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An extensive model-independent analysis of B → DD decays is carried out employing SU(3)
flavour symmetry, including symmetry-breaking corrections. Several theoretically clean observables
are identified which allow for testing the Standard Model. These include the known time-dependent
CP asymmetries, the penguin pollution of which can be controlled in this framework, but notably
also quasi-isospin relations which are experimentally well accessible and unaffected by symmetry-
breaking corrections. Theoretical assumptions can be kept to a minimum and controlled by ad-
ditional sum rules. Available data are used in global fits to predict the branching ratio for the
B0 → D+

s D
−
s decay as well as several CP asymmetries which have not been measured so far, and

future prospects are analyzed.

I. INTRODUCTION

In the past decade, the connection of CP and flavour
violation in the Standard Model (SM), embodied by the
Kobayashi-Maskawa mechanism [1], has been confirmed
up to the order of 10− 20% [2, 3]. The fact that there is
still no direct evidence of physics beyond the SM comes
rather unexpected; as a consequence, we have to prepare
to search for new physics (NP) effects which are small
compared to the leading SM contributions, even when
the latter are already suppressed. Specifically, in the con-
text of quark flavour physics, this typically implies the
necessity to gain (improved) control over hadronic matrix
elements (MEs), which for most modes still constitutes
a serious challenge. In this article, this is achieved by
employing SU(3)-flavour symmetry including symmetry-
breaking corrections, thereby extracting information on
the MEs from data. The full set of B-meson decays
into two charmed pseudoscalars, B → DD, is consid-
ered which constitutes a valuable source of information
on the weak phases of the SM and provides access to NP.

Recently, the LHCb collaboration has measured vari-
ous relative branching ratios [4, 5] and two effective life-
times [6] of B → DD modes for the first time. Together
with previous measurements [7–14] this enables a phe-
nomenological analysis for the full set of modes which
was not possible before. However, the flavour-SU(3) sym-
metry relating them is known to be broken at a level of
εSU(3) ∼ ms/ΛQCD ∼ 20−30%, making precision predic-
tions difficult. Specifically, in Ref. [15] it has been demon-
strated that the symmetry breaking severely affects the
extraction of the CKM angle γ. Furthermore, also strate-
gies to extract the weak mixing angles φd,s including
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“penguin pollution” by using (the U-spin subgroup of)
SU(3) (as for example in Refs. [16–19]) are affected to
some extent, as demonstrated recently in Refs. [20, 21].
This work includes therefore the SU(3)-breaking correc-
tions model-independently. Since there are several sup-
pression factors of similar order in B → DD decays, some
SU(3)-breaking MEs are potentially larger than others
appearing already in the SU(3) limit. We therefore de-
velop a power counting to obtain information on both,
the SU(3)-breaking and other subleading amplitudes like
penguin and annihilation contributions from data, tak-
ing into account the full set of B → DD modes. While
approximations remain necessary, they are made on a
subleading level compared to previous analyses and can
be tested within the resulting framework. Furthermore,
the analysis will improve in the future due to the higher
precision of the expected data, especially from the LHCb
and Belle II experiments [22–24].

This article is organized as follows: Sec. II provides the
SU(3) analysis of the modes under consideration, includ-
ing SU(3) breaking model-independently. The following
definition of the power counting allows to identify three
quasi-isospin relations. The section closes with a discus-
sion of parametrization invariance (RI), which crucially
affects the extraction of the angle γ. The phenomenolog-
ical analysis is carried out in Sec. III, where the presently
available data are analyzed, sum rules for amplitudes and
rates derived and key observables identified to test the
SM in the future. The following global analysis allows
for predicting various CP asymmetries and one rate in
B → DD that have not been measured yet. In Sec. IV ex-
plicit inclusion of NP contributions in the analysis is dis-
cussed, before concluding in Sec. V; several Appendices
contain additional details on the experimental input, the
SU(3) analysis, the performed fits, and the uncertainty
estimates for future measurements.
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II. B → DD AMPLITUDES IN BROKEN SU(3)

In this section the theoretical analysis of the B → DD
amplitudes is performed. First the necessary SU(3) ex-
pressions including symmetry breaking are derived, then
the power counting for the various suppression effects de-
fined and from that important model-independent am-
plitude relations derived. Furthermore, the relation of
parametrization invariance and SU(3) breaking is dis-
cussed, questioning the sensitivity to the CKM angle γ
of these modes.

A. SU(3) limit

We start by performing the SU(3) analysis in the sym-
metry limit. Ignoring electroweak penguin operators
with very small Wilson coefficients (to which we will re-
turn below), the relevant effective hamiltonian reads

Hb→d,seff =
4GF√

2

∑
U=c,u

∑
D=d,s

λUD

{
2∑
i=1

CiOUi +

6∑
i=3

CiOi

}
≡ Hc +Hu , (1)

with λUD = VUbV
∗
UD, the tree operators Ou,c1,2 and the

penguin operators O3−6, see e.g. Ref. [25]. The sym-
metry analysis is analogous to the one in Ref. [21] (see
also Refs. [26, 27] for early applications), leaving us with
a pure flavour triplet coming with λcD, while the tree
operators Ou1,2 involve the representations R = 3, 6̄, 15.

With the initial state i transforming as a 3̄ and the final
state f as 1⊕ 8, this implies a description with six inde-
pendent reduced MEs. The decay amplitude of a b→ D
decay D is thus expressed as

AD = Ac(D) +Au(D)

=
∑
U=u,c

λUD
∑
R,f

CUf R(D)〈f |R|i〉U , (2)

with the Clebsch-Gordan coefficients CUf R(D) provided in

Table V in Appendix B, in accordance with Refs. [26, 27].

Approximations typically involve arguments about dif-
ferent contractions of the involved operators which are
commonly described in terms of topological amplitudes
[28–31], which can, however, be expressed in terms of
SU(3) MEs [26]. We therefore translate the derived
SU(3) amplitudes into this language, using the topolog-
ical amplitudes introduced in Ref. [31]. Note that the
number of topologies before redefinitions is larger than
the number of SU(3) amplitudes. The description is,
however, equivalent, as long as no assumptions regard-
ing the various MEs are made. The translation is again
given in Appendix B, the resulting amplitude decompo-
sitions in the SU(3) limit are given in Table I.

Mode λcDT λcDA
c λuDP̃1 λuDP̃3 λuDA

u
1 λuDA

u
2

Counting 1 δ2 δ3(5) δ4(6) δ3(5) δ4(6)

B− → D−D0 1 0 -1 0 1 0

B− → D−s D
0 1 0 -1 0 1 0

B̄0 → D−s D
+ 1 0 -1 0 0 0

B̄s → D−D+
s 1 0 -1 0 0 0

B̄0 → D−D+ 1 1 -1 -1 0 0

B̄s → D−s D
+
s 1 1 -1 -1 0 0

B̄0 → D−s D
+
s 0 1 0 -1 0 0

B̄s → D−D+ 0 1 0 -1 0 0

B̄0 → D̄0D0 0 -1 0 1 0 -1

B̄s → D̄0D0 0 -1 0 1 0 -1

TABLE I: B → DD amplitudes in the SU(3) limit, given in
terms of topological amplitudes, see Appendix B for details.
The power counting is explained in the text; the number in
brackets indicates the additional CKM suppression in b → s
transitions.

B. Including SU(3) breaking

SU(3) breaking is induced by the quark mass term,
transforming as an octet when neglecting isospin break-
ing [32] (see also Refs. [30, 33] for this treatment of
symmetry breaking in B decays). The leading SU(3)-
breaking part of Ac consists of the four MEs of its tensor
product with the effective hamiltonian; the correspond-
ing coefficients are listed in Table VI in Appendix B,
and in Table II again translated to topological ampli-
tudes. After redefinitions, there are furthermore five
SU(3)-breaking MEs at first order in Au; as discussed
below, however, for all considered observables they have
only a small impact compared to the present experimen-
tal precision. For the sake of completeness, these coeffi-
cients are presented in Appendix B, but we will only use
the corrections to Ac in the phenomenological analysis.

Extending this analysis to higher orders in the symme-
try breaking yields at most one additional ME in both
amplitudes Au,c: this observation follows from the analy-
sis in Ref. [33], where all potentially contributing MEs are
listed (without their hierarchy). The expressions given
here are therefore already close to the most general result.
The missing pieces, which can be counted as O(ε2), can
be derived from that result and are given in Table VIII
again for completeness.

C. Power counting

As a prerequisite for the phenomenological discussion,
the expected size of the various contributions has to be
classified. This is non-trivial for several reasons, one issue
being that there are various suppression factors involved:

• CKM structure |λuD/λcD| = {Ru, λ2Ru} for
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Mode λcDδT1 λcDδT2 λcDδA
c
1 λcDδA

c
2

Counting δ δ δ3 δ3

B− → D−D0 0 − 1
2

0 0

B− → D−s D
0 1 0 0 0

B̄0 → D−s D
+ 1 0 0 0

B̄s → D−D+
s -1 1

2
0 0

B̄0 → D−D+ 0 − 1
2

1
2

− 1
2

B̄s → D−s D
+
s 0 1 -1 1

B̄0 → D−s D
+
s 0 0 1

2
1
2

B̄s → D−D+ 0 0 -1 0

B̄0 → D̄0D0 0 0 − 1
2

1
2

B̄s → D̄0D0 0 0 1 0

TABLE II: First order SU(3)-breaking corrections to the Ac
part of the B → DD amplitudes, given in terms of topological
amplitudes, see Appendix B for details. The power counting
is explained in the text.

D = {d, s}, respectively, where Ru ≈ 0.35 denotes
a side in the unitarity triangle, implying in both
cases a suppression of Au(D) relative to Ac(D), but
especially for D = s.

• Penguin suppression The amplitudes P̃i have
two contributions: MEs of penguin operators,
which are suppressed by the small Wilson coeffi-
cients C3−6 ∼ few %, and penguin contractions of
the tree operators Ou1,2, which involve additional
interactions to create the c̄c pair, yielding a similar
suppression which is however harder to quantify.

• Annihilation The annihilation graphs AUi involve
the spectator quark, implying naively a suppression
of the order ΛQCD/mb. However, non-factorizable
contributions can give larger contributions, e.g. of
order mD/mB [34]. Nevertheless, these contribu-
tions remain suppressed. An additional suppres-
sion is assumed when the interaction furthermore
involves the creation of a c̄c pair from the vacuum,
which is the case for the amplitudes Aui [15].

• 1/Nc suppression The various topologies can be
classified according to their scaling with the num-
ber of colours Nc = 3 [35, 36]. The scaling for
the amplitudes in Table I reads [31] T,Au1 ∼ 1,

P̃1, A
u
2 , A

c ∼ 1/Nc and P̃3 ∼ 1/N2
c .

To obtain a power counting for the amplitudes, we assign
to (each order of) these effects as well as for SU(3) break-
ing a common factor δ ∼ 20− 30%, yielding T ∼ 1, Ac ∼
δ2, λuDP̃1, λuDA

u
1 ∼ δ3(5) and λuDA

u
2 , λuDP̃3 ∼ δ4(6) for

D = d(s), with an additional factor of δ for the SU(3)
corrections to these amplitudes. Note that these factors
are given relative to the leading amplitude, i.e. relative
to λcD for a b → D decay. While this assignment is
not rigorous, it allows for a systematic classification of

the amplitudes in question. Despite some of these argu-
ments being on the level of topological amplitudes which
can rescatter into each other, the estimates are expected
to be conservative enough to include these effects. Be-
low we will differentiate between predictions expected to
hold generally in the SM, like the quasi-isospin relations,
and others more sensitive to dynamical assumptions; we
furthermore identify experimental tests for both types.

A first important consequence of our power counting is
that all amplitudes Au(D) are suppressed at least like δ2

relative to the leading amplitude Ac(D). In the follow-
ing we will neglect therefore the SU(3) corrections to the
former, given the present experimental precision for the
CP asymmetries; this assumption should be reconsidered
in the future, but then measurements will signal this ne-
cessity and allow for an improved fit in any case. Using
this approximation, 10 unknown MEs remain. While in
principle these modes offer up to 26 observables, with the
limited data available the power counting is necessary to
make a fit viable. To determine the influence of different
assumptions and inputs, three scenarios are introduced in
Sec. III, yielding predictive frameworks and at the same
time testing the power counting.

D. Quasi-isospin relations

In absence of electroweak penguin operators, the b→ s
part in Hc transforms as a pure isospin singlet [37]. This
results in the relations

Ac(B̄0 → D−s D
+) = Ac(B− → D−s D

0) and (3)

Ac(B̄s → D−D+) = −Ac(B̄s → D̄0D0) , (4)

which do not receive SU(3)-breaking corrections, see also
Ref. [30]. Importantly, the same relations hold for the
penguin contributions to Au: extending them to the
full amplitudes, the only corrections stem from highly
suppressed annihilation contributions in Au (λusA

u
1 and

λusA
u
2 at O(δ5(6)) in our power counting for the first

(second) relation) and ∆I = 1 contributions from elec-
troweak penguin operators in Ac, which are heavily sup-
pressed as well. Therefore, we have actually for the full
amplitudes

AB̄0→D−
s D+ ' AB−→D−

s D0 and (5)

AB̄s→D−D+ ' −AB̄s→D̄0D0 , (6)

to very high precision in the SM, even in the presence of
enhanced penguin contributions and still unaffected by
SU(3) breaking. Similarly, for b→ d decays the following
quasi-isospin relation arises:

AB̄0→D−D+ +AB̄0→D̄0D0 ' AB−→D−D0 , (7)

which again receives corrections from annihilation con-
tributions, this time at the level of O(δ3), and ∆I = 3/2
contributions from electroweak penguin operators; this
last relation has also been discussed in Refs. [15, 38].
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Note that |AB̄0→D̄0D0 | is much smaller than the other
two amplitudes. Note furthermore that all three quasi-
isospin relations hold analogously for B → DD∗ and
B → D∗D∗ modes.

Given the very high precision of especially Eqs. (5)
and (6), we would like to comment on the potential influ-
ence of electroweak penguin operators. Their Wilson co-
efficients are very small, which we count conservatively as
O(δ2). But most importantly, their main contributions
stem from the SU(3)-triplet part (including the operators
with the flavour structure (D̄b)(c̄c)), which have tree-
level MEs with the final state; these contributions can
be absorbed into the MEs already present. The remain-
ing contributions, which involve a change in isospin by
∆I = 1, 3/2 (and therefore lead to corrections to Eqs. (3)-
(7)), stem from insertions of the electroweak penguin op-
erators into annihilation diagrams, which then require
additionally the creation of a c̄c pair from the vacuum
and are suppressed by Nc, yielding contributions sup-
pressed at least as O(δ5) in Ac(D) and δ6 in Au(D). We
neglect these tiny terms in the following and consider the
leading ones absorbed into the MEs already present.

In the SM, Eqs. (5) and (6) therefore directly translate
into precision relations for the corresponding rates, unaf-
fected by the SU(3) symmetry breaking, thereby allowing
to test for NP with ∆I = 1. Note that the correspond-
ing ratios of rates are also experimentally advantageous,
since they are independent of fs/fd. Similarly, Eq. (7)
provides a test for ∆I = 3/2 contributions, albeit in this
case with a SM “pollution” of a few per cent. The cor-
responding CP asymmetries are predicted to be small in
all b → s modes; any sizable signal (more than ∼ 3(10)
per cent for tree-(annihilation-)dominated modes and en-
hanced penguins) would imply NP as well. Furthermore,
the potentially large relative corrections for the CP asym-
metries provide access to the amplitudes Aui . We discuss
additional sum rules for amplitudes and observables in
Sections III C and III D.

E. Reparametrization invariance

Before turning to the phenomenological analysis, we
would like to comment on an effect prohibiting in some
situations the extraction of the weak phase γ, usually
dubbed “reparametrization invariance” (RI) [39–41]: the
basic observation is that, depending on the structure of
the decays in question, there exist transformations that
leave the decay amplitudes form-invariant, but change
the apparent weak phase. As a result, it is impossible
in these situations to extract γ without knowledge of the
MEs; only the values 0 and π can be excluded from data.
This situation usually changes when considering more de-
cay modes which are related by flavour symmetries, since
the different MEs enter with different weight, breaking
the invariance. This is confirmed for B → DD decays by
observing that the coefficient matrix given in Table I has
full rank when including the CKM factors.

But the situation is actually more subtle. First of all,
considering e.g. only b → d modes, which are expected
to have larger direct CP asymmetries and thereby in-
creased sensitivity to γ, we still observe an approximate
RI, broken only by the MEs Au1,2. The same statement
holds when considering only b → s modes. Again, when
combining the two sets, the RI is broken, even when ne-
glecting Au1,2. However, we observe that the inclusion of
unknown SU(3)-breaking MEs can actually restore the
approximate RI: the additional MEs are capable of ab-
sorbing the RI-breaking terms, implying again no sensi-
tivity to γ as long as Au1,2 can be neglected. This is the
analytical reason behind the observation of very large un-
certainties for γ in the presence of general SU(3) break-
ing in Ref. [15]. Related to the RI is a reduced rank
of the coefficient matrix including the CKM factors: the
combinations of MEs entering are such that the differ-
ent relative weights from λud, λus do not enter explicitly,
allowing to perform the redefinition for the full set of
amplitudes.

It should be emphasized that the (assumed) knowledge
of one or several of the MEs will break the invariance, as
will to some extent restrictions on the size of MEs. For
example, the assumption of factorizable SU(3) breaking
in Ref. [16] enables the extraction of γ from B → D+D−

and Bs → D+
s D
−
s in that case. However, the theoretical

error related to this assumption is hard to quantify, pro-
hibiting a precision extraction. Also applying our power
counting restricts the freedom to redefine the various pa-
rameters, but again high precision seems unachievable
unless there is substantial theoretical progress in calcu-
lating the relevant hadronic amplitudes explicitly.

We will therefore concentrate on the mixing phase φs,
the extraction of which remains mostly unaffected by
these observations, and use external input for φd and
γ which breaks the invariance and allows for extracting
hadronic parameters. Note that using the SM central
value for γ is no restriction: due to the RI, also NP am-
plitudes can be written with that phase; only the in-
terpretation of the hadronic parameters changes in this
case.

III. PHENOMENOLOGICAL ANALYSIS

After a review of the experimental situation for B →
DD decays we define three scenarios to analyze the rel-
ative importance of the various dynamical suppression
effects. Next we derive for each of them sum rules for
amplitudes and observables. We discuss the data for
branching ratios and CP asymmetries with respect to the
amplitude structure obtained in the last section, before
discussing the results of the global analysis and its future
prospects.
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A. Experimental situation

Until recently, only little data were available for B →
DD decays. This situation has improved, starting by first
measurements of Bs decays by the CDF [13, 42] and Belle
[14, 43] experiments, and more recently by results from
the LHCb experiment [4–6]. Specifically, Ref. [4] provides
relative branching ratios for all Bs modes and several B0

modes as well, leaving only the rate for B0 → D+
s D
−
s

undetermined. In addition, several measurements of CP
asymmetries are expected from LHCb in the near future,
given the much larger data sample that has become avail-
able since. In the farther future, also the Belle II experi-
ment is expected to deliver data for these modes. These
experimental developments are a main motivation of the
present study.

In Table III, we list the presently available data for all
B → DD modes. In the cases where relative branch-
ing ratios have been measured, we use them in the nu-
merical analysis, providing here the absolute ones only
for convenience. For B− → D−s D

0, B̄0 → D+D−

and B̄s → D+
s D
−
s , we combine the very recent mea-

surements by the LHCb [4] and Belle [12, 14] collabo-
rations with those considered already in the latest PDG
update [7]. Furthermore we include a correction stem-
ming from Γ(Υ(4S) → B+B−)/Γ(Υ(4S) → B̄0B0) =
1.055±0.025 [7] for the B factory results for B̄0 → D+D−

and B− → D0D−.
For a decay D of a B̄ meson (at t = 0) into a CP

eigenstate f , we use the following notation for the time-
dependent CP asymmetries:

aCP(D; t)≡ Γ(D; t)− Γ(D̄; t)

Γ(D; t) + Γ(D̄; t)

=
SCP(D) sin(∆mt) +ACP(D) cos(∆mt)

cosh(∆Γt/2)−A∆Γ(D) sinh(∆Γt/2)
.(8)

The coefficients for mixing-induced CP violation SCP(D),
direct CP violation ACP(D) and the rate asymmetry
A∆Γ(D) are defined in Appendix A. An important is-
sue is the difference between the results from the BaBar
[11] and Belle [12] experiments for the time-dependent
CP asymmetry in B0 → D+D−. The BaBar result lies
within the physical region and is consistent with the ex-
pectations |∆SCP(B0 → D+D−)|, |ACP| � 1 discussed
below, where

∆SCP(D) ≡ −ηfCPSCP(D)− sinφ(D) (9)

is the “penguin shift” and φ(D) = φd(φs) for a B0 (Bs)
decay. The Belle result, on the other hand, is outside
the physical region (defined by S2

CP +A2
CP ≤ 1), indicat-

ing large values for the direct CP asymmetry as well as
∆SCP(B0 → D+D−). This makes the averaging of the
two results problematic. The two datasets defined below
are used to demonstrate the influence of these differences.

For modes with a low rate, it might be experimentally
advantageous to start by measuring the time-integrated

Mode BRtheo/10−3 ACP/% SCP/%

B− → D−D0 0.37± 0.04§ 3± 7 [7] —

B− → D−s D
0 9.4± 0.9 —

B̄0 → D−s D
+ 7.6± 0.7 −1± 2∗ [12] —

B̄s → D−D+
s 0.30± 0.04 —

B̄0 → D−D+ 0.226± 0.023§ (a) 31± 14 [8] −98± 17 [8]

BaBar [11]: (b) 7± 23 −63± 36

Belle [12]: 43± 17 −106+22
−16

B̄s → D−s D
+
s 4.6± 0.5

B̄0 → D−s D
+
s ≤ 0.036† [10]

B̄s → D−D+ 0.27± 0.05

B̄0 → D̄0D0 0.013± 0.006

B̄s → D̄0D0 0.19± 0.04

TABLE III: Available data for B → DD decays. The val-
ues for the branching ratios correspond to a fit to the data
in Table IV (statistical and systematic uncertainties added in
quadrature), taking the finite width of the Bs into account,
see text. The labels (a) and (b) indicate the different inputs
for the two datasets.
§: Correction for Γ(Υ(4S) → B0B̄0) 6= Γ(Υ(4S) → B+B−)
included. ∗: Statistical uncertainty only, not used in the nu-
merical analysis. †: Upper limit at 90% CL, not used in the
numerical analysis.

CP asymmetry. However, this is only feasible for the Bd
modes, since the oscillations in the Bs system are so fast
that the asymmetry is mostly averaged out.

While the values for the branching ratios quoted in Ta-
ble IV correspond to the time-integrated rates, the theo-
retical expressions for the rates below are for t = 0. This
difference is relevant only for Bs decays into CP eigen-
states; it is included following Ref. [44], using

BRtheo =
1− y2

s

1−A∆Γ(D) ys
BRexp , (10)

where the value employed for the relative width differ-
ence is ys ≡ ∆Γs/(2Γs) = 0.067± 0.008 [8]. The relative
rate difference A∆Γ of heavy and light Bs eigenstates to a
given final state vanishes for flavour specific decays, and
is generally final state dependent. It is related to the CP
asymmetries by (A∆Γ(D))2 + (SCP(D))2 + (ACP(D))2 =
1; we use for the calculation the theoretical expectation
Ab→s∆Γ (D) ≈ cosφs ≈ 1, with a positive sign determined
by the positive CP eigenvalue of the relevant final states,
implying a rather large correction of ∼ 7% for the cor-
responding branching ratios. This result follows already
from the observation that the relevant decays, i.e. Bs
decays into CP eigenstates, are all b → s transitions:
the CKM suppression alone for ACP and ∆SCP, together
with |φs| ∼ O(%) suffices to predict |Ab→s∆Γ | ' cosφs =
1+O(10−3). This is even strengthened by dynamical con-
siderations, leading to 1 − |Ab→s∆Γ | . 10−3, implying ex-
cellent null tests of the SM from these observables. From
these considerations the prediction for the effective life-
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times of these modes reads

τeff(B̄s → DD|CP ) = (1.421± 0.013) ps, (11)

using τs = (1.516 ± 0.008) ps [8], in agreement with the
experimental result in Ref. [6], τeff(B̄s → D−s D

+
s ) =

(1.379± 0.026± 0.017) ps.
Finally, we point out the importance of correlations be-

tween the measurements for Bs decays, especially those
induced by the ratio of production rates fs/fd. This ra-
tio provides already the dominant systematic uncertainty
for the ratios involving Bs decays in Ref. [4] (except for
B̄s → D̄0D0) and is likely to dominate soon the total
uncertainty in various decays. At least in the latter situ-
ation the inclusion of the resulting correlations is manda-
tory and provides in addition the possibility to profit
from future potentially more precise determinations of
this quantity. For the LHCb results we therefore use this
ratio explicitly in the numerical analysis, with its experi-
mental value fs/fd|LHCb = 0.259± 0.015 [45, 46]; for the
CDF and Belle measurements this is not necessary, since
the corresponding ratio, different from the one at LHCb,
appears only once.1

B. Scenarios

Given the presently available data, the necessity for ap-
proximations on a subleading level remains. To this aim
again the power counting is applied. However, this count-
ing may be spoiled when the schematic scaling with δ is
violated by one or more of the discussed effects. There-
fore, we define three scenarios, corresponding to different
dynamical situations, which will help to judge the effec-
tiveness of the various suppression mechanisms:

S1: SU(3) limit We start by assuming the SU(3) hi-
erarchy to be the strongest one and neglecting all
SU(3)-breaking contributions; given the discussion
above, we do not expect a very good description of
the data. The advantage of this limit is that we
can test for the necessity of SU(3) breaking, and
potentially also for subleading amplitudes in Au.

S2: Standard counting Here the assumption is for all
subleading MEs to obey the power counting. This
corresponds to the situation generically expected
in the SM, already allowing for rather conservative
ranges for the subleading contributions. The first
contribution to Au arises with the standard count-
ing (S2))on the δ3(4) level for the tree-dominated
(annihilation) modes, implying typical direct CP

1 Note, however, that we use for the computation of the Tevatron
value for BR(B̄s → D−s D

+
s ) the ratio fs/fd|Tev = 0.311± 0.037

[8] instead of the average of the Tevatron and LEP results used
in Ref. [13].

asymmetries of a few per cent (10%) for b→ d de-
cays and even less for b→ s modes,2 together with
Γ(D) ≈ |Ac(D)|2.

The data for the CP asymmetries in B̄0 → D+D−

contradict the assumption in this scenario in part,
as the Belle measurement indicates a sizable di-
rect CP asymmetry as well as a deviation from
∆SCP(B → D+D−) ≈ 0. This second scenario
therefore corresponds to resolving the tension be-
tween the BaBar and Belle measurements in favour
of the former.

S3: Enhanced penguins The final scenario is defined
by assuming no additional suppression for penguin
MEs (as motivated by the largish CP asymmetries
measured by Belle), such that Au arises on the δ2

level. The ranges outside of S2, but inside the ones
from this scenario can be interpreted as either ex-
tremely conservative SM predictions or already as
NP.

These scenarios allow for distinguishing different dynam-
ical suppression effects. Significant measurements of ob-
servables outside the predictions of scenario 3 can be con-
sidered a NP signal. The technical implementation of the
power counting is that each real parameter x related to
a subleading ME of order n is restricted to |x| ≤ δn−1/2,
choosing δ = 30%.

C. Amplitude sum rules

The scenarios defined in the previous subsection imply
relations between the amplitudes which hold up to SU(3)-
breaking terms in S1 and up to corrections of higher or-
ders in δ for scenarios 2 and 3. These can be used to
further test the underlying assumptions. The number of
sum rules is determined by the rank of the full coefficient
matrix of the hadronic amplitudes, including the CKM
factors; in general there exist sum rules even if the num-
ber of hadronic MEs equals the number of decays. This
is illustrated by the fact that there are two sum rules that
hold exactly in all scenarios discussed here, reading

AB̄0→D−
s D+ −AB−→D−

s D0 +AB̄s→D−D+ +AB̄s→D̄0D0

=
λus
λud

(AB̄0→D−D+ −AB−→D−D0 +AB̄0→D̄0D0) , (12)

AB̄0→D−
s D+ −AB̄s→D−

s D
+
s

+AB̄s→D−D+ =

λcs
λcd

(
AB̄0→D−D+ −AB̄s→D−D+

s
−AB̄0→D−

s D
+
s

)
. (13)

2 Note that in the fit we parametrize all MEs relative to T . Since
we do not impose |Au2/Ac|, |P̃3/Ac| ∼ O(δ(3)) additionally, larger
values for ACP might be allowed in the fit when |Ac| is smaller
than its expectation.
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The first of these equations corresponds to a linear com-
bination of the three quasi-isospin sum rules, Eqs. (5)-
(7), in which the very small terms in Au breaking those
relations cancel as well. It is only broken by an SU(3)-
breaking correction to the annihilation amplitudes in Au.
In the latter relation, an analogous cancellation happens
for the more generic SU(3)-breaking contributions, in-
cluding even the first-order ones to Au. However, the
fact that these sum rules involve a large number of am-
plitudes renders them phenomenologically somewhat less
useful. Note that the ratios of CKM factors appearing
here are approximately invariant under CP transforma-
tions.

In the SU(3) limit (S1), both sides of relation (13)
vanish separately, and similarly Eq. (12) can be separated
into two parts. The resulting four simpler rules read

AB̄s→D−D+
s

+AB̄0→D−
s D

+
s

= AB̄0→D−D+ , (14)

AB̄0→D−
s D+ +AB̄s→D−D+ = AB̄s→D−

s D
+
s
, (15)

which can be understood as a consequence of U -spin sym-
metry, see also Ref. [15], and two more generic SU(3)
relations,

AB̄s→D−D+ +AB̄s→D̄0D0

=
λus
λud

[
AB̄0→D−

s D
+
s

+AB̄0→D̄0D0

]
, (16)

AB̄0→D−
s D+ −AB−→D−

s D0

=
λus
λud

[
AB̄s→D−D+

s
−AB−→D−D0

]
. (17)

Furthermore, as noted above, Au(D) ≤ O(δ3) holds for
all modes.

In S2, there are six sum rules which hold up to O(δ3)
or better. They can be chosen as Eqs. (5)-(7), Eq. (13),
and two simpler rules3

AB̄0→D−
s D

+
s

= −AB̄0→D0D̄0 and (18)

AB̄s→D−D+ =
λcs
2λcd

(AB̄0→D−
s D

+
s
−AB̄0→D0D̄0),(19)

both broken by δAci and Aui . Note that these latter rules
are broken formally at the same order, but have relative
corrections of order δ. In this scenario Au(D) ≤ O(δ3)
holds again for all modes. The number of sum rules can
be easily understood from the fact that there are only
four MEs up to O(δ2) and ten amplitudes.

In S3, actually the same relations hold on the same
level, despite the assumption of enhanced penguins (lead-
ing to Au(D) ≤ O(δ2), only). This fact is related to the
RI discussed above and demonstrates that identical sum
rules can represent different physical situations.

3 The form in which Eq. (19) is given is such that it is bro-
ken only by δAc1; it can be simplified to AB̄s→D−D+ =
λcs/λcdAB̄0→D−

s D
+
s

when both corrections δAci vanish.

D. Rate sum rules

The fact that in the SU(3) limit the decays have pair-
wise equal decompositions, see Table I, results from the
U -spin subgroup of SU(3). As a consequence, the well-
known equality

Γ(Db→s)
Γ(Db→d)

= −ACP (Db→d)
ACP (Db→s)

(20)

holds for each pair [16, 47]; these relations receive correc-
tions of O(δ) when breaking SU(3). They are examples
of rate sum rules, i.e. sum rules formulated directly on
the level of observables instead of amplitudes. These are
easier to test experimentally; all linear relations between

ΓD =
Γ(D) + Γ(D̄)

2
and ∆ΓD =

Γ(D)− Γ(D̄)

2
(21)

can be found with an algorithm recently discussed in
Ref. [48], which will be applied in the following. From the
amplitude sum rules derived above, on the other hand,
one can infer typically only inequalities for observables,
but they can still be tested in the context of a global
analysis. The quasi-isospin sum rules imply scenario-
independent sum rules for the rates:

ΓB̄0→D−
s D+ = ΓB−→D−

s D0

(
1 +O(δ5)

)
, (22)

ΓB̄s→D̄0D0 = ΓB̄s→D−D+

(
1 +O(δ4)

)
, (23)

ΓB̄0→D−D+ = ΓB−→D−D0

(
1 +O(δ2)

)
. (24)

They hold analogously for B → DD∗ and B → D∗D∗

modes. Since there are two sets of modes in B → DD∗,
we can define the following double-ratio (analogously, two
pairs of transversity amplitudes can be chosen for B →
D∗D∗):

BRB̄0→D∗−
s D+

BRB−→D∗−
s D0

/
BRB̄0→D−

s D∗+

BRB−→D−
s D∗0

= 1 +O(δ5) . (25)

The size of the corresponding CP asymmetries depends
on the scenario, as do other additional sum rules.

For S1, the rate sum rules correspond simply to
Eq. (20); furthermore, ACP(D) ∼ O(δ5(4)) holds for
all tree-dominated (annihilation) b → s modes and
ACP(D) ∼ O(δ3(2)) for the b → d ones. This renders
the relations in Eq. (20) very hard to test experimen-
tally. However, they can be replaced by the following re-
lation for the tree-dominated (annihilation) U -spin part-
ner modes:

Γ(Db→s)
Γ(Db→d)

=

∣∣∣∣λcsλcd

∣∣∣∣2 [1 +O
(
δ3(2)

)]
. (26)

In S2, the expectations for the individual CP asym-
metries remain the same as in S1, while Eq. (26) holds
only up to O(δ). Since also Eqs. (18),(19) hold only up
to relative order O(δ), the same is true for the resulting
rate relations:

ΓB̄0→D−
s D

+
s

= ΓB̄0→D0D̄0 (1 +O(δ)) , (27)
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∣∣∣∣2 ΓB̄s→D−D+ = ΓB̄0→D−

s D
+
s

(1 +O(δ)) . (28)

They are dominantly broken by δAci ; while both are bro-
ken by δAc2, the first of these relations survives in the
presence of δAc1. This implies that they can be used to
test for the size of these SU(3)-breaking contributions.

In S3, all individual CP asymmetries are expected to
be larger, ACP(D) ∼ O(δ4(3)) for tree-dominated (anni-
hilation) b→ s modes and ACP(D) ∼ O(δ2(1)) for b→ d
ones. In this case, the relations

A
B̄0→D−

s D
+

CP = A
B−→D−

s D
0

CP [1 +O(δ)] and (29)

AB̄s→D̄0D0

CP = AB̄s→D−D+

CP [1 +O(δ)] (30)

hold, but given the still small absolute size of all b → s
asymmetries, this will again be hard to test. Finally,
there is one non-trivial rule,

∆ΓB̄s→D−D+
s

+ ∆ΓB̄s→D−
s D

+
s

+ ∆ΓB̄0→D−D+ =(
2∆ΓB−→D−D0 + ∆ΓB−→D−

s D0

)
[1 +O(δ)] ,(31)

which can be experimentally verified in the future as an-
other crosscheck of the assumptions in this scenario.

E. Branching ratios and SU(3) breaking

Eqs. (22)-(24) provide relations between decay rates,
two of which hold to very high precision in the SM.
Eq. (23) is experimentally well fulfilled within the still
sizable uncertainties. Using this relation, the measure-
ments can be combined to predict for the SM

BR(B̄s → D̄0D0) = BR(B̄s → D−D+)

= (0.21± 0.03)× 10−3 . (32)

The inequality implied by Eq. (7) is fulfilled as well,
while Eq. (24) holds only marginally; this indicates a rel-
atively large annihilation amplitude. More importantly,
the data show a tension at the 2σ-level for Eq. (22): the
corresponding ratio of branching ratios, as measured in
Ref. [4], is expected to decrease to ∼ 1.08 with addi-
tional data, while a confirmation of the present central
value with improved precision would challenge the SM:

• For the corrections discussed above to yield an ef-
fect of this size, the power counting would have to
be completely invalidated, for which there are no
indications.

• Isospin-breaking corrections to Eq. (5) could stem
from different production rates of neutral and
charged B mesons, assumed to be equal in Ref. [4],
or from the decay rates themselves. However, both
effects are too small to explain the present central
value. Note that the ratio of production rates can-
cels for the double-ratio defined in Eq. (25). This
double-ratio is consistent with unity with present
data [7], within rather large uncertainties.

Λcs A
B- ®D- D0

Λcd A
B- ®Ds

- D0

Λcd A
B0®Ds

- D+

Λcs A
Bs ®D- Ds

+

Λcs A
B0®D- D+

Λcd A
Bs ®Ds

- Ds
+

Λcs A
B0®D0 D0

Λcd A
Bs ®D0 D0

0.0 0.5 1.0 1.5 2.0

FIG. 1: Experimentally extracted ratios of amplitudes for U-
spin partners, cf. Eq. (26), consistent with the expected small
to moderate SU(3) breaking.

A confirmation at the level of the present central value
would therefore be a clear sign for a ∆I = 1 NP contri-
bution; this possibility is further discussed in Sec. IV.

To get a first impression of the size of SU(3) break-
ing in these decays, only the leading amplitudes T and
Ac are considered. In this limit, all direct CP asymme-
tries vanish and Eq. (20) is replaced by Eq. (26). The
corresponding measurements of ratios of amplitudes are
plotted in Fig. 1, and indicate small to moderate SU(3)
breaking. This strict limit allows furthermore to extract
several values for T (assumed without loss of generality
to be real and positive in the following) and Ac from
data, separately for the b → s and b → d modes. Con-
sistent values are extracted for b → s and b → d and
within each class, showing again no sign of large SU(3)
breaking, and also no sign of penguin contributions af-
fecting the rates. The relative size of the two considered
amplitudes is |Ac/T | ∼ 15%, with a strong phase differ-
ence arg(Ac/T ) ∼ π. While the magnitude is consistent
with the expectation from the power counting, O(δ2) –
although on the high side, as already expected from the
discussion above – it is questioning the common neglect
of this amplitude in phenomenological analyses. The ab-
solute value is about the size of the estimate in Ref. [34]
(albeit the real part of the ratio has the opposite sign),
but smaller than the result in Ref. [49]. On the other
hand the measured values for the branching ratios of the
annihilation-dominated modes seem consistently larger
than the estimates in Ref. [50]. The size of |Ac| can ac-
tually account for the fact, emphasized in Ref. [4], that
the ratio BR(B̄s → D+

s D
−
s )/BR(B̄0 → D+D−s ) shows a

significant deviation from the naive expectation of unity
holding for |Ac| � |T | in the SU(3) limit: using the U -
spin relation (15), a range compatible with the other mea-
surements is obtained for a relative strong phase around
π between T and Ac.

Together these observations indicate the validity of the
power counting and a small to moderate SU(3) break-
ing of about 10 − 30% on the amplitude level. While
sizable contributions to Au(D) are not excluded, SU(3)-
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breaking contributions in Ac(D) seem to be sufficient to
describe the data for branching ratios for the considered
modes. While sizable contributions to Au(D) are not
excluded, SU(3)-breaking contributions in Ac(D) seem
to be sufficient to describe the data for branching ratios
for the considered modes. Note that the apparent anti-
alignment of T and Ac, chosen here to be along the real
axis, implies that Re(Au(D)) can be relatively large in
all modes without inducing sizable direct CP violation.

F. CP violation

CP-violating observables usually constitute the main
interest in B → DD decays. They provide access to
fundamental parameters of the SM as well as a high sen-
sitivity to NP. However, data for the branching ratios,
apart from being important in their own right, are also
necessary to obtain sufficient control over the hadronic
uncertainties to extract precision results.

Sensitivity to φs stems mainly from time-dependent
measurements in B → D+D− and Bs → D+

s D
−
s ; the

latter is, from the theoretical point of view, similarly
“golden” as Bs → J/ψφ. Experimentally, however, the
J/Ψ mode is advantageous despite the necessity of an
angular analysis. The extraction of the mixing phase φd
is difficult, since it enters only in b → d transitions for
B → DD. It has therefore been proposed to use it as
an auxiliary channel, constraining the shift due to pen-
guin contributions in SCP(B̄s → D−s D

+
s ) [16]. However,

this kind of strategy requires additional information to
control the influence from SU(3) breaking [21]; this is
achieved within the larger framework developed in this
article, allowing for model-independently extracting the
potential shift in φs due to penguin pollution.

Regarding the CKM angle γ, the situation is very com-
plicated: first of all, obviously significantly measured
direct CP asymmetries are required to obtain sensitiv-
ity. More importantly, the approximate RI discussed in
Sec. II E renders a precision extraction impossible with-
out further theory input. We will therefore use external
input for this phase.

The comparison of the extracted value for φs with the
one obtained independently yields information on NP.
While the extraction assuming Au ≡ 0 is trivial once the
necessary data are available, this article aims at improv-
ing the resulting precision by taking subleading contri-
butions into account. As noted in the introduction, this
is of special importance since all measurements so far in-
dicate that NP does not yield large contributions, which
therefore compete with the subleading terms in the SM.
Given the possibility discussed in this article to include
corrections to the already rather clean SM predictions
for various CP asymmetries in these modes, B → DD
decays provide an opportunity for a clean NP search.

The direct CP asymmetries and penguin shifts in b→ s
modes are expected to be tiny in the SM for all decay
modes: below one (few) per cent in S2 for tree-dominated

(annihilation) modes and even with enhanced penguins
below few (ten) per cent. A significant measurement of
a direct CP asymmetry or penguin shift in a b→ s mode
outside these ranges would therefore constitute a “smok-
ing gun” signal for NP. Additionally, the difference of
asymmetries for the quasi-isospin related modes provide
direct access to the amplitudes Aui .

b→ d modes provide additional sensitivity: while they
can have a larger SM “background”, there are strong cor-
relations which again allow to test the SM. Despite the
limited available data for CP asymmetries, these correla-
tions provide already information on the modes not mea-
sured yet.

CP asymmetries in the modes without a tree contri-
bution offer complementary information: due to the sup-
pression of the leading amplitude, they are expected to be
larger than their counterparts in tree-dominated modes
in the SM; by the same token, the relative influence of
NP operators is enhanced. While a single measurement
would be insufficient to claim NP, sensitivity is provided
by the patterns induced by the flavour symmetry in the
SM as well as in given NP models. For example, the SM
asymmetries are expected to be correlated due to the
SU(3)-limit relation Eq. (20), softened by SU(3) break-
ing. For the corresponding Bs modes, the integrated
asymmetries are tiny: they are b → s decays with very
small asymmetries to begin with, but are then addition-
ally suppressed by a factor ∼ 1/xs ∼ few%.

Direct CP asymmetries and penguin shifts have fur-
thermore the advantage of providing a clear signal for
Au 6= 0; a significant measurement implies a lower bound
on |Au| in the corresponding channel. However, as rela-
tive strong phases are involved, the combination of dif-
ferent measurements is necessary before a small |Au| can
be deduced from, e.g., a small direct CP asymmetry.

The direct CP asymmetries for B− → D0D− and
B̄0 → D+D−s are measured to be small and consistent
with zero, as expected in S2.4 The difficulties regard-
ing the available data for the time-dependent CP asym-
metry in B̄0 → D+D− have already been mentioned in
Sec. III A; while the BaBar data are compatible with van-
ishing ∆SCP and ACP, Belle obtains large central values
for both observables, with a significance of around two
standard deviations each, but in the unphysical region.
The confirmation of large values would imply a violation
of the generic SM power counting (S2) which predicts
asymmetries in tree-dominated b→ d decays below 10%.
Separate analyses for the two datasets are performed, us-
ing either the HFAG average of the two results (a) or the
BaBar result only (b), in order to highlight the different

4 As ACP(B̄0 → D+D−s ) has been obtained as a crosscheck in
the analysis of B0 → D+D− without assessing the systematic
uncertainties we do not use the result in the global fit, but see it
as another indication for Au being of the expected size. A refined
measurement of this mode would be of interest in the context of
the present analysis.
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predictions. In any case, new results are expected for
this mode as well, hopefully resolving the issue. Note
that, as a remnant of Eq. (7), the leading contributions
to B̄0 → D−D+ and B− → D−D0 are equal including
their SU(3)-breaking parts, implying the corresponding
CP asymmetries to be equal as well up to a few per cent.
This implies a SM value closer to the BaBar result. More
quantitative predictions are made in the context of the
following global analysis.

G. Global analysis

The global analysis provides quantitative control
over SU(3)-breaking contributions and other sublead-
ing terms. The focus lies on the scenarios defined in
Sec. III B. First their compatibility with the data is ana-
lyzed in global χ2-fits, before presenting the predictions
for branching ratios and CP asymmetries.

The χ2 analysis allows for the following observations
(see Appendix C for details):

• S1 generally does not describe the data well.

• S2 provides an excellent fit, the best of any sce-
nario, since the data are in accordance with SM
expectations. The fit shows no sign of imaginary
contributions to Ac and does not improve when in-
cluding enhanced penguins or symmetry breaking
for Ac.

• For dataset (a), only S3 yields a reasonable fit.

• Dataset (b) is significantly preferred over dataset
(a) in the sense that S2 is viable, but the datasets
lead to similar results when allowing for arbitrary
penguin contributions.

• In all scenarios the most important amplitude apart
from the tree contribution is Ac, which is obvious
from the significant measurements of annihilation
modes in Ref. [4]. The fits confirm the previous
observations that |Ac| is on the large side, |Ac|/T ∈
[0.1, 0.27] (95%), and has a negative real part.

• The fits are consistent with small to moderate
(10 − 30%) SU(3) breaking. The imaginary parts
of δTi are only loosely constrained, since they enter
observables always doubly suppressed.

• No indication is found for sizable contributions
from δAci or Aui .

In the following results from S2 – corresponding to the
SM predictions – and S3(a/b) are considered in more de-
tail, illustrating the effect of enhanced penguins on the
one hand and the different results for the CP asymme-
tries in B̄0 → D−D+ on the other. In the fit subleading
terms such as δAci and Aui are included, but restricted to
lie within the (conservative) ranges expected from their

FIG. 2: SM fit result for BR(B̄0 → D̄0D0) vs. ∆BR at
95% CL (S2,3a/b together in purple), together with the ex-
perimental results (yellow).

power counting. As so far data for CP-violating observ-
ables in B → DD are scarce, the numerical analysis in
this section can only be understood as a first step, pro-
viding a strategy for the future; specifically, the data do
not yet suffice to extract a competitive value for the weak
phases φs, for which therefore external input is used [2].
Nevertheless, the present measurements already yield in-
teresting predictions.

In order for the relations between observables and MEs
to be more transparent, we list in Table IX examples
for combinations of observables that are sensitive to a
specific parameter to leading order in the power counting.

For the results regarding branching ratios it is not dif-
ferentiated between the different scenarios, since the re-
sults are almost identical. Conservative predictions re-
quire the inclusion of the SU(3)-breaking terms also for
the annihilation modes: for example, the fit yields the
prediction

BR(B̄0 → D−s D
+
s ) ∈ [0.3, 2.9]× 10−5 (1σ) , (33)

∈ [0.1, 3.8]× 10−5 (2σ) , (34)

while neglecting δAci and Au for these modes would yield
BR(B̄0 → D−s D

+
s ) = (1.12 ± 0.15) × 10−5, using the

experimental values for the other annihilation-dominated
modes.

The main relations sensitive to NP are Eqs. (5), (6)
and to some extent (7). The data confirm these relations,
showing however some tension with Eq. (5), as discussed
above. Fig. 2 visualizes aspects of Eq. (7). It results in
a correlation between the difference of branching ratios

∆BR ≡ BR(B− → D0D−)− rτ,PSBR(B̄0 → D−D+) ,
(35)

where rτ,PS denotes the ratio of lifetimes and phase space
factors for the two decays, and BR(B̄0 → D̄0D0), result-
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ing in both quantities being stronger constrained from
the fit than by data directly:

∆BR ∈ [0.09, 0.16]× 10−3 (1σ) , (36)

∈ [0.05, 0.19]× 10−3 (2σ) , (37)

to be compared with ∆BR|exp = (0.144± 0.046)× 10−3,
cf. Table III, and

BR(B̄0 → D̄0D0) = (1.4± 0.5)× 10−5 . (38)

The latter result demonstrates again the substantial im-
pact of SU(3) breaking for the annihilation amplitudes,
since the SU(3)-limit prediction from data is BR(B̄0 →
D̄0D0) = (1.19 ± 0.16) × 10−5. Therefore all branching
ratios of annihilation modes are better constrained in the
fit than by their individual measurements available so far;
improved data will allow to restrict the SU(3) breaking
for these modes, test the quasi-isospin relation Eq. (6)
and the correlation from Eq. (7).

In Figs. 3 and 4 the presently available data for CP
asymmetries are shown together with the fit results in
the different scenarios. Note that, as a consequence of
Eq. (7) and the suppression of A(B̄0 → D̄0D0), the fit
result for ACP(B̄0 → D−D+) is already nontrivial with
present data (note, however, that in S2 the horizontal
limitation is due to parameter restrictions, only the di-
agonal bounds reflect this correlation). Specifically, the
predictions clearly differ for the two datasets, as can be
seen in Fig. 3: even with enhanced penguins, the present
central value in dataset (a) is very large. The confirma-
tion of large values with higher precision could again in-
dicate NP. Furthermore, as can be seen in Fig. 4, in S3(a)
the prediction for ∆SCP(B̄s → D−s D

+
s ) is shifted to posi-

tive values by the measurement of SCP(B̄0 → D−D+), to
be compared with a distribution around zero for S3(b).
The visible correlation stems from the relation

∆SCP(B̄s → D−s D
+
s )

∆SCP(B̄0 → D−D+)
= −λ2 cos(φs)

cos(φd)
+O(δ3) . (39)

More generally, since the shift due to penguin pollu-
tion does not exceed the small value sinφs in any sce-
nario, all of them predict a very small, positive result
for SCP(B̄s → D−s D

+
s ), the range of which can be fur-

ther reduced with additional data, specifically a smaller
uncertainty in SCP(B̄0 → D−D+).

In Fig. 5, the predicted correlation between direct
and mixing-induced CP asymmetries in B̄s → D−s D

+
s

is shown. It is almost absent in S2 and S3(b), while in
S3(a) negative values of ∆SCP tend to imply negative
values of the direct CP asymmetry.

The correlation for the CP asymmetries of B̄0 →
D−s D

+ and B̄s → D−D+
s is shown in Fig. 6. Their

correlation - stemming from Eq. (20), but including
symmetry-breaking contributions - allows for example
to restrict the range of the b → s mode further by a
measurement of the b → d one or to test the SM when
both asymmetries are measured. Note that the large

FIG. 3: SM fit result for ACP (B̄0 → D−D+) vs. ACP (B− →
D−D0) for the datasets (a) (upper plot) and (b) (lower plot),
together with the corresponding experimental results. Here
and in the following blue areas indicate fits in S3 (light blue
for dataset (a) and dark blue for (b)) and red the result in
S2.

possible range for ACP(B̄s → D−D+
s ) is not generically

expected: it corresponds to the situation in which the
penguin amplitude is largely enhanced and additionally
the leading amplitude Ac reduced compared to T due to
SU(3) breaking. Note again that for S3 the CP asymme-
try in B− → D−s D

0 is approximately equal to the one in
B̄0 → D−s D

+, cf. Eq. (29).

As mentioned before, the CP asymmetries for the
modes without a tree contribution tend to be larger than
their tree-dominated counterparts. However, since at
present there is no measurement of such a CP asymmetry
available, the global fit does not yield more information
than the general correlations already discussed.
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FIG. 4: SM fit result for SCP (B̄s → D−s D
+
s ) vs. SCP (B̄0 →

D−D+) for the datasets (a) (upper plot) and (b) (lower
plot), together with the corresponding experimental results
for SCP (B̄0 → D−D+). Colours as in Fig. 3.

H. Prospects for LHCb and Belle II

In order to estimate the theoretical uncertainty in the
extraction of the weak phase φs from B → DD in the
future, we perform a fit with experimental uncertain-
ties expected in 2022, see Appendix D. As is illus-
trated in Fig. 7, the penguin pollution can be well con-
trolled within our approach, so the limiting factor will
be the experimental precision for the key observables like
SCP (B̄s → D−s D

+
s ).

The quasi-isospin sum rules provide an alternative
method to search for NP. Here very interesting tests are
possible already with the available 3 fb−1 from LHCb and
more will be in the farther future. For a potential signif-
icant measurement of an intermediate difference of 5 to
10% in one mode, the issue would be to clearly tell the

FIG. 5: Predictions for ACP (B̄s → D−s D
+
s ) vs. SCP (B̄s →

D−s D
+
s ) (95% CL) from the SM fit for S2 and S3. Colours as

in Fig. 3.

FIG. 6: SM predictions for the direct CP asymmetries
ACP (B̄s → D−D+

s ) vs. ACP (B̄0 → D−s D
+) (95% CL).

Colours as in Fig. 3.

SM from NP. To that aim additional measurements e.g.
of the annihilation-dominated modes and in B → DD∗

will be valuable. The former, since the effect might be
enhanced there, because of a smaller normalization. The
latter, since not only one of the SM sources of isospin
violation cancels in the double-ratio Eq. (25), but also a
potential QCD enhancement could be absent in the sec-
ond case, while the presence of an additional NP operator
should be visible in both sets.
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FIG. 7: Estimated precision for ∆SCP(B̄s → D−s D
+
s ) vs.

∆SCP(B̄0 → D−D+) (95% CL) within the future scenario
explained in the text, assuming enhanced penguins.

IV. INCLUSION OF NP

The inclusion of NP contributions in the symmetry
framework is in principle straight-forward, analogous to
the treatment in Ref. [51]: considering NP models with a
specific flavour structure, the corresponding specific pat-
tern of NP contributions can be included into the analy-
sis. Since in general the NP contributions have different
Dirac structures than the SM ones, they belong to sep-
arate representations, even if their flavour structure is
identical.5 Therefore the power counting from above can
be kept for the SM contributions, while additional rules
specific to the NP model under consideration have to be
included.

While the coupling strength of one such operator can
be absorbed into the unknown ME(s) related to it, its
weak phase and the relative coupling strength of the
SU(3)-related operators have to be specified. Since a
third weak phase is not observable without theory input
on the MEs due to RI [40], it can without loss of general-
ity be chosen to be “distributed” among the two existing
SM structures, but the relative size of these two contri-
butions and of the SU(3)-related operators (if present)
are model-dependent.

At the moment the inclusion of additional contribu-
tions in the fit is difficult, since the number of measure-
ments does not exceed the number of parameters sig-
nificantly. Furthermore, the SM fits work satisfactorily.
However, the tension of the data with relation (5) moti-

5 In specific models, the relevant operators may in principle be
identical to the SM ones; in this case, simply the coefficient of
the corresponding representations is to be changed.

vates the analysis of possible patterns of isospin-breaking
contributions which could become apparent with more
precise data. Corresponding fits are postponed to future
work when more data are available.

We consider generic isospin-changing NP operators in
the ∆B = 1 Hamiltonian:

HNP =∆NP
s

(
(būus̄)NP − (bd̄ds̄)NP

)
+

∆NP
d

(
(būud̄)NP − (bd̄dd̄)NP

)
(40)

=∆NP
s

(
−6NP

1,0,−2/3 − 15NP
1,0,−2/3

)
+

∆NP
d

(
−1

2

√
3

2
3NP

1/2,−1/2,1/3 +
1

2
6

NP
1/2,−1/2,1/3+

1

2
√

6
15NP

1/2,−1/2,1/3 −
2√
3
15NP

3/2,−1/2,1/3

)
. (41)

The complex parameters ∆NP
s,d represent the effective NP

couplings of the b → s, d transitions, respectively. Note
that the Dirac structure in Eq. (40) remains unspecified.

The resulting corrections to the quasi-isospin sum
rules Eqs. (5)-(7) are the same as from Au1,2, with the

SM coupling strengths λud,s replaced by ∆NP
d,s . Conse-

quently, Eq. (12) is broken by these contributions for
∆NP
d /∆NP

s 6= λud/λus. If the SM MEs Au1,2 are neg-
ligible, Eq. (12) can be replaced by the corresponding
rule involving ∆NP

d,s . Generically, due to their relation to
the same operator, both NP contributions would be ex-
pected to be of a similar size. The breaking of Eq. (6)
is then expected to be enhanced relative to the one to
Eq. (5) approximately as T/ReAc. Furthermore, due to
the same underlying Hamiltonian, isospin-violating oper-
ators in B → DD would also contribute to various other
decays, as B → D∗D(∗), discussed above, but also for ex-
ample to B → J/ψK decays and other b → d, s modes,
see e.g. [41, 52]. While making a quantitative connec-
tion between these modes is again complicated by our
limited capability to compute hadronic MEs (and they
are not related by flavour symmetry), the combination
of different decay modes certainly allows for an improved
differentiation between NP and the SM.

V. CONCLUSIONS

Given the absence of clear NP signals in flavour physics
so far, searches are confronted with the scenario of NP
contributions that are comparable with subleading SM
ones. Within the framework developed in this article for
B → DD decays, combining an SU(3) analysis with a
power counting for various suppression mechanisms, NP
can be differentiated from small SM effects in different
ways:

• The mixing angle φs can be extracted very cleanly
with additional data, controlling the penguin pol-
lution from subleading amplitudes from data.
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• Very precise quasi-isospin relations, Eqs. (5),(6), al-
low for testing isospin-changing NP contributions
by measuring ratios of branching ratios. The com-
bination with additional measurements, e.g. in
B → DD∗, provide improved differentiation from
SM contributions.

• The specific pattern of CP asymmetries and
branching ratios implied by the SM lead to vari-
ous predictions derived in this article that can be
tested.

Moreover, B → DD decays allow to extract different
topological amplitudes that are suppressed in the SM,
thereby enabling tests and improvements of dynamical
calculations and models describing them. These theoret-
ical features, combined with the experimental prospects
at the LHCb and Belle II experiments, render them valu-
able NP probes.

Note added: While finishing this work, a measure-
ment of the time-dependent CP asymmetry in B̄s →
D−s D

+
s has been published [53]. The values quoted there

for |λ| and φs correspond to S(B̄s → D−s D
+
s ) = −0.02±

0.17± 0.02 and ACP(B̄s → D−s D
+
s ) = −0.09+0.20

−0.16± 0.02.
This measurement is consistent with our prediction in
Fig. 5, but does not yet allow for constraining the global
fit further. Note that the uncertainties are very close to
our estimates in Table X.
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Appendix A: Experimental inputs

In Table IV, we provide the experimental results on
branching ratios as they are used in the numerical anal-
ysis. The available values for CP asymmetries are given
in Table III. Ratios are used where they have been mea-
sured (avoiding double counting of the uncertainty of
the normalization modes) and the correlation induced by
fs/fd|LHCb, which enters most of the recent LHCb re-
sults [4], is taken into account explicitly. For Belle and
CDF, only one result for a Bs decay enters the analy-
sis, so making the corresponding factor explicit yields no
advantage.

The definitions for the coefficients in the time-
dependent CP asymmetry, cf. Eq. (8), are given as

ACP(D) = −1− |λ(D)|2

1 + |λ(D)|2
, (A1)

Observable Value

BR(B− → D−D0) (0.37± 0.04)× 10−3 § [7]

BR(B− → D−s D
0) (10.0± 1.7)× 10−3 [7]

BR(B−→D−
s D

0)

BR(B̄0→D−
s D+)

1.22± 0.07 [4]

BR(B̄0 → D−s D
+) (7.2± 0.8)× 10−3 [7]

fs
fd

BR(B̄s→D−D+
s )

BR(B̄0→D−
s D+)

0.0098± 0.0010† [5]

BR(B̄0 → D−D+) (0.226± 0.023)× 10−3 § [8, 9, 12]
fs
fd

BR(B̄s→D−
s D

+
s )

BR(B̄0→D−
s D+)

0.143± 0.009† [4]

BR(B̄s→D−
s D

+
s )

BR(B̄0→D−
s D+)

0.56± 0.11‡ [13]

BR(B̄s → D−s D
+
s ) (5.9± 1.6)× 10−3 [14]

fs
fd

BR(B̄s→D−D+)

BR(B̄0→D−D+)
0.28± 0.05† [4]

BR(B̄0→D̄0D0)

BR(B−→D−
s D0)

0.0014± 0.0006 [4]

fs
fd

BR(B̄s→D̄0D0)

BR(B−→D−
s D0)

0.0048± 0.0009† [4]

TABLE IV: Experimental results for the branching ratios as
used in the numerical analysis; the CP asymmetries are given
in Table III. In this table, fs/fd = fs/fd|LHCb. §: Correc-
tion for Γ(Υ(4S) → B0B̄0) 6= Γ(Υ(4S) → B+B−) included.
† : Value calculated from information in the paper. ‡: Calcu-
lated using fs/fd|Tev = 0.328± 0.039 [8].

Decay Cc8 3 Cc1 3 Cu8 15 Cu8 6̄ Cu8 3 Cu1 3

B− → D−D0 1 0 −
√

3
40
−
√

1
12

√
3
8

0

B− → D−s D
0 1 0 −

√
3
40
−
√

1
12

√
3
8

0

B̄0 → D−s D
+ 1 0

√
1

120

√
1
12

√
3
8

0

B̄s → D−D+
s 1 0

√
1

120

√
1
12

√
3
8

0

B̄0 → D−D+ 2
3
− 1

3

√
1
30

0
√

1
6
−
√

1
24

B̄s → D−s D
+
s

2
3
− 1

3

√
1
30

0
√

1
6
−
√

1
24

B̄0 → D−s D
+
s − 1

3
− 1

3

√
1

120
−
√

1
12
−
√

1
24
−
√

1
24

B̄s → D−D+ − 1
3
− 1

3

√
1

120
−
√

1
12
−
√

1
24
−
√

1
24

B̄0 → D̄0D0 1
3

1
3

√
3
40
−
√

1
12

√
1
24

√
1
24

B̄s → D̄0D0 1
3

1
3

√
3
40
−
√

1
12

√
1
24

√
1
24

TABLE V: Coefficients CUf R(D) of the SU(3) analysis in the
SU(3) limit, cf. Eq. (2).

SCP(D) =
2Imλ(D)

1 + |λ(D)|2
, (A2)

A∆Γ(D) =
2Reλ(D)

1 + |λ(D)|2
, and (A3)

λ(D) = ηfCPe
−iφD

A(D)

Ā(D)
. (A4)
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Decay Cc,ε15 3 Cc,ε
6̄ 3

Cc,ε8 3 Cc,ε1 3

B− → D−D0 −
√

1
80

-
√

1
8
− 1

4
0

B− → D−s D
0 −

√
1
20

0 1
2

0

B̄0 → D−s D
+ −

√
1
20

0 1
2

0

B̄s → D−D+
s

√
9
80

√
1
8
− 1

4
0

B̄0 → D−D+ −
√

1
20

0 − 1
6

1
12

B̄s → D−s D
+
s

√
1
5

0 1
3
− 1

6

B̄0 → D−s D
+
s

√
9
80
−
√

1
8

1
12

1
12

B̄s → D−D+ −
√

1
20

0 − 1
6
− 1

6

B̄0 → D̄0D0
√

1
80
−
√

1
8
− 1

12
− 1

12

B̄s → D̄0D0
√

1
20

0 1
6

1
6

TABLE VI: Coefficients for the SU(3)-breaking contributions
in B → DD decays due to the Hc terms.

Appendix B: Details of the SU(3) Analysis

We provide the list of the coefficients CUf R (cf. Eq. (2))
in Table V. The relation to the toplogical amplitudes
used in Table I is as follows:

T = 〈8|(3)|3̄〉c , (B1)

Ac = −1

3
(〈8|(3)|3̄〉c + 〈1|(3)|3̄〉c) , (B2)

P̃1 = −
√

1

120

(√
45 〈8|(3)|3̄〉u +

√
10 〈8|(6̄)|3̄〉u +

〈8|(15)|3̄〉u) , (B3)

P̃3 =

√
1

120

[√
5 (〈1|(3)|3̄〉u + 〈8|(3)|3̄〉u) +

√
10 〈8|(6̄)|3̄〉u − 〈8|(15)|3̄〉u

]
, (B4)

Au1 = −
√

1

15

(√
5 〈8|(6̄)|3̄〉u +

√
2 〈8|(15)|3̄〉u

)
, (B5)

Au2 =

√
1

15

(√
5 〈8|(6̄)|3̄〉u −

√
2 〈8|(15)|3̄〉u

)
. (B6)

Note again that these expressions are equivalent to the
SU(3) ones, as long as no assumption is made regard-
ing the relative size of the various amplitudes and all of
them are considered as complex. Note furthermore that
the absorbed coefficients fulfill

∑
|ci|2 ≤ 1 (= 1 only for

T ). The topological amplitudes are in turn linear combi-
nations of the ones introduced in Ref. [31]; in the SU(3)
limit, the translation reads T = E1 + P1, Ac = A2 + P3,
P̃1 = PGIM

1 − P1, P̃3 = PGIM
3 − P3, using unitarity, i.e.

λtD = −λcD − λuD.

The coefficients of the SU(3)-breaking reduced MEs are
listed in Table VI. The contributions given in Table II are
reordered in terms correcting the T and Ac amplitudes

Decay Cu,ε1 33
Cu,ε8 33

Cu,ε
8 6̄3

Cu,ε8 153
Cu,ε8 156̄

B− → D−D0 0 −
√

3
128
−
√

3
8
−
√

3
640
−
√

1
960

B− → D−s D
0 0

√
3
32

0 −
√

3
160

1√
60

B̄0 → D−s D
+ 0

√
3
32

0 −
√

3
160

− 1√
60

B̄s → D−D+
s 0 −

√
3

128

√
3

8

√
27
640

√
3

320

B̄0 → D−D+ 1√
384

− 1√
96

0 −
√

3
160
− 1√

240

B̄s → D−s D
+
s − 1√

96

1√
24

0
√

3
40

0

B̄0 → D−s D
+
s

1√
384

1√
384

−
√

3
8

√
27
640

√
3

320

B̄s → D−D+ − 1√
96
− 1√

96
0 −

√
3

160
− 1√

60

B̄0 → D̄0D0 − 1√
384
− 1√

384
−
√

3
8

√
3

640
1√
960

B̄s → D̄0D0 1√
96

1√
96

0
√

3
160

− 1√
60

TABLE VII: Coefficients for the SU(3)-breaking contribu-
tions in B → DD decays due to the Hu terms. The labels
only indicate the representation with the largest coefficient
in the corresponding linear combination, the additional index
indicates the relevant tensor product.

in the topological approach. The translation reads:

δT1 =
1

2
〈8|(3)|3̄〉c,ε −

1√
20
〈8|(15)|3̄〉c,ε , (B7)

δT2 =
1

2
〈8|(3)|3̄〉c,ε +

1√
20
〈8|(15)|3̄〉c,ε +

1√
2
〈8|(6̄)|3̄〉c,ε , (B8)

δAc1 =
1

6

(
〈1|(3)|3̄〉c,ε + 〈8|(3)|3̄〉c,ε

)
+√

1

20
〈8|(15)|3̄〉c,ε , (B9)

δAc2 =
1√
5
〈8|(15)|3̄〉c,ε −

1√
2
〈8|(6̄)|3̄〉c,ε . (B10)

While corrections to the tree and annihilation amplitudes
can be separated, given the structure of the various de-
cay amplitudes, the choice of the linear combinations ’1’
and ’2’ is arbitrary and done in a way to obtain simple
expressions for the decay amplitudes.

The corrections to the amplitudes Au(D) are obtained
analogously to the previous ones. While the calculation
yields 13 independent MEs, the rank of the corresponding
coefficient matrix in this case is only 9. This does not
change when including the leading order contributions,
so four of the corrections can in fact be absorbed into the
leading order MEs. We give here the coefficients for the
reduced system, see Table VII, corresponding to physical
combinations.
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Decay Cc,ε
2

15 3 Cu,ε
2

15 3

B− → D−D0 − 1
3

0

B− → D−s D
0 1

2
0

B̄0 → D−s D
+ 1

2
1

B̄s → D−D+
s 1 1

B̄0 → D−D+ − 2
3
−1

B̄s → D−s D
+
s −1 −1

B̄0 → D−s D
+
s 1 1

B̄s → D−D+ 1
2

1

B̄0 → D̄0D0 1
3

0

B̄s → D̄0D0 − 1
2

0

TABLE VIII: Coefficients for higher-order SU(3)-breaking
contributions in B → DD decays (normalized to the largest
coefficient).

Appendix C: Fit details

We provide additional information regarding the fits
in Sec. III G. First we observe a very good consistency
of the available measurements (apart from the CP asym-
metries in B̄0 → D−D+). The only sizable offset in χ2

in the following fits (in the sense that the value cannot
be reduced by any parameter choice for realistic values of
the MEs) stems from the tension with the quasi-isospin
relation Eq. (5). To test the overall consistency of a sce-
nario we start with T and Ac and add single MEs (while
in the numerical analysis all MEs are always included).

In S1, neglecting SU(3)-breaking contributions, no
good fit is achieved. The only acceptable fit with χ2 ≈ 17
for 10 degrees of freedom (dof)6 is reached for dataset (b)

when adding only P̃1. However, this ME is then required
to be very large (larger than in S3), since it is “used”

to fit some of the rate differences. Restricting P̃1 to the
expected range again yields a bad fit. For dataset (a), no
acceptable fit is found.

The fits for dataset (a) in S2 remain bad, while for
dataset (b) an excellent fit with χ2

min ≈ 9 for 8 dof exists
when adding only δT1,2 to the fit, as expected with our
power counting. Note that neither imaginary parts in
Ac nor penguin contributions are necessary in this case.
Also, the fit does not worsen at all when restricting to
the expected SU(3) breaking.

In S3, at least P̃1 should be included, since it is of
the same order as Ac in this scenario. That leads to an
acceptable fit for dataset (a) with χ2

min ' 11 for 6 dof.

6 Note that the determination of this number is non-trivial since
for example no observable is sensitive to ImδT1,2 to leading order
and potential constraints from the power counting. In these fits
we only demand |X/T | ≤ 1 (X being real- or imaginary part of an
ME) and count simply observables and parameters to determine
the dof.

For dataset (b), the fit does not improve significantly
compared to S2, and is in that sense worse than the pre-
vious fit since there are less dof. The global χ2

min-values
when including all MEs with their power counting are
χ2

min,S3(a) = 9.3 and χ2
min,S3(b) = 8.9.

In order to better understand the consequences of cer-
tain measurements for the global fit, we present in Ta-
ble IX examples for combinations of observables that are
to leading order sensitive to one parameter in the differ-
ent scenarios. Listed are the coefficients that multiply
the corresponding rates or CP asymmetries, yielding for
example for the next-to-last column

ACP (B̄0 → D−s D
+)−ACP (B− → D−s D

0)

2 Im(λus/λcs)
=

Im(Au1 )

T
.

(C1)

Appendix D: Future scenarios

In order to analyze the future potential of the method
developed in this article, we give projections for the ex-
perimental uncertainties of the various observables, con-
sidering the plans for LHCb and Belle II. While we expect
these estimates to be rather reliable for the statistical un-
certainties, the systematic ones are clearly more compli-
cated; we try to include the expected main improvements
while still keeping the estimates conservative.

LHCb has recorded another approximate 2 fb−1 at
8 TeV in 2012 which are analyzed at the moment. The
plan is [54] to record another 5− 6 fb−1 at 13 TeV 2015-
2018 and after the upgrade 15 fb−1 at 14 TeV 2020-2022;
from 2024 on additional data up to at least 50 fb−1 are
to be recorded. Belle II is expecting to start physics runs
in 2018;7 in the first year, one might expect 4 times the
Belle dataset while by the end of 2022 the aim is to have
reached 50 ab−1.

The resulting yields scale with these expected inte-
grated luminosities, but other factors have to be taken
into account. In the case of LHCb we additionally
account for the higher cross sections for B mesons at
13/14 TeV by a factor of two, and for the improvements
from the upgrade by another factor of two. Compared
to the yields in Ref. [4] at 1 fb−1, this procedure yields
the approximate factors 4 for the dataset so far,8 14 un-
til 2018, and 74 until 2022. Clearly, these factors have
large uncertainties. Especially it should be noted that the
analyses at higher beam energy are challenging; some un-
certainties might also increase in this environment, so the
advantages considered here might be partially reversed.

Of the 1000 fb−1 collected at Belle about 121 fb−1

were recorded at the Y(5S) resonance, and 711 fb−1 at

7 A possible shift of this date by one year or more should be taken
into account for the following dates accordingly.

8 We use a factor of 4 instead of 3 to account for analysis improve-
ments and the already larger B cross section at 8 TeV.
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Mode |AD/λcD|2 ACP(D)/Im(λuD/λcD)

B− → D−D0 0 1
6

0 0 0 0 0 0 0 0

B− → D−s D
0 0 0 0 0 0 0 0 0 − 1

2
0

B̄0 → D−s D
+ 0 0 0 0 0 0 1

2
0 1

2
0

B̄s → D−D+
s 0 − 1

2
0 0 0 0 0 0 0 0

B̄0 → D−D+ 2
3

0 − 1
3

0 0 0 0 0 0 0

B̄s → D−s D
+
s

1
3

1
3

1
3

0 0 0 0 0 0 0

B̄0 → D−s D
+
s 0 0 0 1

3
1
6

1
2

0 0 0 0

B̄s → D−D+ 0 0 0 1
3

0 0 0 1
2

0 1
2

B̄0 → D̄0D0 0 0 0 1
3

1
6

− 1
2

0 0 0 0

B̄s → D̄0D0 0 0 0 0 − 1
3

0 0 0 0 − 1
2

Par. comb. T 2 T Re(δT1) T Re(δT2) |Ac|2 Re[(Ac)∗δAc1] Re[(Ac)∗δAc2] Im(P̃1)/T Im(P̃3/A
c) Im(Au1 )/T Im(Au2/A

c)

Correction δ2 δ2 δ2 δ6(5) δ6(5,†) δ6 δ4(3) δ3(2) δ4 δ3

TABLE IX: Examples for combinations of observables that determine simple fit parameter combinations to leading order, as
further explained in the text. The last line indicates the expected absolute size of the corrections to these relations; the number
in brackets, when present, shows a possible enhancement of the correction for enhanced penguins. †: Note that the enhanced
penguin constitutes a relative correction of O(1) in this case.

the Y(4S) resonance [55]. In our projections we assume
that this ratio will remain the same at Belle II. The ex-
pected integrated luminosity at Belle II is 4 ab−1 in 2018
[56] and 50 ab−1 until 2022-2023 [57]. Consequently, we
scale the yields with a factor of four and 50 for 2018 and
2022, respectively. From these prospects for the yields
we estimate the expected statistical uncertainties.

The systematic uncertainties obviously depend on the
observable under consideration. For the branching ratios
of Bs modes, the limiting systematic uncertainties will be
the external inputs; fs/fd and (in part related to that)
the measurements of the corresponding D decay modes.
Especially the former input is already clearly dominated
by systematic/theory uncertainties, see Refs. [45, 46],
making it hard to reduce the related uncertainty below
5%. The latter uncertainty is expected to improve with
more statistics.

The remaining (ratios of) branching ratios are ex-
pected to be determined with higher precision, although
still the D branching ratios enter. For high-statistics
measurements one should furthermore include potential
differences between fd and fu, which are typically as-
sumed to be equal.

For the CP asymmetries in flavour specific modes, sys-
tematic uncertainties are determined by the production
and detection asymmetries. The production asymmetry
can in principle be determined from a pure tree decay like
B− → D0π− and also the uncertainty for the detection
asymmetry is reducible with more statistics. This situ-
ation implies that the uncertainties for these CP asym-
metries will probably remain determined by the statis-
tical ones. We scale the uncertainties according to our

prescription above where such measurements are avail-
able. In the cases where only branching ratios have been
measured so far, we estimate the direct CP asymmetry
uncertainty from that of the branching ratio. For the
LHCb measurements where the available yields are from
branching ratio measurements, we add a factor of two in
selection efficiency for the CP asymmetry measurements
(which is again a rough estimate). We assume that the
uncertainty for ACP (B̄0 → D−s D

+) is the same as for
ACP (B− → D−s D

0).
For time-dependent asymmetries, the issue is more

complicated. The CP-violating parameters of interest are
obtained from fits, rendering the relation to the number
of events non-trivial. To estimate this, we use existing
time-dependent analyses from LHCb for CP asymmetries
in Bs → K+K− and B0 → π+π− decays [58]. We scale
the resulting statistical precision obtained in this anal-
ysis with the square-root of yields, taking into account
the effective tagging power, which we assume to stay at
εeff = 5%. In this way we obtain the LHCb prospects for
the time-dependent CP-asymmetries of B̄s → D−s D

+
s ,

B̄s → D−D+, B̄0 → D̄0D0 and B̄s → D̄0D0. For the
channel B̄0 → D−D+ we scale the Belle results. For
B̄0 → D−s D

+
s and B̄0 → D̄0D0 no statistical signifi-

cant yield is available from Belle yet. In order to obtain
an estimate for BR(B̄0 → D−s D

+
s ) we scale the rela-

tive error of B̄0 → D−D+ to account for the differences
in yields and multiply the result with the corresponding
SU(3)-limit branching ratio. We do not estimate the cor-
responding time-dependent CP-asymmetry parameters.

These considerations yield the uncertainty estimates
given in Table X.
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