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1 Introduction

Pair production processes for electroweak vector bosons provide a rich spectrum of observ-

ables, which are crucial to test in depth the SU(2)L×U(1)Y gauge sector of the Standard

Model. In particular, the production of pairs of resonant vector bosons allows for precise

studies of the electroweak triple gauge couplings, while considering off-shell vector boson

pairs is required for precision Higgs phenomenology. Furthermore, diboson production

processes are important backgrounds in direct new physics searches. The main production

channel for pairs of vector bosons at hadron colliders is quark-antiquark annihilation and

great progress has been achieved in the last years with the computation of the next-to-next-

to-leading order (NNLO) QCD corrections to qq̄ → γγ [1], qq̄ → Zγ [2], qq̄ → ZZ [3] and

qq̄ → W+W− [4] production at the LHC. Furthermore, the fermionic NNLO corrections

to qq̄ → γ∗γ∗ were derived in [5].

The gluon fusion channel contributes to W+W−, ZZ, Zγ and γγ production. As

a quark-loop induced process, its leading order (LO) cross section is suppressed by two

powers of the strong coupling constant with respect to that of the quark channel. This

implies that it formally contributes only at NNLO in the perturbative expansion of the

hadronic process, but numerical enhancements may be expected due to the large gluon

luminosities at typical energies for diboson production at the LHC. For the gluon-induced

processes, the one-loop amplitudes and the corresponding one-loop squared interference

terms have been computed long ago [6–12]. Their impact on the total cross section was

found to range approximately from 5% to more than 10% for different final states at the

LHC, and to rise with increasing collider energy [1–4]. These values can substantially

increase up to about 30% when particular sets of cuts, relevant for example for Higgs

boson searches, are applied [13]. It is therefore clear that the inclusion of gluon channel
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contributions can be important in order to achieve a description of the full process which

matches the experimental precision. Beyond the actual size of the known leading order

corrections in the gluon channel, it is unclear how large the associated theory uncertainty

actually is. By comparison with Higgs production in gluon fusion [14–16], the conventional

LO scale variation is not expected to allow for a reliable estimate of the size of neglected

higher order corrections. In order to control the theory uncertainty to the level of the

NNLO prediction for the quark induced process, it is therefore very desirable to compute

the next-to-leading order (NLO) contributions for the gluon induced process. Currently

this has been done only for gg → γγ [17, 18], and the NLO corrections have been found

to be not only sizeable but also important for stabilising the theoretical predictions [18].

Finally, precise theoretical predictions for gg → ZZ can be useful for constraining the total

Higgs boson decay width at the LHC [19–21].

Technically, the computation of the NLO corrections to gg → V1V2 requires two in-

gredients, the two-loop virtual corrections to gg → V1V2 and the one-loop real-virtual

corrections to the corresponding radiative processes with one more parton in the final

state. By now the computation of the one-loop amplitudes with an extra gluon does not

constitute any conceptual difficulty and can be pursued with standard techniques for one-

loop multi-legs processes [22–28]. The two-loop amplitudes, on the other hand, are known

only for gg → γγ [17] and for gg → Zγ [29], in both cases for on-shell final state photons.

In order to obtain physical predictions, both contributions need to be combined using a

subtraction scheme to isolate and cancel unphysical IR divergences. In this case, a NLO

scheme [30, 31] would be sufficient.

In this paper we calculate the missing two-loop massless QCD corrections to gg →
V1V2, with V1V2 = W+W−, ZZ, Zγ∗, γ∗γ∗. The calculation builds upon the master in-

tegrals for four-point functions with massless propagators and two massive external legs,

which were computed recently in the case of equal masses in [32, 33], and in the case of

different masses in [34–37]. The former were used for the first NNLO fully-inclusive cal-

culations of ZZ [3] and W+W− [4] production at the LHC, while the latter allowed the

computation of the two-loop corrections to qq̄′ → V1V2 [37, 38]. A subset of these master in-

tegrals was also computed independently in [5, 39]. While the inclusion of massive top-loop

mediated subprocesses would be of interest for some phenomenological applications [19, 40],

the computation of the two-loop amplitudes requires knowledge of challenging new master

integrals, which should be addressed in the future.

The paper is structured as follows. In Section 2 we describe the tensor decomposition

of the partonic current for the process gg → V1V2 and consider the possible electroweak

coupling structures. We include the vector boson decays and describe the helicity ampli-

tudes for the process gg → V1V2 → 4 leptons in terms of scalar form factors in Section 3.

The actual calculation of the loop contributions to these form factors is described in Sec-

tion 4, which includes a dicussion of UV renormalisation, IR subtraction and various checks

we performed on our results. In Section 5 we present numerical results obtained with our

C++ implementation. Finally, we conclude in Section 6. In Appendix A we give explicit

formulae for obtaining the physical form factors appearing in the helicity amplitudes from

the original tensor coefficients computed in this paper. We provide computer readable files
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for our analytical results and our C++ code for the numerical evaluation of the amplitudes

on our VVamp project page on HepForge at http://vvamp.hepforge.org.

2 Partonic current for gg → V1V2

We consider the production of two massive off-shell vector bosons, V1V2, in the gluon fusion

channel,

g(p1) + g(p2) −→ V1(p3) + V2(p4), (2.1)

where V1V2 = γ∗γ∗, ZZ, Zγ∗, W+W−. The final states W±γ∗ and W±Z instead are

forbidden by charge conservation. Since the two vector bosons are off-shell we have in the

general case

p2
1 = p2

2 = 0 , p2
3 > 0, p2

4 > 0, p2
3 6= p2

4, (2.2)

with the usual Mandelstam invariants defined as

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p2 − p3)2 , (2.3)

and the relation

s+ t+ u = p2
3 + p2

4 . (2.4)

The physical region for the scattering kinematics has the boundary t u = p2
3 p

2
4 and fulfils

s ≥
(√

p2
3 +

√
p2

4

)2
,

1

2

(
p2

3 + p2
4 − s− κ

)
≤ t ≤ 1

2

(
p2

3 + p2
4 − s+ κ

)
(2.5)

where κ is the Källén function

κ
(
s, p2

3, p
2
4

)
≡
√
s2 + p4

3 + p4
4 − 2(s p2

3 + p2
3 p

2
4 + p2

4 s) . (2.6)

We denote the scattering amplitude for the process (2.1) by

S(p1, p2, p3) = Sµνρσ(p1, p2, p3) ερ1(p1) εσ2 (p2) ε∗µ3 (p3) ε∗ ν4 (p4)

where ε1, ε2 are the polarisation vectors of the incoming gluons, ε3, ε4 are the polarisation

vectors of the outgoing massive vector bosons and p4 = p1 +p2−p3. Since we will consider

leptonic decays of the massive vector bosons we will be able to construct the full amplitude

including the decays from the partonic current

Sµν(p1, p2, p3) = Sµνρσ(p1, p2, p3) ερ1(p1) εσ2 (p2)

for the 2 → 2 process. In particular, it is only the latter which receives (pure) QCD

corrections at any order in perturbation theory.

In order to compute the partonic current it is useful to consider its tensor decomposi-

tion. Based on Lorentz invariance only, there are 138 independent tensor structures which
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can contribute

Sµνρσ(p1, p2, p3) = a1g
µνgρσ + a2g

µρgνσ + a3g
µσgνρ

+

3∑
j1,j2=1

(
b
(1)
j1j2

gµν pρj1 p
σ
j2 + b

(2)
j1j2

gµρ pνj1 p
σ
j2 + b

(3)
j1j2

gµσ pνj1 p
ρ
j2

+ b
(4)
j1j2

gνρ pµj1 p
σ
j2 + b

(5)
j1j2

gνσ pµj1 p
ρ
j2

+ b
(6)
j1j2

gρσ pµj1 p
ν
j2

)

+

3∑
j1,j2,j3,j4=1

cj1j2j3j4p
µ
j1
pνj2p

ρ
j3
pσj4 , (2.7)

where the coefficients aj , b
k
ij and cijkl are scalar functions of the kinematic invariants s, t,

p2
3, p2

4 and of the space-time dimension d. Not all structures are relevant for our calculation.

Many of them simply drop due to the transversality of the gluons’ polarisation vectors

ε1 · p1 = ε2 · p2 = 0 . (2.8)

Moreover the tensor structure can be further simplified by fixing explicitly the gauge for

the incoming gluons. A particularly simple choice is given by the symmetrical condition

ε1 · p2 = ε2 · p1 = 0 , (2.9)

which corresponds to the following rules for the polarisation sums∑
λ1

εµ∗1λ1
(p1)εν1λ1(p1) = −gµν +

pµ1p
ν
2 + pν1p

µ
2

p1 · p2
,

∑
λ2

εµ∗2λ2
(p2)εν2λ2(p2) = −gµν +

pµ1p
ν
2 + pν1p

µ
2

p1 · p2
. (2.10)

Further conditions can be applied on the polarisation vectors of the massive vector bosons

V1V2. Since we consider their tree-level decays into massless leptons, the transversality of

the leptonic decay currents can be rephrased as a transversality condition for the polarisa-

tion vectors,

ε3 · p3 = ε4 · p4 = 0 , (2.11)

with the corresponding polarisation sums∑
λ3

εµ∗3λ3
(p3)εν3λ3(p3) = −gµν +

pµ3p
ν
3

p2
3

,

∑
λ4

εµ∗4λ4
(p4)εν4λ4(p4) = −gµν +

pµ4p
ν
4

p2
4

. (2.12)

Imposing the constraints (2.8), (2.9) and (2.11) one is left with only 20 independent

tensor structures and we can write the partonic current according to

Sµν(p1, p2, p3) =
20∑
j=1

Aj(s, t, p
2
3, p

2
4)Tµνj , (2.13)
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where the Aj are scalar functions of s, t, p2
3, p2

4 and d. The tensors Tµνj are defined as

Tµν1 = ε1 · ε2 gµν , Tµν2 = εµ1 ε
ν
2 , Tµν3 = εν1 ε

µ
2 , Tµν4 = ε1 · ε2 pµ1 p

ν
1 ,

Tµν5 = ε1 · ε2 pµ1 p
ν
2 , Tµν6 = ε1 · ε2 pµ2 p

ν
1 , Tµν7 = ε1 · ε2 pµ2 p

ν
2 , Tµν8 = ε2 · p3 ε

µ
1 p

ν
1 ,

Tµν9 = ε2 · p3 ε
µ
1 p

ν
2 , Tµν10 = ε2 · p3 ε

ν
1 p

µ
1 , Tµν11 = ε2 · p3 ε

ν
1 p

µ
2 , Tµν12 = ε1 · p3 ε

µ
2 p

ν
1 ,

Tµν13 = ε1 · p3 ε
µ
2 p

ν
2 , Tµν14 = ε1 · p3 ε

ν
2 p

µ
1 , Tµν15 = ε1 · p3 ε

ν
2 p

µ
2 , Tµν16 = ε1 · p3 ε2 · p3 g

µν ,

Tµν17 = ε1 · p3 ε2 · p3 p
µ
1 p

ν
1 , Tµν18 = ε1 · p3 ε2 · p3 p

µ
1 p

ν
2 ,

Tµν19 = ε1 · p3 ε2 · p3 p
µ
2 p

ν
1 , Tµν20 = ε1 · p3 ε2 · p3 p

µ
2 p

ν
2 . (2.14)

We stress that the tensor decomposition (2.13) is based only on Lorentz symmetry, gauge

invariance and the properties of the boson decays and holds therefore at every order in

perturbative QCD. Moreover, no assumption has been made on the dimensionality of space-

time and the result is valid for any values of the parameter d.

The scalar form factors Aj can be extracted from the amplitude (2.13) by applying

suitable projecting operators. The projectors themselves can be decomposed in the same

20 tensors as

Pµνj =
20∑
i=1

Bji (Tµνi )
†

for j = 1, . . . , 20, (2.15)

where also Bji are functions of the external invariants and d. Their explicit form can be

determined imposing∑
pol

Pµ
′ν′

j

[
ε3µ′ε4ν′ε

∗
3µε
∗
4ν

]
Sµν = Aj for j = 1, ..., 20, (2.16)

where the polarisation sums are evaluated in d dimensions according to (2.10) and (2.12).

The explicit results for the coefficients Bji are rather lengthy and we prefer not to write

them here explicitly. Computer readable files for the latter are given on our project page

at HepForge.

The partonic current is the only one which receives contributions from QCD radiative

corrections and, for two gluons of helicities λ1 and λ2, can be written as

Sµν(pλ11 , pλ22 , p3) = δa1a2
∑
j

C[j]
V1V2

S[j]
µνρσ(p1, p2, p3)ερ1λ1(p1)εσ2λ2(p2) , (2.17)

where δa1a2 is the overall colour structure and the index j runs over different possible

classes of diagrams discussed below, see also Fig. 1, which are characterised by different

electroweak couplings C[j]
V1V2

.

Before proceeding, it is convenient to introduce some notations needed in the following.

As long as we work in QCD, we only need to consider the coupling of electroweak vector

bosons V to fermions. We parametrise this as

VV,f1,f2µ = −i eΓV f1f2µ , where e =
√

4π α is the positron charge , (2.18)

– 5 –



[B]

g

g

V1

V2

qi

qj

[FV ]

g

g

V1

V2

qi

[A]

g

g

V1

V2

qj

qi

V

Figure 1. Example Feynman diagrams for the process gg → V1V2 at the two-loop level, where

the vector bosons couple to the same fermion loop, [A], to different fermion loops, [B] or to an

intermediate vector boson, [FV ]. The sum of all type [B] contribution and the sum of all type [FV ]

contributions vanish, respectively.

in such a way that all fermion charges are expressed in units of e and

Γµ = LVf1f2 γµ

(
1− γ5

2

)
+RVf1f2 γµ

(
1 + γ5

2

)
, (2.19)

with

Lγf1f2 = −ef1 δf1f2 Rγf1f2 = −ef1 δf1f2 , (2.20)

LZf1f2 =
If13 − sin2 θwef1

sin θw cos θw
δf1f2 , RZf1f2 = −

sin θwef1
cos θw

δf1f2 , (2.21)

LWf1f2 =
1√

2 sin θw
εf1f2 , RWf1f2 = 0 , (2.22)

where εf1f2 is unity for f1 6= f2, but belonging to the same isospin doublet, and zero

otherwise.

Let us consider the different electroweak coupling structures in detail. It is clear that,

since we do not take any electroweak radiative corrections into account, at least one of the

two vector bosons must be coupled to an internal fermion loop. In order to compute the

one- and two-loop QCD corrections we need to consider the following three possibilities,

see Fig. 1.

Class A Both vector bosons V1V2 are attached to the same fermion loop. In this case the

diagrams are proportional to the charge weighted sum of the quark flavours, which

we denote as C[A]
V1V2

= NV1V2 . These diagrams could in principle yield two different

contributions. One, proportional to the sum of the vector-vector and the axial-axial

couplings, in which all dependence on γ5 cancels out. The second, instead, contains

the vector-axial coupling and is linear in γ5. Due to charge parity conservation this
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last contribution is expected to always vanish identically for massless quarks running

in the loops, for any choice of V1 and V2 [8, 9, 40]. One then easily finds that

Nγγ =
∑
i

e2
qi , NZZ =

1

2

∑
i

[(
LZqiqi

)2
+
(
RZqiqi

)2]
,

NWW =
1

2

∑
i j

(
LWqiqjL

W
qjqi

)
, NZγ = −1

2

∑
i

(
LZqiqi +RZqiqi

)
eqi , (2.23)

where the indices i, j run over the flavours of the quarks in the loop.

Class B The two vector bosons are attached to two different fermion loops. This con-

figuration is of course possible only starting from two loops on. Each fermion loop

contains both a vector and an axial piece. For the case of two-loop massless QCD

corrections relevant here, both contributions can be shown to vanish. The axial con-

tribution cancels out for degenerate isospin doublets, while the vector piece must sum

up to zero due to Furry’s theorem.

Class FV Only for the case of V1V2 = W+W−, one should also take into account the

s-channel production diagrams, where the incoming gluons produce an intermediate

electroweak gauge boson V = γ∗/Z∗, which then decays into the outgoing W -pair, see

Fig. 1. Charge-parity invariance ensures that the vector part of these diagrams must

sum up to zero. Again, the axial part cancels out for degenerate isospin doublets,

and therefore also in the case of massless quarks running in the loops.

For the case of the one- and two-loop contributions considered here, we can therefore

simplify (2.17) to

Sµν(pλ11 , pλ22 , p3) = δa1a2 NV1V2 S
[A]
µνρσ(p1, p2, p3)ερ1λ1(p1)εσ2λ2(p2) , (2.24)

with NV1V2 given in (2.23) and consider the coefficients A
[A]
j defined by

Aj(s, t, p
2
3, p

2
4) = δa1a2NV1V2A

[A]
j (s, t, p2

3, p
2
4). (2.25)

It is instructive to study the transformations of the partonic current (2.24) under

permutations of the external legs. We define the following two permutations

π12 := p1 ↔ p2 ⇒ { t↔ u },
π34 := p3 ↔ p4 ⇒ { t↔ u , p2

3 ↔ p2
4 } . (2.26)

Because of Bose symmetry these two permutations must leave the partonic amplitude

unchanged. This enforces a well defined behaviour of the coefficients Aj(s, t, p
2
3, p

2
4) under

the action of π12 and π34. From direct inspection of (2.13) one finds that the following
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relations must be fulfilled:

π12 : A
[A]
1 (s, u, p2

3, p
2
4) = A

[A]
1 (s, t, p2

3, p
2
4) , A

[A]
2 (s, u, p2

3, p
2
4) = A

[A]
3 (s, t, p2

3, p
2
4) ,

A
[A]
4 (s, u, p2

3, p
2
4) = A

[A]
7 (s, t, p2

3, p
2
4) , A

[A]
5 (s, u, p2

3, p
2
4) = A

[A]
6 (s, t, p2

3, p
2
4) ,

A
[A]
8 (s, u, p2

3, p
2
4) = A

[A]
13 (s, t, p2

3, p
2
4) , A

[A]
9 (s, u, p2

3, p
2
4) = A

[A]
12 (s, t, p2

3, p
2
4) ,

A
[A]
10 (s, u, p2

3, p
2
4) = A

[A]
15 (s, t, p2

3, p
2
4) , A

[A]
11 (s, u, p2

3, p
2
4) = A

[A]
14 (s, t, p2

3, p
2
4) ,

A
[A]
16 (s, u, p2

3, p
2
4) = A

[A]
16 (s, t, p2

3, p
2
4) , A

[A]
17 (s, u, p2

3, p
2
4) = A

[A]
20 (s, t, p2

3, p
2
4) ,

A
[A]
18 (s, u, p2

3, p
2
4) = A

[A]
19 (s, t, p2

3, p
2
4) , (2.27)

π34 : A
[A]
1 (s, u, p2

4, p
2
3) = A

[A]
1 (s, t, p2

3, p
2
4) , A

[A]
2 (s, u, p2

4, p
2
3) = A

[A]
3 (s, t, p2

3, p
2
4) ,

A
[A]
4 (s, u, p2

4, p
2
3) = A

[A]
4 (s, t, p2

3, p
2
4) , A

[A]
5 (s, u, p2

4, p
2
3) = A

[A]
6 (s, t, p2

3, p
2
4) ,

A
[A]
7 (s, u, p2

4, p
2
3) = A

[A]
7 (s, t, p2

3, p
2
4) , A

[A]
8 (s, u, p2

4, p
2
3) = −A[A]

10 (s, t, p2
3, p

2
4) ,

A
[A]
9 (s, u, p2

4, p
2
3) = −A[A]

11 (s, t, p2
3, p

2
4) , A

[A]
12 (s, u, p2

4, p
2
3) = −A[A]

14 (s, t, p2
3, p

2
4) ,

A
[A]
13 (s, u, p2

4, p
2
3) = −A[A]

15 (s, t, p2
3, p

2
4) , A

[A]
16 (s, u, p2

4, p
2
3) = A

[A]
16 (s, t, p2

3, p
2
4) ,

A
[A]
17 (s, u, p2

4, p
2
3) = A

[A]
17 (s, t, p2

3, p
2
4) , A

[A]
18 (s, u, p2

4, p
2
3) = A

[A]
19 (s, t, p2

3, p
2
4) ,

A
[A]
20 (s, u, p2

4, p
2
3) = A

[A]
20 (s, t, p2

3, p
2
4) , (2.28)

It is interesting to notice that, upon exploiting all of these crossing relations, only 9 out of

the 20 coefficients A
[A]
j turn out to be effectively independent, while the other 11 coefficients

can be obtained by crossing of the external legs.

3 Helicity amplitudes for gg → V1V2 → 4 leptons

We consider physical processes, where the two off-shell vector bosons decay into lepton

pairs

g(p1) + g(p2)→ V1(p3) + V2(p4)→ l5(p5) + l̄6(p6) + l7(p7) + l̄8(p8) (3.1)

such that p3 = p5 + p6 , p4 = p7 + p8 and p2
5 = p2

6 = p2
7 = p2

8 = 0. As long as we

consider QCD radiative corrections the amplitudesMV1V2
λ1λ2λ3λ4

can be written, at any order

in perturbation theory, as the product of the partonic current for gg → V1V2 with the

two leptonic currents for the decay products, V1 → l5 l̄6 and V2 → l7 l̄8, mediated by the

propagators of the two off-shell vector bosons V1V2. We write the propagator for an off-shell

vector boson in the Rξ gauge as

P Vµν(q) =
i∆V

µν(q, ξ)

DV (q)
, (3.2)

with

∆V
µν(q, ξ) =

(
−gµν + (1− ξ) qµqν

q2 − ξm2
V

)
, (3.3)

Dγ∗(q) = q2 , DZ,W (q) = (q2 −m2
V + iΓVmV ) , (3.4)
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where mV is its mass and ΓV is its decay width. In our case the massive vector bosons

decay to massless fermions such that the term proportional to (1− ξ) can be dropped.

In the following we will consider fixed helicities of the external particles and compute

the amplitudes for the different helicity configurations. Since the decay leptons are massless,

helicity is conserved along the leptonic decay currents and the amplitude can be written as

MV1V2
λ1λ2λ3λ4

(p1, p2; p5, p6, p7, p8), (3.5)

where λ1 and λ2 are the helicities of the incoming gluons, while λ3 and λ4 are the helicities

of the two leptonic currents. It is clear that there are 16 different helicity configurations,

depending on the different possibilities for the initial and final states. Each gluon has two

possible helicity states, which we denote by L (-) and R (+), and similarly each leptonic

current occurs in either left- or right-handed configuration, again denoted by L and R,

respectively, such that λj = L,R, for j = 1, ..., 4. As we will show explicitly later on,

all 16 helicity configurations can be obtained from only two independent ones, by simple

permutations of the external legs and complex conjugation. We choose as independent

configurations the following two

MV1V2
LLLL(p1, p2; p5, p6, p7, p8) , MV1V2

LRLL(p1, p2; p5, p6, p7, p8) . (3.6)

With the notations introduced above we write the two independent helicity ampli-

tudes (3.6), up to two loops, as:

MV1V2
λ1λ2LL

(p1, p2; p5, p6, p7, p8) = i (4πα)2
LV1f5f6 L

V2
f7f8

DV1(p3)DV2(p4)
Mλ1λ2LL(p1, p2; p5, p6, p7, p8) ,

(3.7)

where the basic amplitudes Mλ1λ2LL(p1, p2; p5, p6, p7, p8) are constructed from the partonic

current (2.17) and the leptonic currents (3.9) according to

Mλ1λ2LL(p1, p2; p5, p6, p7, p8) = ερ1λ1(p1)εσ2λ2(p2)Sµνρσ(p1, p2, p3)LµL(p−5 , p
+
6 )LνL(p−7 , p

+
8 ) .

(3.8)

The leptonic decay currents do not receive any QCD corrections and are simple tree-level

objects. They can be easily expressed in the usual spinor-helicity notation [41, 42] as

LµL(p−5 , p
+
6 ) = ū−(p5) γµ v+(p6) = [6 |γµ| 5 〉 = 〈5 |γµ| 6 ] , (3.9)

LµR(p+
5 , p

−
6 ) = ū+(p5) γµ v−(p6) = [5 |γµ| 6 〉 =

(
LµL(p−5 , p

+
6 )
)∗

= LµL(p−6 , p
+
5 ) . (3.10)

Note that, in this case, a permutation of the external momenta is equivalent to a complex

conjugation of the current and it corresponds to a flip of the helicity L↔ R.

Once the tensor decomposition of the partonic current is fixed, it is straight-forward to

express the two basic helicity amplitudes MLLLL and MLRLL in (3.8) in the usual spinor-

helicity notation [41, 42]. We replace the gluon polarisation vectors according to

εµ1L(p1) =
[2|γµ|1〉√

2[12]
, εµ1R(p1) =

〈2|γµ|1]√
2〈21〉

, εµ2L(p2) =
[1|γµ|2〉√

2[21]
, εµ2R(p2) =

〈1|γµ|2]√
2〈12〉

,

(3.11)
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which is of course compatible with the polarisation sums (2.10) and (2.12). In doing this,

we assume that the external states can be treated as 4-dimensional and this allows to reduce

considerably the number of independent structures that are required for parametrising a

specific helicity configuration. Using (3.11) we find that both basic amplitudes can be

written in terms of 9 independent spinor structures as

Mλ1λ2LL(p1, p2; p5, p6, p7, p8) = Cλ1λ2

{
[2 p/3 1〉

(
Eλ1λ21 〈57〉[68]

+ Eλ1λ22 〈15〉〈17〉[16][18] + Eλ1λ23 〈15〉〈27〉[16][28]

+ Eλ1λ24 〈25〉〈17〉[26][18] + Eλ1λ25 〈25〉〈27〉[26][28]
)

+ Eλ1λ26 〈15〉〈17〉[16][28] + Eλ1λ27 〈15〉〈17〉[26][18]

+ Eλ1λ28 〈15〉〈27〉[26][28] + Eλ1λ29 〈25〉〈17〉[26][28]

}
, (3.12)

where the 18 newly introduced form factors Eλ1λ2j are simple linear combinations of the

scalar coefficients Aj . The spinor structure of the amplitudes for the configurations LLLL

and LRLL differs only by an overall factor which reads in the two cases

CLL = [1 p/3 2〉〈12〉
[12]

, CLR = [2 p/3 1〉 , (3.13)

but the form factors ELLj and ELRj are different. We also note, in passing, that the spinor

structure of (3.12) exhibits also a formal similarity to that of the RLL amplitude for

qq̄′ → V1V2 → l5 l̄6l7 l̄8 [37, 38], again up to an overall factor and with, of course, completely

unrelated form factors. Similar as before, we also define the functions E
λ1λ2 [A]
j

Eλ1λ2j (s, t, p2
3, p

2
4) = δa1a2NV1V2E

λ1λ2 [A]
j (s, t, p2

3, p
2
4). (3.14)

The explicit expressions for the form factors Eλ1λ2j in terms of the coefficients Aj are given

in Appendix A.

In order to obtain all 16 helicity amplitudes from (3.12), one should recall that complex

conjugation has the effect of reversing the helicity of the external gluons,(
εµ1L(p1)

)∗
= εµ1R(p1) ,

(
εµ2L(p2)

)∗
= εµ2R(p2) , (3.15)

and similarly for the leptonic currents, see (3.10) (3.9). We define with the symbol [...]C a

complex-conjugation operation which, when applied on the amplitudes Mλ1λ2LL, acts only

on the spinor structures, i.e. leaves invariant the form factors Eλ1λ2j . Given the explicit

form of (3.12), it is easy to see that this corresponds to simply exchanging angle brackets

with squared bracket and vice versa

[Mλ1λ2LL]C ≡ Mλ1λ2LL (〈ij〉 ↔ [ij]) . (3.16)
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Hence, we can derive the missing helicity amplitudes for left-handed leptonic currents from

the two basic amplitudes as

MRLLL(p1, p2; p5, p6, p7, p8) = [MLRLL(p1, p2; p6, p5, p8, p7)]C ,

MRRLL(p1, p2; p5, p6, p7, p8) = [MLLLL(p1, p2; p6, p5, p8, p7)]C , (3.17)

where one should note that the lepton and anti-lepton momenta are exchanged in the r.h.s.

in order to have a left-handed leptonic currents on the l.h.s. The corresponding formulae

for the basic amplitudes for right-handed leptonic currents can be obtained from the ones

above by simple permutations of the lepton and anti-lepton momenta

Mλ1λ2RL(p1, p2; p5, p6, p7, p8) = Mλ1λ2LL(p1, p2; p6, p5, p7, p8) ,

Mλ1λ2LR(p1, p2; p5, p6, p7, p8) = Mλ1λ2LL(p1, p2; p5, p6, p8, p7) ,

Mλ1λ2RR(p1, p2; p5, p6, p7, p8) = Mλ1λ2LL(p1, p2; p6, p5, p8, p7) . (3.18)

With these formulae also all the 16 physical amplitudes MV1V2
λ1λ2λ3λ4

in (3.7) can be easily

obtained, recalling that in the case of right-handed leptonic currents one should, of course,

exchange the corresponding couplings LVfifj ↔ RVfifj .

As we already stated above, the partonic current receives contributions form QCD

radiative corrections and it can be expanded as

Sµνρσ(p1, p2, p3) =
(αs

2π

)
S(1)
µνρσ(p1, p2, p3) +

(αs
2π

)2
S(2)
µνρσ(p1, p2, p3) +O(α3

s) , (3.19)

where obviously the perturbative expansion starts only at one-loop order. Of course also

the coefficients Aj , and equivalently the form factors Eλ1λ2j , have the same expansion

Aj =
(αs

2π

)
A

(1)
j +

(αs
2π

)2
A

(2)
j +O(α3

s) ,

Eλ1λ2j =
(αs

2π

)
E

(1),λ1λ2
j +

(αs
2π

)2
E

(2),λ1λ2
j +O(α3

s) . (3.20)

4 Calculation of the form factors

The calculation of the coefficients Eλ1λ2j proceeds as follows. We produce all one- and

two-loop Feynman diagrams relevant for gg → V1V2 using Qgraf [43]. In particular we

focus only on diagrams in classes A and B, for which we find 8 diagrams at one loop and

138 diagrams at two loops. Diagrams in class FV , in fact, are simple three-point functions,

which sum up to zero due to charge-parity invariance. The coefficients Aj are then calcu-

lated by applying the projectors defined in (2.15) on the different Feynman diagrams. We

insert the Feynman rules in our diagrams, where we employ the Feynman-’t Hooft gauge

(ξ = 1) for internal gluons. After evaluation of Dirac traces and contraction of Lorentz

indices every Feynman diagram is expressed as linear combination of a large number of

scalar integrals. The latter belong to the family of the massless four-point functions with

two off-shell legs of different virtualities and can be reduced to a small set of master inte-

grals using integration-by-parts identities [44–47]. We employ Reduze 2 [48–51] to map all
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scalar integrals to the three integral families given in [33] and their crossed versions, and

subsequently to reduce them to master integrals. In this way, we obtain analytical expres-

sions for the coefficients Aj as linear combinations of the latter. For the master integrals

we employ the solutions presented in [37]. With the explicit expressions for the coefficients

Aj at the different perturbative orders, it is easy to obtain the corresponding results for

the Eλ1λ2j using the formulae given in Appendix A. Form [52] was used extensively for all

intermediate algebraic manipulations.

Because of the lack of any tree-level contribution to the process gg → V1V2, the UV

and IR pole-structure of the one- and two-loop amplitudes is very simple. Clearly, the

one-loop amplitude must be both UV- and IR-finite, and therefore the pole structure of

the two-loop amplitude will be, effectively, what one usually encounters for a one-loop

QCD amplitude. Since all considerations described in this section hold identically for any

Aj and Eλ1λ2i , in what follows we will use the symbol Ω for any of the scalar coefficients,

Ω ∈
{
Aj , E

λ1λ2
i

}
, for any j = 1, ..., 20, i = 1, ..., 9, λ1λ2 = LL,LR .

We start by performing UV-renormalisation in the MS scheme. In massless QCD this

amounts to replacing the bare coupling, α0, with the renormalised one, αs = αs(µ
2), where

µ is the renormalisation scale. Here we only need the one-loop relation

α0 µ
2ε
0 Sε = αs µ

2ε

[
1− β0

ε

(αs
2π

)
+O(α2

s)

]
, (4.1)

where

Sε = (4π)ε e−εγ , with the Euler-Mascheroni constant γ = 0.5772... , (4.2)

ε = (4−d)/2, µ0 is the mass-parameter introduced in dimensional regularisation to maintain

a dimensionless coupling in the bare QCD Lagrangian density, and finally β0 is the first

order of the QCD β-function

β0 =
11CA − 4TF Nf

6
, with CA = N , CF =

N2 − 1

2N
, TF =

1

2
. (4.3)

The renormalisation is performed at µ2 = s, the invariant mass squared of the vector-boson

pair. The renormalised form factors read then, in terms of the un-renormalised ones,

Ω(1) = S−1
ε Ω(1),un,

Ω(2) = S−2
ε Ω(2),un − β0

ε
S−1
ε Ω(1),un . (4.4)

After UV renormalisation, the two-loop coefficients Ω(2) contain still residual IR singu-

larities. In any IR-safe observable these divergences are cancelled by the corresponding ones

produced in one-loop radiative processes with one more external parton. In the present case

of gg → V1V2, as discussed already above, the IR-poles at two loops are of NLO type and

their structure has been know for a long time. Here, we choose to follow the conventions
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used for the NNLO corrections to qq̄ → V1V2 in [37], which required a NNLO subtraction

scheme. The exact structure of the IR poles up to NNLO in QCD was predicted first by

Catani [53]. We present our results in a slightly modified scheme described in [54], which

is well suited for the qT -subtraction formalism.

We define the IR finite amplitudes at renormalisation scale µ in terms of the UV

renormalised ones as follows

Ω(1),finite
qT

= Ω(1) ,

Ω(2),finite
qT

= Ω(2) − I1(ε) Ω(1) , (4.5)

where for the gluon-fusion channel we have

I1(ε) = Isoft1 (ε) + Icoll1 (ε) , (4.6)

Isoft1 (ε) = − eεγ

Γ(1− ε)

(
µ2

s

)ε (
1

ε2
+
iπ

ε
+ δ(0)

qT

)
CA , (4.7)

Icoll1 (ε) = −1

ε
β0

(
µ2

s

)ε
. (4.8)

Following [54] we then put δ
(0)
qT = 0. We provide the explicit analytical results for the finite

remainders of the coefficients Aj in this scheme, obtained for µ2 = s, on our project page

at HepForge.

Finally, it is straight-forward to convert these finite remainders into the Catani’s origi-

nal subtraction scheme [53], as extensively described in [37]. For the present case we obtain

the conversion formulae

Ω
(1),finite
Catani = Ω(1),finite

qT
,

Ω
(2),finite
Catani = Ω(2),finite

qT
+ ∆I1 Ω(1),finite

qT
, (4.9)

with ∆I1, in the case of a gg initial state, is given by

∆I1 = −1

2
π2CA + iπβ0 . (4.10)

In order to test the correctness of our results we have performed a number of checks,

which we list in the following.

1. First of all, we computed explicitly all one- and two-loop diagrams relevant for

gg → V1V2, including those diagrams in class B which are expected not to give

any contribution due to Furry’s theorem, see Section 4. We have verified that, after

reduction to master integrals, all diagrams in class B sum up to zero.

2. We have verified explicitly that the coefficients Aj respects the expected symmetry

relations derived in (2.27) and (2.28).

3. We have verified explicitly that the IR poles of the two-loop amplitude have the

structure predicted by Catani’s formula, see Section 4. This provides a strong check

of the correctness of the result.
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Figure 2. Real parts of the two loop form factors E
(2),LL [A]
j for the process gg → V1V2. The

plots illustrate their dependence on the velocity, β3, and the cosine of the scattering angle, cos θ3,

of the vector boson V1, where p24 = 2p23 is chosen for the vector boson virtualities.

4. We have performed a thorough comparison of our results with an independent cal-

culation of the same process [55]. Specifically, we compared our results prior to UV

renormalisation and IR subtraction. While the representation of the amplitudes in

terms of spinor structures in [55] has a different form than our decomposition (3.12),

we found that both are equivalent. For the full helicity amplitudes we have found

perfect numerical agreement at one- and two-loop order. Moreover, expressing the

form factors defined in [55] as linear combinations of our form factors Eλ1λ2j , we have

verified that for each of them independently we have perfect numerical agreement at

one- and two-loop order.

5 Numerical C++ implementation and results

For the numerical evaluation of the helicity amplitudes for gg → V1V2 → 4 leptons, we

implemented our results for the form factors E
λ1λ2 [A]
j and A

[A]
j at one- and two-loop order

in a dedicated C++ code. The implementation is based on the solutions for the master inte-
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Figure 3. Real parts of the two loop form factors E
(2),LR [A]
j for the process gg → V1V2. The

plots illustrate their dependence on the velocity, β3, and the cosine of the scattering angle, cos θ3,

of the vector boson V1, where p24 = 2p23 is chosen for the vector boson virtualities.

grals presented in [37], which were specifically constructed for fast and reliable numerical

evaluations. We organised our form factor implementation in form of a library, which is

supplemented by a simple command line interface. We provide the software package for

public download on HepForge at http://vvamp.hepforge.org.

For the numerical evaluation of the multiple polylogarithms encountered in the solu-

tions for the master integrals, we employ their implementation [56] in the GiNaC [50] library.

To identify and account for possible numerical instabilities of the form factors in collinear

or other potentially problematic regions of phase space, the code compares numerical eval-

uations, which are obtained using different floating point data types, similar to the setup

used in [37]. If the results obtained with different precision settings differ beyond a user-

defined tolerance, the code successively increases the precision until the target precision is

met. For the rather central benchmark point of [38], the double precision mode of our code

takes roughly 600ms on a single computer core and results in at least 11 significant digits

for all of the E
λ1λ2 [A]
j . In order to estimate the actual precision, the default behaviour of

our code is to reevaluate the algebraic expressions in quad precision, which results in a
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total run-time of roughly 3s for this phase space point. The described version of our code

implements a minimal set of 9 coefficients Aj and employs four evaluations of them with

different kinematics in order to derive the remaining form factors using crossing relations.

If required, it is straight-forward to further improve the evaluation speed, either by proper

caching of multiple polylogarithms or, at the price of an increased code size, by an explicit

implementation of all form factors, as we did for the process qq̄′ → V1V2 in [37].

In order to illustrate the form factors and the reliability of the code, we used the latter

to plot the real part of the two-loop form factors for the case p2
4 = 2p2

3 in Figures 2 and 3. In

the plots, we vary the relativistic velocity β3 and the cosine of the scattering angle cos θ3 of

the vector boson V1, where β3 = κ/(s+p2
3−p2

4) and cos θ3 = (2t+s−p2
3−p2

4)/κ. Compared

to the results for the form factors Ej in the process qq̄′ → V1V2 in [37], we observe strong

enhancements for the forward, backward and production threshold regions for the form

factors in the present case. However, for the physical helicity amplitudes (3.12) we wish

to point out that an additional dampening (very) close to the aforementioned phase space

boundaries should be taken into account due to the additional overall factors CLL and

CLR (3.13).

6 Conclusions

In this paper we computed the two-loop massless QCD corrections to the helicity ampli-

tudes for the production of pairs of electroweak gauge bosons, V1V2, in the gluon fusion

channel. For the calculation we employed the solutions for the master integrals presented

in [37]. Contracting the diboson amplitude with the leptonic decay currents we have con-

structed the helicity amplitudes for gg → V1V2 → 4 leptons. We have compared our results

to an independent calculation [55] and find perfect agreement. Our results for these am-

plitudes provide the fundamental ingredient required to compute the NLO corrections to

diboson production processes in gluon fusion. These corrections would contribute formally

at N3LO to the processes pp→ V1V2 +X, but their inclusion may be important to match

the expected experimental accuracy due to the large gluon luminosity at the LHC. In par-

ticular studying their impact is required to obtain a more reliable estimate of the theory

uncertainty and to establish more precise constraints on the total Higgs decay width [19–

21]. We provide both analytical results and a C++ code for the numerical evaluation of the

amplitudes on HepForge at http://vvamp.hepforge.org.

Acknowledgements

We are grateful to K. Melnikov and F. Caola for the comparison of our results with the

results of their independent calculation prior to publication [55]. We wish to thank K. Mel-

nikov and T. Gehrmann for clarifying discussions on different aspects of the calculation,

for interesting comments on the manuscript, and for the encouragement to carry out this

calculation to the end. We thank the HepForge team for providing web space for our

project. The Feynman graphs in this article have been drawn with JaxoDraw [57, 58].

– 16 –

http://vvamp.hepforge.org


A Form factor relations

In this Appendix we present the explicit formulae needed in order to compute the 18 form

factors Eλ1λ2j defined for the amplitude (3.12), starting from the 20 form factors Aj defined

in (2.13). For the MLLLL amplitude we find

ELL1 =
2A1 +A2 +A3

t u− p2
3 p

2
4

− A16

s
,

ELL2 =
A14(t− p2

4)−A12(u− p2
3)− sA4

s(t u− p2
3 p

2
4)

+
A17

2 s
,

ELL3 =
A14(u− p2

4)−A13(u− p2
3) +A2 +A3 − sA5

s(t u− p2
3 p

2
4)

+
A18

2 s
,

ELL4 =
A15(t− p2

4)−A12(t− p2
3) +A2 +A3 − sA6

s(t u− p2
3 p

2
4)

+
A19

2 s
,

ELL5 =
A15(u− p2

4)−A13(t− p2
3)− sA7

s(t u− p2
3 p

2
4)

+
A20

2 s
,

ELL6 =
(u− p2

3)(A2 −A3)

s(t u− p2
3 p

2
4)

+
A10 −A14

s
, ELL7 =

(t− p2
4)(A2 −A3)

s(t u− p2
3 p

2
4)

+
A8 −A12

s
,

ELL8 =
(u− p2

4)(A2 −A3)

s(t u− p2
3 p

2
4)

+
A9 −A13

s
, ELL9 =

(t− p2
3)(A2 −A3)

s(t u− p2
3 p

2
4)

+
A11 −A15

s
.

(A.1)

For the MLRLL amplitude we have instead

ELR1 =
A2 +A3

t u− p2
3 p

2
4

+
A16

s
, ELR2 = −A17

2 s
,

ELR3 =
A2 +A3

s(t u− p2
3 p

2
4)
− A18

2 s
, ELR4 =

A2 +A3

s(t u− p2
3 p

2
4)
− A19

2 s
,

ELR5 = −A20

2 s
, ELR6 =

(u− p2
3)(A2 +A3)

s(t u− p2
3 p

2
4)

− A10 +A14

s
,

ELR7 = −(t− p2
4)(A2 +A3)

s(t u− p2
3 p

2
4)

− A8 +A12

s
, ELR8 = −(u− p2

4)(A2 +A3)

s(t u− p2
3 p

2
4)

− A9 +A13

s
,
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ELR9 =
(t− p2

3)(A2 +A3)

s(t u− p2
3 p

2
4)

− A11 +A15

s
. (A.2)

Let us consider the behaviour of the form factors Eλ1λ2j under the two permutations π12

and π34 defined in (2.26). Using the crossing relations for the form factors A
[A]
j (2.27) and

(2.28) one easily finds the corresponding ones for the form factors E
λ1λ2 [A]
j . To simplify our

notation, we drop the superscript [A] in the following. Under permutation π12 we obtain

ELL1 (s, u, p2
3, p

2
4) = ELL1 (s, t, p2

3, p
2
4) ,

ELL2 (s, u, p2
3, p

2
4) = ELL5 (s, t, p2

3, p
2
4) +

(u− p2
4)ELL9 (s, t, p2

3, p
2
4)− (t− p2

3)ELL8 (s, t, p2
3, p

2
4)

tu− p2
3 p

2
4

,

ELL3 (s, u, p2
3, p

2
4) = ELL4 (s, t, p2

3, p
2
4) +

(t− p2
4)ELL9 (s, t, p2

3, p
2
4)− (t− p2

3)ELL7 (s, t, p2
3, p

2
4)

tu− p2
3 p

2
4

,

ELL6 (s, u, p2
3, p

2
4) = −ELL9 (s, t, p2

3, p
2
4) , ELL7 (s, u, p2

3, p
2
4) = −ELL8 (s, t, p2

3, p
2
4) (A.3)

and

ELR1 (s, u, p2
3, p

2
4) = ELR1 (s, t, p2

3, p
2
4) , ELR2 (s, u, p2

3, p
2
4) = ELR5 (s, t, p2

3, p
2
4) ,

ELR3 (s, u, p2
3, p

2
4) = ELR4 (s, t, p2

3, p
2
4) , ELR6 (s, u, p2

3, p
2
4) = ELR9 (s, t, p2

3, p
2
4) ,

ELR7 (s, u, p2
3, p

2
4) = ELR8 (s, t, p2

3, p
2
4) . (A.4)

Under permutation π34, instead, the form factors for both the LL and LR helicity config-

urations transform in the same way

Eλ1λ21 (s, u, p2
4, p

2
3) = Eλ1λ21 (s, t, p2

3, p
2
4) , Eλ1λ22 (s, u, p2

4, p
2
3) = Eλ1λ22 (s, t, p2

3, p
2
4) ,

Eλ1λ23 (s, u, p2
4, p

2
3) = Eλ1λ24 (s, t, p2

3, p
2
4) , Eλ1λ25 (s, u, p2

4, p
2
3) = Eλ1λ25 (s, t, p2

3, p
2
4) ,

Eλ1λ26 (s, u, p2
4, p

2
3) = −Eλ1λ27 (s, t, p2

3, p
2
4) , Eλ1λ28 (s, u, p2

4, p
2
3) = −Eλ1λ29 (s, t, p2

3, p
2
4) . (A.5)

Exploiting all of these crossing relations we find that only 9 out of the 18 form factors Eλ1λ2j

are effectively independent, while the other 9 can be obtained by the crossing rules above.

The number of independent form factors Eλ1λ2j coincides with the number of independent

form factors Aj found in Section 2.
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