F
breaking (i.e. all measures defined in Sec. III B are smaller
than 50%) and the six Grossman-Robinson SU(3)F sum
rules [29].

In order to study the relative importance of the topo-
logical amplitudes for the description of the data, we per-
form likelihood ratio tests. We look at several scenarios
where some of the parameters of our fit are fixed. In order
to keep the fit simple, we assume the validity of Wilks’
theorem [51], i.e., we calculate the p-value according to
[34, 46]

p = 1− Pν/2
(
∆χ2/2

)
, (46)

with the normalized lower incomplete Gamma function
Pν/2 depending on the number ν of relatively fixed pa-
rameters compared to the full fit. For a general discussion
of the assumptions underlying Eq. (46) see Ref. [34].

The results of our likelihood ratio tests are shown in
Tab. VIII. This table shows at which significance we can
reject a certain hypothesis. For example, we can reject
Pbreak = 0 at only ∼ 0.7σ, implying that Pbreak = 0 is
well consistent with the data. However, the fit shows
a clear need for SU(3)F breaking: the SU(3)F -limit fit

with Pbreak = E
(1)
i = C

(1)
i = 0 ∀ i is rejected at > 5σ.

Looking at the SU(3)F breaking in specific topological
amplitudes we find a slight tendency towards a stronger
SU(3)F breaking in the color-suppressed tree than in the
exchange diagrams.

In Figs. 3–7 we show plots of the fit parameters, mea-
sures of SU(3)F breaking and fit predictions for observ-
ables. We see that in the multi-parameter space the best-
fit solutions cover broad regions and typically several dis-
connected best-fit regions exist. Considering that there
are more parameters than fitted quantities the large de-
generacy of the best-fit region is not surprising. It is
moot to quote best-fit values for the parameters, because
one can move in a wide valley with ∆χ2 = 0. We sus-
pect that the alternative approach of a Bayesian analysis
would single out a small portion of this ∆χ2 = 0 val-
ley as a consequence of the Bayesian prior placed on the
fit parameters and the central limit theorem of statis-
tics. Therefore Frequentist analyses like ours are more
adequate to the problem.

The phase of C̃ significantly deviates from 0 and π
(see Fig. 3(b)), which points to large rescattering ef-

fects. The fit results for |C̃/T fac| and |Ẽ/T fac|, see Fig. 3,

show disconnected regions at 95% CL. C̃ and Ẽ are sup-
pressed by 1/Nc but involve a large Wilson coefficient
∼ 2.4 as discussed in Sec. III A. Thus only solutions with

|C̃/T fac|, |Ẽ/T fac| ∼< 1 are consistent with 1/Nc counting,

which singles out one of the three regions in the |C̃/T fac|–
|Ẽ/T fac| plane.

The needed maximum size of total SU(3)F breaking

on the amplitude is given by δ′,topo
X ∼ 30% in agreement

with Ref. [23], as can be read off Fig. 4(d). Note that

δ′,topo
X as well as δ′,TX do not measure the average but the

maximal size of SU(3)F breaking in one of the 17 decay
channels except for D0 → K̄0K0, see Sec. III B. Thus,
these measures are very conservative and could in princi-
ple be biased by a single channel. However, the need for
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Hypothesis Significance of rejection ∆χ2 dof

Pbreak = 0 0.7σ 1.3 2

Pbreak = E
(1)
i = C

(1)
i = 0 ∀ i > 5σ 431.4 14

E
(1)
i = 0 ∀ i 3.0σ 20.3 6

E = E
(1)
i = 0 ∀ i > 5σ 156.4 8

C
(1)
i = 0∀ i 4.5σ 34.1 6

C = C
(1)
i = 0 ∀ i > 5σ 266931.2 8

TABLE VIII: Results of several likelihood ratio tests. Shown are the obtained χ2, the relative degrees of freedom (dof ) of the
hypothesis compared to the null hypothesis, which is the full fit, and the significance at which the hypothesis can be rejected.

SU(3)F breaking in individual parameters can be consid-

erably smaller than 30%, e.g., |E(1)
i | ∼ 0, |C(1)

2,3 | ∼ 0 is

well allowed at 1σ, see Figs. 5(a) and 5(c), respectively.
Also a |Pbreak/T | below 5% already gives very good fits,
see Fig. 6(a). In Fig. 4(c) we see that the same is consis-

tently the case for δ′,Pbreak

X .

From Figs. 4(a) and 4(b) we again see the slight ten-
dency for larger SU(3)F breaking in the color-suppressed
tree topologies compared to the exchange diagrams.

As illustrated in Tab. VII discussed in Sec. III A around
Eqs. (40–42), the broken penguin Pbreak is correlated
with the parameter δT −δA quantifying 1/N2

c corrections
to factorizable amplitudes. This feature can be verified in
Fig. 6(c) which shows this correlation. A vanishing pen-
guin Pbreak ∼ 0 is allowed at the price of 1/Nc breaking
corrections of order & 15%. Note again that this correla-
tion heavily depends on the poorly measured form factor
FKπ0 (m2

D(s)
). Interestingly, the fit result for FKπ0 (m2

D(s)
),

see Fig. 7, is not completely flat, showing its nontrivial
influence on the branching ratios of charm decays. The
branching ratio B(D+ → K+π0) depends on no topolog-
ical parameters besides δT and δA. Its fit result, which
is given in Fig. 8(a), shows that our assumptions on the
ranges for δT and δA are loose enough to accommodate
the measured branching fraction. However, large fit re-
sults for B(D+ → K+π0) are slightly disfavored.

We may next ask whether we can use our fit out-
put to predict individual branching fractions better than
they are currently measured. Our general finding is as
in Fig. 8(a), the fit output for the ∆χ2 profiles essen-
tially tracks the fit input. To find non-trivial predictions
for future measurements we must study correlations be-
tween at least two observables. A nice result is shown
in Fig. 8(b) revealing the correlation of B(D0 → KLπ

0)
and B(D0 → KSπ

0). In the SU(3)F limit the branching
ratios are strongly correlated through their parametric

dependence1

B(D0 → KSπ
0) ∼ |E − C|2 + 2λ2|E − C|2 , (47)

B(D0 → KLπ
0) ∼ |E − C|2 − 2λ2|E − C|2 , (48)

which implies B(D0 → KLπ
0) . B(D0 → KSπ

0).
This relation is a priori absent once SU(3)F -breaking ef-
fects are included, because the latter can be larger than
|E − C|. However, the global fit rejects this possibil-
ity: in Fig. 8(b) the region corresponding to 95% CL
entirely satisfies B(D0 → KLπ

0) < B(D0 → KSπ
0).

Performing a dedicated likelihood ratio test we find that
B(D0 → KLπ

0) < B(D0 → KSπ
0) holds with a signifi-

cance of more than 4σ. Our fit excludes a large region of
the B(D0 → KSπ

0)–B(D0 → KLπ
0) plane which is still

allowed by the individual measurements. To quantify our
findings further we define

R(D0) ≡ B(D0 → KSπ
0)− B(D0 → KLπ

0)

B(D0 → KSπ0) + B(D0 → KLπ0)
(49)

and quote the confidence intervals in the first row of
Tab. IX. The ratio of the magnitudes of the DCS and
CF amplitudes is listed in the third row of this table.
Fig. 9 visualizes these confidence intervals and also shows
the prediction of Refs. [52–55], which is the black dot
corresponding to R(D0) = 2 tan2 θC (where θC is the
Cabibbo angle). The result is quoted without uncer-
tainty in these papers and Refs. [53–55] argues that cor-
rections from SU(3) breaking to this relations are small.
Refs. [54, 55] arrives at this conclusion by calculating
the amplitudes in QCD factorization [56, 57], which is a
calculational method valid for values of mc much larger
than the hadronic scale governing the infrared structure
of the decays. Our fit permits sizable corrections to
R(D0) = 2 tan2 θC from the SU(3) breaking contribu-
tions, so that future measurements will give insight into

1 In order to find the correct relative signs in Eqs. (47) and (48) one
must define KS,L correctly. Eqs. (1) and (2) comply with

∣∣K0
〉

=

C
∣∣K0

〉
= −CP

∣∣K0
〉

entailing |KS〉 ' (
∣∣K0

〉
−

∣∣K0
〉
)/
√

2. We
have checked our results by studying the full decay chain D0 →
( )
K0 [→ π+π−]π0, from which the K0 sign conventions drop out.
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the size of SU(3) breaking and the viability of QCD fac-
torization in charm physics.

Another test of doubly Cabibbo-suppressed contribu-
tions involves the decays D+

s → KS,LK
+. We study

R(D+
s ) ≡ B(D+

s → KSK
+)− B(D+

s → KLK
+)

B(D+
s → KSK+) + B(D+

s → KLK+)
(50)

and predict the not yet measured observables R(D+
s ) and

B(D+
s → KLK

+), see Tab. IX and Fig. 9. Again com-
paring our result with the prediction in Ref. [55] we find
much larger uncertainties. Thus also in D+

s → KS,LK
+

future data will test the accuracy of QCD factorization
assumed in Ref. [55].

V. CONCLUSION

We have studied the decay amplitudes of D mesons
into two pseudoscalar mesons with the topological-
amplitude approach. To this end we have incorporated
linear SU(3)F breaking into the method and have shown
that the topological amplitude method can be mapped
onto the standard decomposition of the decay ampli-
tudes in terms of reduced amplitudes characterized by
SU(3)F representations. Unlike plain SU(3)F analyses
the topological-amplitude method permits the use of a
1/Nc expansion to calculate the factorizable tree and an-
nihilation amplitudes in terms of form factors and de-
cay constants, up to corrections of order 1/N2

c . This
additional theoretical input has lead us to a new sum
rule between the branching fractions of D+ → KSK

+,
D+
s → KSπ

+ and D+ → K+π0. This sum rule corre-
lates the non-factorizable 1/N2

c terms with the penguin
amplitude Pbreak. The latter quantity is of prime interest
to understand the dynamics of flavour-changing neutral
current transitions in the charm sector, because Pbreak is
suppressed by the GIM mechanism and vanishes in the
limit ms = md.

We have then performed a global fit using all avail-
able branching ratios and the experimental information
on the strong phase difference δK+π− . In our analysis we
have included the information on correlations between
experimental errors. It is possible to find a perfect fit,

Observable ±1σ ±2σ ±3σ

R(D0) 0.09+0.04
−0.02 0.09+0.07

−0.04 0.09+0.09
−0.05

R(D+
s ) 0.11+0.04

−0.14 0.11+0.05
−0.18 0.11+0.06

−0.19

B(D+
s → KLK

+) 0.012+0.004
−0.001 0.012+0.006

−0.002 0.012+0.007
−0.002∣∣∣ADCS(D0→K0π0)

ACF(D0→K̄0π0)

∣∣∣ 0.05+0.02
−0.01 0.05+0.03

−0.03 0.05+0.04
−0.03∣∣∣ADCS(D+

s →K
0K+)

ACF(D+
s →K̄0K+)

∣∣∣ 0.08+0.02
−0.06 0.08+0.03

−0.06 0.08+0.04
−0.07

TABLE IX: Fit results for several observables probing doubly
Cabibbo-suppressed amplitudes. The corresponding plots are
shown in Fig. 9.

with a large parameter region satisfying χ2 = 0. This
means that current data comply with i) the Grossman-
Robinson sum rules [29], ii) our chosen upper bound of
50% on SU(3)F breaking, and iii) our assumption that
the 1/N2

c corrections to the factorizable amplitudes are
smaller than 15% of the factorized tree amplitude. The
main phenomenological results of our paper are various
likelihood ratio tests addressing the sizes of the topolog-
ical amplitudes and their SU(3)F breaking (Tab. VIII
and Figs. 3–6). Importantly, we find that there is no ev-
idence for an enhanced broken penguin. The hypothesis
Pbreak = 0 is rejected at below 1σ only, i.e., insignifi-
cantly. Improvements of B(D+ → KSK

+), B(D+
s →

KSπ
+), B(D+ → K+π0) and especially the form factor

FKπ0 (m2
D(s)

) could advance our knowledge of the GIM

mechanism in charm by pinning down the proportions of
broken penguin and 1/N2

c corrections. The current sta-
tus is summarized in Fig. 6(c). While the SCS branching
ratios B(D+ → KSK

+) and B(D+
s → KSπ

+) are known
at a precision of . 6% the relative uncertainty of the
DCS branching ratio B(D+ → K+π0) is about ∼ 14%
and leaves room for improvement. As the latter is the
only charm decay into kaons and pions which depends
on factorizable contributions only, it is very important
to improve its measurement. With a simultaneously im-
proved FKπ0 (m2

D(s)
) the branching ratio B(D+ → K+π0)

serves as a test of factorization in charm decays.
We observe a slightly larger SU(3)F breaking in color-

suppressed tree than in exchange diagrams. In no chan-
nel more than ∼ 30% SU(3)F breaking is needed to de-
scribe the data (not considering D0 → KSKS , which is
forbidden in the SU(3)F limit); this finding agrees with
the plain SU(3)F analysis of Ref. [23]. However, as a
matter of principle one cannot decide whether or not the
actual SU(3)F breaking is larger than this. This can po-
tentially only be achieved by future QCD calculations on
the lattice [58]. In the data, there is no indication of this
to be the case.

With our topological-amplitude fit it is further pos-
sible to make predictions for branching fractions which
can be probed by future measurements. Despite our
conservative ranges for the SU(3)F breaking parame-
ters, we find a correlation between B(D0 → KLπ

0) and
B(D0 → KSπ

0) probing the doubly Cabibbo-suppressed
contributions to these modes: Fig. 8 entails the predic-
tion B(D0 → KLπ

0) < B(D0 → KSπ
0) at more than 4σ.
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FIG. 3: SU(3)F limit topologies. In Figs. (e) and (f) the dashed (solid) line denotes the 68% (95%) C.L. contour.
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FIG. 4: ∆χ2 profile of the parameters δ
′,C,E,Pbreak
X measuring SU(3)F -breaking in C, E, and Pbreak (a,b,c) and of δ′,topo

X defined
in Eq. (44), which quantifies the overall SU(3)F -breaking (d).
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FIG. 5: SU(3)F -breaking color-suppressed tree (a,b) and exchange (c,d) topologies.
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FIG. 6: The broken penguin (a,b) and its correlation to parameters measuring the 1/Nc corrections (c). In Fig. (c) the dashed
(solid) line denotes the 68% (95%) C.L. contour and the region to the right of the contours is allowed.
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FIG. 8: ∆χ2 profile of B(B+ → K+π0) (a) and correlation between B(D0 → KLπ
0) and B(D0 → KSπ

0) (b). In Fig. (a) the
red dashed (solid) line indicates the 1σ (2σ) experimental error. In Fig. (b) the dashed (solid) lines are the 68% (95%) C.L.
contours of our fit and the dark (light) gray shading denotes the 68% (95%) C.L. region of the measurements. Here, the solid
red line corresponds to B(D0 → KLπ

0) = B(D0 → KSπ
0).
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FIG. 9: Blue: Our results for several observables probing doubly Cabibbo-suppressed amplitudes (see Eqs. (49) and (50)). The
lines correspond to 1σ (dashed), 2σ (solid) and 3σ (dashed-dotted) confidence intervals, respectively. The experimental error
in R(D0) is obtained by Gaussian error propagation from Tab. X. The results from other groups [52–55] are shown in black.

In case of R(D0) (a) and
∣∣∣ADCS(D0→K0π0)

ACF(D0→K̄0π0)

∣∣∣ (b) no errors are given in Refs. [52–55].
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Observable Measurement References

SCS branching ratios

B(D0 → K+K−) (3.96± 0.08) · 10−3 [46]

B(D0 → π+π−) (1.402± 0.026) · 10−3 [46]

B(D0 → KSKS) (0.17± 0.04) · 10−3 [46]

B(D0 → π0π0) (0.820± 0.035) · 10−3 [46]

B(D+ → π0π+) (1.19± 0.06) · 10−3 [46]

B(D+ → KSK
+) (2.83± 0.16) · 10−3 [46]

B(D+
s → KSπ

+)/B(D+
s → KSK

+) (8.12± 0.28) · 10−2 [46]

B(D+
s → K+π0)/B(D+

s → KSK
+) (4.2± 1.4) · 10−2 [46]

CF branching ratios

B(D0 → K−π+) (3.88± 0.05) · 10−2 [46]

B(D0 → KSπ
0) (1.19± 0.04) · 10−2 [46]

B(D0 → KLπ
0) (1.00± 0.07) · 10−2 [46]

B(D+ → KSπ
+) (1.47± 0.07) · 10−2 [46]

B(D+ → KLπ
+) (1.46± 0.05) · 10−2 [46]

B(D+
s → KSK

+) (1.50± 0.05) · 10−2 †[47, 48]

DCS branching ratios

B(D0 → K+π−)/B(D0 → K−π+) 0.00349± 0.00004 [61]

B(D+ → K+π0) (1.83± 0.26) · 10−4 [46]

K+π− strong phase difference

δKπ (6.45± 10.65)◦ ‡[61]

TABLE X: Input data for charm meson branching ratios and
the strong phase difference δKπ used in our fit. Note that
as we incorporate the correlations reported in Ref. [46], for
consistency we do not take into account the experimental up-
dates of the following branching fractions: B(D0 → K−π+)
[62] and B(D+ → KSπ

+) [62]. For the correlation coefficients
see Tabs. XI, XII and XIII. Note that B(D+

s → K+π0) and
B(D+

s → KSπ
+) are not part of the PDG fit, i.e., there are no

correlation coefficients given for these decay modes. We there-
fore have no correlation matrix for D+

s decays. The value for
B(D0 → K+π−)/B(D0 → K−π+) is taken from the Heavy
Flavor Averaging Group (HFAG) in order to take its corre-
lation with δKπ into account, see Tab. XIII. †Our average.
‡Our symmetrization of uncertainties.

Appendix A: Input Data

We give the input data used in the fits, including the
correlation coefficients, in Tabs. X–XIV. For details on
the input values for the form factors see Appendices C 1
and C 2.

Appendix B: Mapping of the topological on the
SU(3)F parameterization

As discussed in Sec. II C the topological flavor-flow pa-
rameterization and the linear SU(3)F expansion can be
mapped onto each other after the removal of redundan-
cies in each parameterization. Both redundant parame-
ters and redundant decay amplitudes have to be removed
in order to obtain two corresponding 11×11 regular coef-
ficient matrices. Then, the mapping can be calculated by
inverting one or the other coefficient matrix. We choose

BK
+K−

D0 Bπ
+π−

D0 BKSKS
D0 Bπ

0π0

D0 BK
−π+

D0 BKSπ
0

D0

BK
+K−

D0 1.00 0.38 0.03 0.09 0.60 0.21

Bπ
+π−

D0 0.38 1.00 0.03 0.09 0.62 0.22

BKSKS
D0 0.03 0.03 1.00 0.01 0.05 0.03

Bπ
0π0

D0 0.09 0.09 0.01 1.00 0.14 0.05

BK
−π+

D0 0.60 0.62 0.05 0.14 1.00 0.35

BKSπ
0

D0 0.21 0.22 0.03 0.05 0.35 1.00

TABLE XI: Correlation coefficients for D0 branching ratios
[46] used in our fit. We abbreviate Bfi ≡ B(i→ f). Note that
B(D0 → KLπ

0) is not part of the PDG fit and used without
correlations to the other modes.

BKSK
+

D+ BKSπ
+

D+ BK
+π0

D+

BKSK
+

D+ 1.00 0.75 0.05

BKSπ
+

D+ 0.75 1.00 0.06

BK
+π0

D+ 0.05 0.06 1.00

TABLE XII: Correlation coefficients for D+ branching ratios
[46] used in our fit, see the caption of Tab. XI for the used
notation. Note that B(D+ → KLπ

+) and B(D+ → π0π+)
are not part of the PDG fit and used without correlations to
the other modes.

to omit the redundant amplitudes

D0 → π0π0 , D0 → K−π+ , D0 → K+π− , (B1)

D0 → K0π0 , D+ → K0π+ , D+ → K+π0 , (B2)

using the sum rules presented in Sec. D. We next cal-
culate the redefined SU(3)F matrix elements in terms of
the remaining decay amplitudes by inverting the SU(3)F
coefficient matrix given in Tabs. I and V of Ref. [23] The
result for this inverse matrix is given in Tab. XVII. In
order to illustrate how to read Tab. XVII, we exemplify

A15
27 =

2
√

2

3
A(D+ → K̄0π+) +

√
2

3
A(D+

s → K0K+) .

(B3)

Inserting the expansions of A(D+ → K̄0π+) and
A(D+

s → K0K+) in terms of topological amplitudes into
Eq. (B3) gives the desired expression of the SU(3)F ma-
trix element A15

27 in terms of the topological amplitudes.
In Tabs. XV and XVI we give two numerical examples
for the mapping. Note that in the matching we implic-
itly disregard higher order SU(3)F -breaking effects which
are included in the approximate factorization formulas.
Strictly speaking, these invalidate the linear SU(3)F sum
rules, see also Sec. III A. However, this can be safely ne-
glected as we only aim at a description of the data at
linear SU(3)F breaking here.

While the exemplified topological-amplitude fit points
respect the SU(3)F power counting, the SU(3)F break-
ing matrix elements can nevertheless be quite large, like
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δKπ
B(D0→K+π−)

B(D0→K−π+)

δKπ 1.000 0.404
B(D0→K+π−)

B(D0→K−π+)
0.404 1.000

TABLE XIII: Correlation between B(D0 → K+π−)/B(D0 →
K−π+) and δKπ [61] used in our fit.

FDK0 (0) 0.737± 0.005 †[63–67]

FDπ0 (0) 0.638± 0.012 †[63–66]

FDsK0 (0) (1± 5%)× FDπ0 (0) [68, 69]

TABLE XIV: Numerical input for the form factors. The form
factor FDsK0 (0) is varied flatly within the theory uncertainty
[70]. Table adapted from [71]. †Our average.

|B̃3
1 | ∼ 0.7 in Tab. XV in case of example point I. This

shows that several small SU(3)F breaking parameters
of the topological-amplitude fit can add up to a larger
SU(3)F breaking matrix element of the group-theoretical
approach. However, as demonstrated by the example
point II in Tab. XVI, there are also solutions where both
diagrammatic and group theoretic language give SU(3)F
breaking . 50%.

Appendix C: Approximate factorization formulas

Below, we give the 1/Nc-leading expressions for the
tree and annihilation diagrams. Corrections of higher
order in the 1/Nc-expansion are parameterized by δT and
δA introduced in Sec. III A.

1. Factorization of tree amplitudes

We use the following expressions for the 1/Nc-leading
contributions to the tree diagrams. SU(3)F breaking in
the 1/N2

c corrections is of higher order in our power
counting and neglected, i.e., we use a flavor-universal
correction parameter δT . In our fit we vary

0 ≤ |δT | ≤ 0.15T fac , (C1)

0 ≤ arg(δT ) ≤ 2π , (C2)

with T fac defined in Eq. (24) and δT = T − T fac, see
Eq. (23). The 1/Nc-leading, factorizable contributions
to the SCS tree amplitudes are altogether given as:

T fac
D0→K+K− =

GF√
2
a1fK(m2

D −m2
K)FDK0 (m2

K) , (C3)

T fac
D0→π+π− = −GF√

2
a1fπ(m2

D −m2
π)FDπ0 (m2

π) , (C4)

T fac
D+→π+π0 = −GF√

2

1√
2
a1fπ(m2

D −m2
π)FDπ0 (m2

π) ,

(C5)

Topological parameter value SU(3)F matrix element value

|δA|/T fac 0.14 |Ã15
27| 0.32

|δT |/T fac 0.15 |Ã15
8 | 0.22

arg(δA/T
fac) 0.17 |Ã6̄

8| 1.00

arg(δT /T
fac) 3.22 |B̃3

1 | 0.67

|FKπ0 (m2
D(s)

)| 3.54 |B̃3
8 | 0.22

FDK0 (0) 0.74 |B̃6̄1
8 | 0.36

FDπ0 (0) 0.64 |B̃151
8 | 0.39

FDsK0 (0)/FDπ0 (0) 0.95 |B̃152
8 | 0.29

arg(FKπ0 (m2
D(s)

)) 4.54 |B̃151
27 | 0.18

|C̃/T fac| 1.10 |B̃152
27 | 0.07

|Ẽ/T fac| 0.46 |B̃241
27 | 0.13

|Pbreak/T
fac| 0.05 arg(A15

27) 1.44

arg(C̃) 2.47 arg(A15
8 ) −2.53

arg(C
(1)
1 ) 4.78 arg(A6̄

8) 0.20

arg(C
(1)
2 ) 4.88 arg(B3

1) −0.53

arg(C
(1)
3 ) 0.00 arg(B3

8) −0.96

arg(Ẽ) 1.49 arg(B6̄1
8 ) −2.11

arg(E
(1)
1 ) 5.63 arg(B151

8 ) −1.35

arg(E
(1)
2 ) 5.36 arg(B152

8 ) −2.30

arg(E
(1)
3 ) 5.13 arg(B151

27 ) 2.56

arg(Pbreak) 0.18 arg(B152
27 ) 3.10

|C(1)
1 /C̃| 0.07 arg(B241

27 ) 0.00

|C(1)
2 /C̃| 0.16

|C(1)
3 /C̃| 0.19

|E(1)
1 /Ẽ| 0.50

|E(1)
2 /Ẽ| 0.50

|E(1)
3 /Ẽ| 0.05

δ′,topo
X 0.50

δ′,CX 0.50

δ′,EX 0.31

δ
′,Pbreak
X 0.07

χ2 0.27

TABLE XV: Fit example point I and corresponding point in
the SU(3)F decomposition with linear SU(3)F breaking. The

values quoted for Ãij and B̃ij in the last column are normalized
to the largest SU(3)F limit matrix element. The fit is only
sensitive to δT and δA in the combination (δT − δA)/T fac =
0.29e−3.02 i.

T fac
D+→K+K̄0 =

GF√
2
a1fK(m2

D −m2
K)FDK0 (m2

K) , (C6)

T fac
D+
s →π+K0 = −GF√

2
a1fπ(m2

Ds −m2
K)FDsK0 (m2

π).(C7)

The 1/Nc-leading, factorizable contributions to the CF
tree amplitudes are given as:

T fac
D0→K−π+ =

GF√
2
a1fπ(m2

D −m2
K)FDK0 (m2

π) , (C8)
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Topological parameter value SU(3)F matrix element value

|δA|/T fac 0.15 |Ã15
27| 0.35

|δT |/T fac 0.15 |Ã15
8 | 1.00

arg(δA/T
fac) 1.27 |Ã6̄

8| 0.19

arg(δT /T
fac) 4.40 |B̃3

1 | 0.36

|FKπ0 (m2
D(s)

)| 4.50 |B̃3
8 | 0.10

FDK0 (0) 0.74 |B̃6̄1
8 | 0.15

FDπ0 (0) 0.64 |B̃151
8 | 0.49

FDsK0 (0)/FDπ0 (0) 0.95 |B̃152
8 | 0.06

arg(FKπ0 (m2
D(s)

)) 4.78 |B̃151
27 | 0.17

|C̃/T fac| 1.17 |B̃152
27 | 0.21

|Ẽ/T fac| 2.05 |B̃241
27 | 0.06

|Pbreak/T
fac| 0.39 arg(A15

27) 0.94

arg(C̃) 2.23 arg(A15
8 ) −0.60

arg(C
(1)
1 ) 5.22 arg(A6̄

8) 1.47

arg(C
(1)
2 ) 1.48 arg(B3

1) 2.15

arg(C
(1)
3 ) 0.22 arg(B3

8) 0.55

arg(Ẽ) 2.57 arg(B6̄1
8 ) −2.04

arg(E
(1)
1 ) 0.23 arg(B151

8 ) −2.00

arg(E
(1)
2 ) 1.72 arg(B152

8 ) −1.25

arg(E
(1)
3 ) 0.75 arg(B151

27 ) −2.84

arg(Pbreak) 1.97 arg(B152
27 ) −1.53

|C(1)
1 /C̃| 0.22 arg(B241

27 ) 0.23

|C(1)
2 /C̃| 0.38

|C(1)
3 /C̃| 0.12

|E(1)
1 /Ẽ| 0.06

|E(1)
2 /Ẽ| 0.09

|E(1)
3 /Ẽ| 0.31

δ′,topo
X 0.50

δ′,CX 0.50

δ′,EX 0.16

δ
′,Pbreak
X 0.50

χ2 0.12

TABLE XVI: Fit example point II and corresponding point in
the SU(3)F decomposition with linear SU(3)F breaking. Cf.
Tab. XV for the notation. The fit is only sensitive to δT and
δA in the combination (δT − δA)/T fac = 0.30e−1.88 i.

T fac
D+→K̄0π+ =

GF√
2
a1fπ(m2

D −m2
K)FDK0 (m2

π). (C9)

The 1/Nc-leading, factorizable contributions to the
DCS tree amplitudes are given as:

T fac
D0→K+π− =

GF√
2
a1fK(m2

D −m2
π)FDπ0 (m2

K) , (C10)

T fac
D+→K+π0 =

GF√
2

1√
2
a1fK(m2

D −m2
π)FDπ0 (m2

K) ,

(C11)

T fac
D+
s →K0K+ =

GF√
2
a1fK(m2

Ds −m2
K)FDsK0 (m2

K).

(C12)

The matrix element of the vector current can be param-
eterized by the vector and scalar form factor as [69]

〈P |V µ |D〉 = FD→P+ (q2)

[
pµD + pµP −

m2
D −m2

K

q2
qµ
]

+ FD→K0 (q2)
m2
D −m2

K

q2
qµ , (C13)

with the vector form factor FD→P+ and the scalar form

factor FD→K0 obeying [69]

〈P |S |D〉 = FD→P0 (q2)
m2
D −m2

P

mc −mp
. (C14)

Here the same renormalization scheme and scale must be
used for S and mc −mp.

We calculate the form factors that appear in the tree
amplitudes using the overall scaling factor appearing in
the z-parameterization, i.e., a pole factor [69, 72]

FDK0 (m2
P ) =

FDK0 (0)

1−m2
P /m

2
D∗s0

(2317)±
, (C15)

FDsK0 (m2
P ) =

FDsK0 (0)

1−m2
P /m

2
D∗0

(2400)±
, (C16)

FDπ0 (m2
P ) =

FDπ0 (0)

1−m2
P /m

2
D∗0

(2400)±
, (C17)

with the scalar resonances [46]

mD∗s0
(2317)± = (2317.8± 0.6) MeV , (C18)

mD∗0
(2400)± = (2403± 40) MeV. (C19)

The used input values for FDK0 (0), FDsK0 (0) and FDπ0 (0)
are given in Tab. XIV.

As we assume isospin symmetry in the topological-
amplitude decomposition we ignore the smallish isospin
breaking between charged and neutral masses of kaons
and pions for consistency. We use the neutral masses in
all amplitudes. However, in the phase space factors of
the branching ratios we take the isospin mass splittings
into account.

2. Factorization of annihilation amplitudes

We use the following expressions for the 1/Nc-leading
contributions to the annihilation diagrams. As in the
case of tree amplitudes we vary δA of Eq. (25) as

0 ≤ |δA| ≤ 0.15T fac , (C20)

0 ≤ arg(δA) ≤ 2π . (C21)
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The 1/Nc-leading, factorizable contributions [33] to the
SCS annihilation amplitudes are given as:

Afac
D+→K̄0K+ = 0 , (C22)

Afac
D+
s →K0π+ =

GF√
2
a1fDsF

Kπ
0 (m2

Ds)
(
m2
K −m2

π

)
,

(C23)

Afac
D+
s →K+π0 = −GF√

2

1√
2
a1fDsF

Kπ
0 (m2

Ds)
(
m2
K −m2

π

)
.

(C24)

The 1/Nc-leading, factorizable contribution to the CF
annihilation amplitude is given as:

Afac
D+
s →K̄0K+ = 0 . (C25)

The 1/Nc-leading, factorizable contributions to the DCS
annihilation amplitudes are given as:

Afac
D+→K0π+ =

GF√
2
a1fDF

Kπ
0 (m2

D)
(
m2
K −m2

π

)
, (C26)

Afac
D+→K+π0 = −GF√

2

1√
2
a1fDF

Kπ
0 (m2

D)
(
m2
K −m2

π

)
.

(C27)

Note that the 1/Nc-leading SCS annihilation amplitude
Afac
D+→K̄0K+ and the 1/Nc-leading CF annihilation am-

plitude Afac
D+
s →K̄0K+

can be neglected due to isospin sym-

metry [73]. However, the corresponding 1/N2
c corrections

are of course taken into account (as for the others) and
specified in Tab. VI.

Constraints on |FKπ0 (m2
D(s)

)| can be taken from τ de-

cays. In order to accommodate the measurements of
τ → KSπ

−ντ from Belle [49] we vary the form factor
in the interval

1 . |FKπ0 (m2
D(s)

)| . 4.5 , (C28)

0 . arg
(
FKπ0 (m2

D(s)
)
)
. 2π , (C29)

setting

FKπ0 (m2
Ds) = FKπ0 (m2

D) . (C30)

Appendix D: Diagrammatic representation of sum
rules

In Tabs. XVIII–XXIII we give the diagrammatic rep-
resentation of the six Grossman-Robinson SU(3)F sum
rules which hold to linear order in SU(3)F breaking [29].
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Decay amplitude T C E Pbreak

+ 1√
2
A(D0 → π+π−) − 1√

2
× 0 − 1√

2
× + 1√

2
×

+A(D0 → π0π0) 0 − 1√
2
× + 1√

2
× − 1√

2
×

−A(D+ → π0π+) + 1√
2
× + 1√

2
× 0 0

TABLE XVIII: Diagrammatic representation of sum rule I, 1√
2
A(D0 → π+π−) +A(D0 → π0π0)−A(D+ → π0π+) = 0.

Decay amplitude T T
(1)
1 C C

(1)
1 E E

(1)
1

1√
2
A(D0 → K−π+) 1√

2
× 1√

2
× 0 0 1√

2
× 1√

2
×

+A(D0 → K̄0π0) 0 0 1√
2
× 1√

2
× −1√

2
× −1√

2
×

− 1√
2
A(D+ → K̄0π+) − 1√

2
× − 1√

2
× − 1√

2
× − 1√

2
× 0 0

TABLE XIX: Diagrammatic representation of sum rule II, 1√
2
A(D0 → K−π+) +A(D0 → K̄0π0)− 1√

2
A(D+ → K̄0π+) = 0.

Decay amplitude T T
(1)
2 A A

(1)
2 C C

(1)
2 E E

(1)
2

A(D0 → K+π−) 1× 1× 0 0 0 0 1× 1×
√

2A(D0 → K0π0) 0 0 0 0 1× 1× −1× −1×

−A(D+ → K0π+) 0 0 −1× −1× −1× −1× 0 0

−
√

2A(D+ → K+π0) −1× −1× 1× 1× 0 0 0 0

TABLE XX: Diagrammatic representation of sum rule III, A(D0 → K+π−) +
√

2A(D0 → K0π0) − A(D+ → K0π+) −√
2A(D+ → K+π0) = 0.
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Decay amplitude T T
(1)
1 T

(1)
2 E E

(1)
1 E

(1)
2 Pbreak

A(D0 → K+K−) 1× 1× 1× 1× 1× 1× 1×

−A(D0 → π+π−) 1× 0 0 1× 0 0 −1×

−A(D0 → K−π+) −1× −1× 0 −1× −1× 0 0

−A(D0 → K+π−) −1× 0 −1× −1× 0 −1× 0

TABLE XXI: Diagrammatic representation of sum rule IV, A(D0 → K−K+)−A(D0 → π+π−)−A(D0 → K−π+)−A(D0 →
K+π−) = 0.
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