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PROGRAM SUMMARY

Manuscript Title: FIESTA 3: cluster-parallelizable multiloop numerical calcula-
tions in physical regions
Authors: A.V. Smirnov
Program title: FIESTA 3
Licensing provisions: GPLv2
Programming language: Wolfram Mathematica 7.0 or higher, c++
Computer(s) for which the program has been designed: from a desktop PC to a
supercomputer
Operating system(s) for which the program has been designed: Unix, Linux,
Mac OS X
RAM required to execute with typical data: depends on the complexity of the
problem
Has the code been vectorised or parallelized?: yes
Number of processors used: from 1 processor up to loading a supercomputer (tests
were performed up to 1024 cores)
Supplementary material: The article, usage instructions in the program package,
http://science.sander.su, https://bitbucket.org/fiestaIntegrator/fiesta/overview
Keywords: Feynman diagrams, Multiloop Feynman integrals, Dimensional regular-
ization, Computer algebra
CPC Library Classification: 4.4 Feynman diagrams, 4.12 Other Numerical Meth-
ods, 5 Computer Algebra, 6.5 Software including Parallel Algorithms
External routines/libraries used: Wolfram Mathematica [1], KyotoCabinet [2], Cuba
[3], QHull [4]
Nature of problem: The sector decomposition approach to evaluating Feynman in-
tegrals falls apart into the sector decomposition itself, where one has to minimize
the number of sectors; the pole resolution and epsilon expansion; and the numerical
integration of the resulting expression. Morover, in cases where the integrand is
complex, one has to perform a contour deformation
Solution method: The program has a number of sector decomposition strategies.
One of the most important features is the ability to perform a contour deformation,
as well as the so-called preresolution in case of integrals at threshold.
Everything except the integration is performed in Wolfram Mathematica [1] (re-
quired version is 7.0 or higher). This part of the calculation is parallelizable with
the use of shared memory. The database is stored on hard disk with the use of the
KyotoCabinet [2] database engine.
The integration part of the algorithm can be performed on a cluster, is written in
c++ and does not need Wolfram Mathematica. For integration we use the Cuba
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library package [3].
Restrictions: The complexity of the problem is mostly restricted by CPU time
required to perform the integration and obtain a proper precision.
Running time: depends on the complexity of the problem.
References:
[1] http://www.wolfram.com/mathematica/, commercial algebraic software;
[2] http://fallabs.com/kyotocabinet/, open source;
[3] http://www.feynarts.de/cuba/, open source;
[4] http://www.qhull.org, open source.
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1. Introduction

Let us consider a Feynman integral

F(a1, . . . , an) =
∫
· · ·

∫ ddk1 . . . ddkh
Ea1

1 . . . Ean
n

, (1)

where the denominator factors Ei are linear functions with respect to scalar
products of loop momenta ki and external momenta pi, and dimensional
regularization with d = 4− 2ε is implied.

Such an integral depends on masses and kinematic invariants — scalar
products of external moments. After substituting all values for kinematic
invariants and masses one can evaluate the integral numerically. This can
be done automatically with the so-called sector-decomposition approach, ini-
tially introduced by Binoth and Heinrich [1, 2, 3, 4, 5, 6].

This approach is based on the so-called alpha-representation of Feynman
integrals:

F(a1, . . . , an) = (iπd/2)l × (2)

Γ(A− ld/2)∏n
j=1 Γ(aj)

∫
xj≥0

dxi . . . dxnδ

(
1−

n∑
i=1

xi

) n∏
j=1

x
aj−1
j

 UA−(l+1)d/2

FA−ld/2 ,

where A =
∑n

i=1 an, l is the number of loops and U and F are constructively
defined polynomials of xi.

There are three public programs that can perform the numerical calcula-
tion with the sector decomposition approach — sector_decomposition by
Bogner and Weinzierl [5, 6], SecDec by Binoth and Heinrich [4] (later im-
proved and made public by Borowka, Carter and Heinrich [7, 8, 9, 10, 11, 12])
and FIESTA [13, 14] initially created by the author of this paper with M. Ten-
tukov and later improved together with V. Smirnov. In this paper we present
a new version of FIESTA.

Both FIESTA and FIESTA 2 had a major disadvantage when being com-
pared with SecDec 2— they were not able to perform calculations in physical
regions. Hence some of the advantages such as the internal code compiler
designed especially for sector integrals and the multi-precision calculation
could not be used by those interested in physical regions. The new version
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fills this gap by utilizing the ideas initially suggested in [15, 16, 17, 18, 19]
and presented as an algorithm in the second version of SecDec [7].

One more important new feature is the ability to use cluster paralleliza-
tion. If one is going to perform multiloop calculations and aims at high-
precision results, it may take a lot of time to obtain those. The new version
of FIESTA has an improved internal structure so that the algebraic part can
be performed by Wolfram Mathematica on a single computer and the results
can be saved into a database. Afterwards the integration can be performed
on a cluster with the use of MPI-parallelization. This approach also helps to
deal with the Mathematica licensing policy — the integration part does not
need Mathematica licenses anymore.

Although the sector decomposition approach is quite powerful, in some
cases the integral is too complicated for direct evaluation. Even if the calcu-
lation of master integrals can be performed, the other important part, IBP
reduction [20] might fail. In this case one can use the asymptotic expansion
approach. The kinematic invariants are separated into groups proportional
to different groups of a small parameter ρ. One is interested in the behavior
of Feynman integrals when ρ tends to zero.

There are different approaches to asymptotic expansion of Feynman in-
tegrals, but we are interested in numerical algorithms. The reason is that
those algorithms can be implemented as computer codes so that the asymp-
totic expansion can be done completely automatically.

In this paper we consider two numerical algorithms of asymptotic expan-
sion. Both of them use sector decomposition and hence become a part of the
new version of FIESTA.

The first algorithm uses a Mellin-Barnes integration combined with sec-
tor decomposition — it has already been encoded in FIESTA2 [14]. The
disadvantage of this algorithm is that it can be applied only in situations
where the kinematic invariants can be separated into two groups — large
and small. Moreover this algorithm encounters some computer problems —
the complexity of evaluations grows high enough to some make three-loop
problems too complicated for this approach.

The second algorithm is proposed in this paper. It consists of applying
the asy code [21, 22] in order to reveal regions [23, 24]. Then the algorithm
produces contributions of regions by expanding the integrand in a certain
way and applies the sector decomposition in order to calculate expansion
coefficients. However in many situations the corresponding integrals happen
not to be well-defined — one needs to add an extra regularization in or-
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der to calculate them. This makes the sector decomposition approach more
complex.

In section 2 we explain how FIESTA treats integrals at and above the
threshold, in section 3 we describe the stages that FIESTA performs and the
parallelization during those stages. In section 4 we present two algorithms
used for numerical asymptotic expansion and in section 5 we provide instal-
lation and usage instructions.

2. Integrating at and above the threshold

Sector decomposition strategies are guaranteed to terminate while the
function F from formula (1) has no monomials with negative coefficients.
If due to some values of kinematic invariants F has negative terms, this
approach may fail. In principle, there are three different variants:

1. Below threshold. Some terms of F are negative, but it still turns to
zero only due to some variables xi turning to zero. In this case the
sector decomposition works as normal;

2. At threshold. F is never negative, but might turn to zero at some in-
ternal points. To solve this problem we use the so-called pre-resolution
approach suggested in FIESTA 2[14] and improved in FIESTA 3 (for
details see [22]). Some transformations are performed before the sector
decomposition aimed to get rid of singularities of the form (xi − xj)2.
We have multiple confirmations that this approach works well for Feyn-
man integrals;

3. Above threshold. Here F can be of different signs in different parts of
the integration domain and, therefore turns to zero at multiple points
inside. The integral is a complex number, however the most compli-
cated part is that the integration cannot be taken directly due to the
zero values of F . An automatic way to deal with this problem was
suggested by Binoth and Heinrich [1, 2] and implemented by Borowka
and Heinrich in the second version of SecDec [10]. The basic idea is
to transform the contour in order to shift away from the zero values
of F . This makes the integration process slower but provides an auto-
matic way to process integrals above threshold. We also implemented
this strategy in FIESTA 3 mostly following the guidelines from [10]. In
order to activate this algorithm one has to set ComplexMode=True in
FIESTA 3.
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The contour transformation algorithm described in [10] and used after
a modification in FIESTA consists of the following steps (each step uses
LambdaIterations iterations):

1. The maximal values of shift functions Si := xi(1−xi) dF
dxi

are estimated
(we substitute a number of random points); if a maximum is bigger
than 1, the corresponding shift function is multiplied by its inverse;

2. The integration variables xi are replaced with xi−λiSi, the dependence
of F on the new variables is considered;

3. The code estimates the maximal possible value λ such that the cubic
terms of F do not exceed the linear terms. This is close to checking that
the function F does not change the sign of its complex part (as specified
by the dimension-regularization prescriptions). If the resulting value is
bigger that MaxComplexShift the latter is used;

4. The code splits the interval from 0 to the found maximal possible λ into
the number of parts equal to LambdaSplit. For each of those values
a new check is performed and a best value is chosen: we require that
the sign of the complex part of F is always negative, and among those
choices find such λ that the minimal absolute value of F is maximal;

5. The λ value is fixed and substituted into the deformation formula.

Those calculations are performed independently for each sector.
Alternatively, one can specify the value of ComplexShift to set a fixed

λ and turn off this algorithm. Since the search in Mathematica for best
possible λ is performed randomly and the speed of Mathematica calculations
is not too fast, one cannot be absolutely sure that λ is chosen properly — the
sign of the imaginary part of F might turn positive, and one obtains a wrong
answer. It is even more risky if one chooses a fixed complex shift. Hence it
is recommended to perform extra sign tests in the c++ part of the program.

To do so one should run the code with the OnlyPrepare option so that
the integrands are stored in a database. After that Mathematica prints
a command to integrate everything, but one should first add the -testF
argument to this command (see section 5.4). One should ignore the answer
produced by the integrator and only watch whether it succeeds. It means
that λ is chosen well and one can turn back to the integration.

The contour deformation does not help if F turns to 0 due to some vari-
ables being equal to 1. If one suspect that this might be the case, the
TestF1=True setting should be used while running FIESTA. Then one will be
informed on variables leading to singularities of this sort. Then one should
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use the BisectionVariables setting listing the problematic variables. This
makes FIESTA break the integration into two parts — from 0 to p and from
p to 1 for some p. Then in the first part we make the variable replacement
x = yp and in the second: x = 1− y(p− 1). Thus the singularities at x→ 1
are changed to x → 0 and are treated by the standard sector decomposi-
tion. By default the middle point p is equal to 1/2, but a different value
can be chosen by the BisectionPoint setting or different values for different
variables by the BisectionPoints list.

2.1. Example
Let us consider an example (see fig.1) — an on-shell massless K4-graph

(we choose s = 1 and t = −1/4). The answer is a complex number, so the
contour transformation is used.

p2 p4

p1 p3

Figure 1: K4 graph

The analytic answer for the corresponding integral was recently obtained
in [25]; the coefficient at ε2 is equal to 1024.2413 + 889.3892i (we cut it to
8 digits), so we can compare the numerical results with it. We performed
the calculations on a computer having two Hexa-Core Intel X5675 3.07 GHz
processors. The database preparation step took less than 10 minutes. The
integration time and the numerical uncertainties depend on the number of
sampling points and are presented in Table 1. The columns contain the num-
ber of sampling points, time needed to calculate the ε2 part, the numerical
coefficient at ε2, the error estimate and the real error. The default setting
for the number of sampling points is 50000.

We can see from table 1 that both the error estimate and the real error
are decreasing proportional to the square root of the number of sampling
points. The time grows linearly at large scales. The less than linear growth
for smaller numbers can be explained by the fact that some small calculations
might be performed with the use of processor cache and hence faster, but
starting with some point the cache is not enough and the dependence becomes
linear. The result is always within the error estimate, although we have to
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Points Time (sec.) Result Error est.(%) Error (%)
5 000 224 1023.64 + 889.577i 0.0508 0.0465
50 000 3339 1024.33 + 889.412i 0.0183 0.0068
500 000 42940 1024.29 + 889.387i 0.0058 0.0035
5 000 000 426726 1024.25 + 889.388i 0.0018 0.0007

Table 1: Results and timings for the K4 graph

state that the error estimate is produce by the Vegas algorithm and is only
a probability prediction but not a guarantee.

3. Cluster-parallelization and internal structure of FIESTA 3

Let us describe the internal structure of FIESTA 3. The input for FIESTA
is the list of propagators, the list of internal moments, the list of indices and
the requested order of epsilon.

The algorithm consists of three major stages. The first stage is the
initial preparation and sector decomposition. The algorithm performs the
following:

• Eliminating negative indices. If some of the indices are non-positive,
the algorithm differentiates the integrand by the corresponding alpha-
parameters according to the following rule:∫ ∞

0
dx
x(a−1)

Γ(a)
f(x) = f (n)(0)

for non-positive integer a.

• “Pre-resolution”. If we consider an integral on a threshold, the func-
tion F might have negative terms, but is non-negative totally. However
it might be equal to zero somewhere in the middle in the integration
domain. This might be a problem for the integration, hence we per-
form the so-called pre-resolution. The algorithm searches for pairs of
variables that might produce negative terms due to contributions like
(xi − axj)2, divides the infinite sector into two and makes appropriate
variable replacements. The details can be found in [22].

• Sector decomposition. A number of strategies can be used including the
strategy by Binoth and Heinrich, by Bogner and Weinzierl, the original
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strategy from FIESTA 1, the Hepp and Speer sector strategies [26], as
well as the most effective (by the number of sectors) but relatively slow
strategy by Kaneko and Ueda [27].

This part is parallelized in Mathematica — different kernels work on
different primary sectors.

After the first stage is over, a database is prepared. We use the ky-
otocabinet (http://fallabs.com/kyotocabinet/) engine for storing data.
Now each sector can be treated independently, hence we use the Mathematica
parallelization in order to speedup the calculations. The second stage con-
sists of a number of parts. Each time the expressions are read from one
database and written to the other one. Only the main Mathematica pro-
cess accesses the databases, the subkernels only perform equivalent tasks in
different sectors. There are the following parts:

• Variable substitution. The sector decomposition variable replacements
are performed (the replacements rules were created at the previous
stage).

• Contour transformation (only in complex mode). The contour is shifted
to avoid the zeros of F .

• Pole resolution. If the integrer parts of some exponents of sector vari-
ables are non-positive, then in order to reveal singularities the integrand
is treated as the first few terms of Taylor series plus the remainder.

• Expression preparation. All functions are combined and multiplied.

• Epsilon expansion. The integrands can now be expanded in epsilon up
to the required degree.

• String preparation. The input for the c++ code is prepared. Now the
expressions in the database are no longer Mathematica expressions but
strings ready to be taken by the integrator.

If the user specifies the OnlyPrepare mode, then at this point the algo-
rithm stops. As a result one has a database with integration strings. Starting
from this point, one can run the integration without Mathematica. However
if OnlyPrepare is set to False, Mathematica runs an integrator itself and
waits for results.
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The integration part has the following structure. There are two possible
binaries that can be used — CIntegratePool and CIntegratePoolMPI. The
second one is intended for cluster usage with the MPI-parallelization, the
first one uses threads. None of these binaries performs the integration itself.
It only launches the real integrator processes, CIntegrate (basic variant),
CIntegrateMP (variant with MPFR) or CIntegrateMPC (complex variant with
MPFR). The threads version simply runs a requested number of threads, each
of those forks and starts the integrator. So the main process reads from the
database and distributes tasks between slaves and gathers results afterwards.
If the MPI version is used, only one copy accesses the database as well, the
tasks to other nodes are send via MPI.

We use the integrators from the Cuba library [28] by Hahn, however the
evaluation of functions is performed in an original way. Unlike it is done in
other sector decomposition programs, we do not compile the c++ integrand
by means of standard compilers. On the contrary, the expression is analyzed
inside the c++ part of FIESTA and is transformed into an optimized internal
form allowing fast numerical function evaluation. Moreover, the expression
is analyzed in order to decide, where to use double precision and where it is
important to use the multi-precision evaluations (for details see [14]).

We prepared a database and then tested how the MPI-parallelization works
for a sample massive on-shell four-loop propagator diagram (with propagators
{−(l1 + q)2,−(l2 + q)2,−(l3 + q)2,−(l4 + q)2,−(l4)

2 +M2,−(l2 − l3 + l4)
2 +

M2,−(l1)
2+M2,−(l1− l2)2,−(l4− l3)2,−(l1− l2+ l3− l4)2,−(l2− l3)2} where

M2 = q2), the results are shown in Table 2.

Points \ Cores 32 64 128 256 512 1024
500 000 5112 2643 1570 1381 1344 1330
5 000 000 48305 24719 13524 7833 5116 3795
50 000 000 482948 245109 133917 77951 50734 36988

Table 2: Timings of a 4-loop massive propagator

The columns of the table show the number of cores used during the paral-
lelization, the rows — the number of sampling integration points used during
the evaluation. The result is measured in seconds. This table indicates that
massive parallelization is not very effective if the number points is not too
high — this happens due to the database and MPI overhead. However this
part of the evaluation has a fixed time and while the number of sampling
points is increased, the efficiency of the parallelization grows well.
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As for the precision obtained, it grows approximately as the square root of
the number of sampling points used. Hence the MPI-parallelization can be a
good way to improve results, however this is possible only if one has enough
CPUs times hours. For example, the evaluation with 50 million sampling
points with 1024 cores (the tests were performed on the “Lomonosov” super-
computer [29]; the Intel Xeon 5570 Nehalem 2.93 GHz processors connected
with QDR InfiniBand, 40 Gbit/sek were used) took 100 hours resulting in
a rather big number about 10 thousand CPUs times hours. Possibly it can-
not grow much further because the number of jobs in this test was equal to
11161, and the number of cores should be a lot less than the number of cores
in order to obtain an efficient parallelization.

A similar table was created with the SeparateTerms setting, when the
integators are split more than one integrand per sector (resulting in 35971
MPI jobs instead of 11161). The results are displayed in Table 3. We can see
a better dependence of integration time on the number of cores in this case.

Points \ Cores 32 64 128 256 512 1024
500 000 4684 2345 1193 614 452 451
5 000 000 41596 20720 10431 5355 2826 1579
50 000 000 399997 200004 100555 51467 27149 15195

Table 3: Timings with the SeparateTerms setting

These numbers are also presented in Diagram 3. As a base value we
take time(32, 50000) — the time in seconds needed to evaluate the integral
with 32 cores and 50000 sampling points. The y-axe has log2(speedup),
where speedup = (time(n, points)/time(32, 50000)) ∗ (50000/points) (the
second factor is here because we measure the speedup by the number of
cores). The functions 1 − 3 on the diagram correspond to the dependences
time(n, 50000), time(n, 500000) and time(n, 500000), the functions 4− 6 —
are the same but with the SeparateTerms setting. We can clearly see that
with the SeparateTerms setting and a large enough number of sampling
points the integration scales really well and suits perfectly to be run on large
clusters.
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Figure 2: Graphical representation of timings

4. Numerical algorithms for asymptotic expansion of Feynman in-
tegrals

4.1. Mellin-Barnes and sector decomposition
This approach, initially suggested by Pilipp [30], is based on combining

the Mellin-Barnes and the sector decomposition approaches. Let us write
the integral in its alpha-representation (for explicit coefficient values see for-
mula 2):

F(a1, ..., an) = (3)

c
∫ ∞
0

dx1...dxn δ(1− x1 − ...− xn)xa1−11 ...xan−1n UaF b,

Suppose that the function U does not depend on kinematic invariants
and F can be written as W1 +W2, where the terms in W1 are much smaller
that the terms in W2. Let us introduce a small parameter ρ and replace W1

with ρW1 (now ρ is small and terms of W1 are not). The parts of F now can
be separated by introducing a single Mellin-Barnes integration:
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Γ(a− hd/2)

(ρW1 +W2)a−hd/2
=

1

2πi

∫ +i∞

−i∞
dz ρz

Γ(a− hd/2 + z)Γ(−z)

W−z
1 W

a−hd/2+z
2

(4)

so that we obtain

F(a1, ..., an) =

(
iπd/2

)h
∏

l Γ(al)

1

2πi

∫ +i∞

−i∞
dz Γ(a− hd/2 + z)Γ(−z)ρz (5)

×
∫ 1

0
. . .
∫ 1

0
Ûa−(h+1)d/2W z

1 W
−a+hd/2−z
2 δ(1− x1 − ...− xn)xa1−11 ...xan−1n .

Now the integration has normal sector integrals (from 0 to 1 after taking
out the δ function) and and extra integration (over variable z) from −i∞ to
+i∞. The exponents depend on the integration variable z.

The algorithm builds sectors as if there was no extra variable z. Now it
considers the variables αi with corresponding powers depending on z. The
integration contour can be closed to the right, but the first few poles have to
be considered (the number of the poles depends on the coefficient at z).

Afterwards the algorithm reveals singularities in ε generated by the MB
integration over z. The integral of tbiε+ciz+ni−1

i generates a z-dependence of
the type Γ (biε+ ciz + ni). We are concentrating on sector integrals with
ci < 0 because they are relevant to our limit.

After revealing those singularities the algorithm can return to normal
steps used in numerical sector decomposition — expansion by ε and numerical
integration by a Vegas integrator.

4.2. Regions and sector decomposition
Another approach presented in this paper also uses sector decomposition

but now together with the regions approach. The method of regions [31, 32]
defines prescriptions to find regions, or scalings of momentum components
that after the expansion provide non-zero contributions. In each region, we
first Taylor expand the integrand and drop the scaling restrictions.

In [21] we presented the regions approach written in terms of alpha-repre-
sentation. It looks natural to make an algorithm that considers those regions;
in each region we can expand the integrand and evaluate the corresponding
integrals numerically afterwards.
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This idea encounters a number of technical difficulties, but what is most
important, the integrals in regions might be not well defined. One needs to
introduce an extra regularization parameter λ (the poles in λ get canceled
out after summing over all regions). We make the indices (powers of alpha-
parameters) depend linearly on λ. This does not affect the determination of
regions.

After finding the regions, the algorithm expands the integrand in each of
them up to the required degree. Then it starts the evaluation of expansion
coefficients. Those functions no longer depend on the small parameter ρ but
have an extra dependence on the small parameter λ.

Now the sector decomposition is performed. In each sector we get an
integral over a unit hypercube, where the exponents depend on ε and on λ.
The algorithm considers the exponents depending on λ plus some negative
integer and performs a “pre-resolution” — replaces the integrand with the
few terms of Taylor expansion in λ plus the remainder (such that the cor-
responding integral has no poles over λ). Afterwards the integrands can be
expanded in λ up to order 0.

Now the algorithm proceeds with standard sector decomposition steps
keeping in memory that different terms are proportional to different integer
powers of λ. Finally all the coefficients of the expansion in λ and ε are
evaluated numerically.

After calculating the result in all regions, the algorithm sums them up and
gathers the coefficients. At this point the poles in λ should cancel, however,
they can exist due to numerical uncertainties.

There are some more ideas that improve the algorithm. The expanded
region integrals often are more complicated than the initial ones, so it might
be problematic for the numerical integration. However, a few integrations
can be taken out analytically. Quite often after the expansion one of the
functions U and F no longer depend on one of the variables xi. In this case
the integration over xi is taken out analytically.

5. Installation and usage

5.1. Installation
In order to install FIESTA 3 one has to download the package from the fol-

lowing address: http://science.sander.su/FIESTA.htm. Then one should
compile the c++ part of the code. Although FIESTA 3 can be used without
the c++ part (by setting UsingC=False and UsingQLink=False), it is not
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recommended since one will not have access to most features existing in this
program.

Hence first one needs to compile FIESTA. In order to do that, the following
libraries have to exist on the computer:

• KyotoCabinet — a fast database engine. It can be downloaded from
http://fallabs.com/kyotocabinet/. Basically it is compiled and
installed with
./configure
make
make install
If one cannot install it system-wide, one is able to provide the paths to
KyotoCabinet later. If one is aiming at a static version of FIESTA, it
should be configured with –enable-static –disable-shared.

• Cuba integrator library by Thomas Hahn [28] that can be downloaded
from http://www.feynarts.de/cuba/. We recommend to build it
with
./configure
make lib
make install
If one runs make instead it might require extra dependencies.

• MPFR — multiple-precision floating-point library that can be down-
loaded from http://www.mpfr.org/ but has a big chance to exist in the
system repositories. If one is downloading it from the official web-page
and is not installing it system-wide, it is recommended to configure it
with a prefix and install into a local directory.

• GMP—GNU multi precision library, it is also normally installed system-
wide. If not, one can download it from http://gmplib.org/, configure
and make. This library is not required at the object compilation step,
and for linking one might point to the .libs directory in the GMP folder.

• In case one is going to use strategies KU, KU0, KU2 or the SDExpandAsy
command, then one needs to have the qhull convex hull search package
installed. It might exist in the system repositories or can be downloaded
from http://www.qhull.org/.
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• If one is going to build an MPI version of CIntegratePool, then one
should need to have one of the MPI environments to be installed on the
system. Normally this is recommended if one is installing FIESTA on a
cluster.

Moreover, if one is going to perform both the database preparation and
the integration, it is needed to have Wolfram Mathematica 7.0 or higher
installed on the computer. However, if the databases with integrands are
going to be prepared elsewhere, and one is only running the integration (a
typical case for clusters), Mathematica is not required.

Now one can try to build FIESTA. If the libraries mentioned earlier are
installed and exist on the system paths, then one should simply cd to the
directory with FIESTA and run the make command. If not, one should first
edit paths.inc and add those paths with -I and -L for include and link paths
correspondingly.

In rare cases one needs also to edit libs.inc to tune library linking. If
one wants it static as much as possible, then libs.inc should be replaced
with libs-static.inc Normally one does not need to edit the Makefile,
neither the main one, nor the ones in subfolders.

The make command should build everything but the MPI version of CIn-
tegratePool. The MPI version is build with make mpi or together with other
packages with make all. There is no make install in the package.

In order to build KLink one needs to have Mathematica installed on the
system. The paths should be detected automatically. If one does not want
to build KLink (the database will be prepared elsewhere) and wishes to avoid
compilation errors, make noklink should be used.

The build results might be verified with make test or make testall (to
test also MPI). No errors should be produced. These simple tests mainly test
whether the binaries are functional.

5.2. Program syntax
Let us start with basic examples. If one is loading FIESTA from Mathe-

matica, it should either be loaded with
SetDirectory[<path to FIESTA>]; Get["FIESTA3.m"];
or
FIESTAPath=<path to FIESTA>; Get[FIESTAPath<>"FIESTA3.m"];.
Do not load FIESTA by simply specifying a full path to it, it will not work
properly.
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Now one can call the following commands:
SDEvaluate[{U,F,l},indices,order],
where U and F are the functions from eq. (2), l is the number of loops,

indices is the set of indices and order is the required order of ε-expansion.
To avoid manual construction of U and F one can use a build-in function

UF and launch the evaluation as
SDEvaluate[UF[loop_momenta,propagators,subst],indices,order],
where subst is a set of substitutions for external momenta, masses and

other values (to remind: the code performs numerical integration so the
functions U and F should not depend on anything external).

Example:
SDEvaluate[UF[{k},{-k2,-(k+p1)2,-(k+p1+p2)2,-(k+p1+p2+p4)2},

{p21 →0,p22 →0,p24 →0, p1 p2 →-S/2,p2 p4 →-T/2,p1 p4 →(S+T)/2,
S→3,T→ 1}], {1,1,1,1},0]

performs the evaluation of the massless on-shell box diagram.
In the following commands we will only provide the first version of the

syntax (with {U,F,l}). However, in all places this triple can be replaced
with the UF generator.

Now to expand a Feynman integral by a small parameter tt one should
use

SDExpand[{U,F,l},indices,order,tt,order in tt].
Example:
SDExpand[UF[{k, l}, {-k2, -(k + p1)2, -(k + p1 + p2)2, -l2,

-(l - k)2, -(l + p1 + p2)2, -(l + p1 + p2 + p4)2}, {p12 -> 0, p22

-> 0, p42 -> 0, p1*p2 -> s/2, p2*p4 -> t/2, p1*p4 -> -(s + t)/2,
s -> -1, t -> -tt}], {1, 1, 1, 1, 1, 1, 1} , 0, tt, 0]

The new algorithm presented in this paper can also be used to expand
this integral, however one has to provide a regularization variable with the
RegVar setting and shift indices.

Example:
RegVar=la;
SDExpandAsy[UF[{k, l}, {-k2, -(k + p1)2, -(k + p1 + p2)2, -l2,

-(l - k)2, -(l + p1 + p2)2, -(l + p1 + p2 + p4)2}, {p12 -> 0, p22

-> 0, p42 -> 0, p1*p2 -> s/2, p2*p4 -> t/2, p1*p4 -> -(s + t)/2,
s -> -1, t -> -tt}], {1+la, 1, 1, 1-la, 1, 1, 1} , 0, tt, 0]

To use the Speer sectors strategy one should use SDEvaluateG instead of
SDEvaluate. The syntax is

SDEvaluateG[graph_info,{U,F,l},indices,order]
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or
SDExpandG[graph_info,{U,F,l},indices,order,tt,tt_order].
The graph information should be of the form {lines, external_vertices},

where lines is a list of pairs of vertices connected by this line. The vertices
should be numbered from 1 without skipping numbers. It is also very impor-
tant to have the order of lines coincide with the order of propagators in the
UF input. For example, for the tetrahedral input is the following.

Example:
SDEvaluateG[{{{1, 2}, {2, 3}, {3, 1}, {4, 2}, {4, 3}, {4, 1},
UF[{k1, k2, k3}, {-k12 + 1, -k22 + 1, -k32 + 1,
-(k1 - k2)2 + 1, -(k2 - k3)2 + 1, -(k3 - k4)2 + 1, }, {}],
{1, 1, 1, 1, 1, 1, 1, 1}, -1]
There is one command that makes possible to apply sectors decomposition

to integrals different from Feynman integrals:
SDEvaluateDirect[var,function,degrees,order,deltas_optional].
Here var stands for the integration variable used in functions (for exam-

ple, x goes for x[1], x[2], ...), functions is a list of functions and degrees
is the list of their exponents. order is the requested order is epsilon, and
deltas goes for the list of delta functions attached to the integrand. By
default is is empty. For example, {{1,3},{2,4}} goes for the product of
Delta[x[1]+x[3]-1] and Delta[x[2]+x[4]-1].

Example:
SDEvaluateDirect[x, {1, x[1] x[2] x[3] + x[1] x[2] x[4] +
x[1] x[3] x[4] + x[1] x[2] x[5], x[1] x[3] + x[2] x[3] +
x[1] x[4] + x[2] x[4] + x[3] x[4] + x[1] x[5] + x[2] x[5] +
x[3] x[5]}, {1, -1 - 2 ep, -1 + 3 ep}, 0, {{1, 2, 3, 4, 5}}]
A similar syntax works for the expansion. In this example the integrator

needs access to Mathematica to evaluate a PolyGamma function, so the path
is passed with the MathematicaBinary argument:

SDExpandDirect[var,function,degrees,expand_var,deltas].
Example:
MathematicaBinary="math";
SDEvaluateDirect[x, {1, x[1] x[2] x[3] + x[1] x[2] x[4] +
x[1] x[3] x[4] + x[1] x[2] x[5], x[1] x[3] + x[2] x[3] +
x[1] x[4] + x[2] x[4] + t (x[3] x[4] + x[1] x[5] +
x[2] x[5] + x[3] x[5])}, {1, -1 - 2 ep, -1 + 3 ep}, 0, t, 0,
{{1, 2, 3, 4, 5}}]
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There is one more way to use FIESTA. An analytic Feynman integral
evaluation method suggested by Lee [33, 34, 35, 36] needs to know for which
values of space-time dimension d the integral can have poles. FIESTA can
locate those values with the use of the following command:

SDAnalyze[{U,F,l},indices,dmin,dmax].
Here dmin and dmax are the ends of the interval where poles should be

located. This syntax used only algebraic transformations, so the result is
exact. However, the program might miss some pole cancellations, so some of
the returned values might be “false alerts”.

Example:
SDAnalyze[UF[{k},{-k2,-(k+p1)2,-(k+p1+p2)2,-(k+p1+p2+p4)2},

{p21 →0,p22 →0,p24 →0, p1 p2 →-S/2,p2 p4 →-T/2,p1 p4 →(S+T)/2,
S→3,T→ 1}], {1,1,1,1},1,8]

Returned answer is {2,4} which means that the integrand has poles for
d equal to 2 and 4.

5.3. Program options
FIESTA has the following options:

• DataPath: by default FIESTA stores databases in the temp subfolder.
However one might wish to direct it elsewhere, especially if the folder
with FIESTA is on a network disk. The database should be preferably
stored on a fast local disk;

• NumberOfSubkernels: the number of subkernels that Mathematica
launches. Might be set equal to the number of cores on the computer
in use but should not exceed the number of licensed subkernels. This
setting can speed up the integrand preparation;

• NumberOfLinks: the number of CIntegrate processes that will be
launched. The name of this option is left for compatibility with old
versions of FIESTA where each CIntegrate process was called by a
separate MathLink connection. This setting corresponds to the paral-
lelization during integration;

• CubaCores: the internal parallelization option of the integrators inside
CIntegrate. By default the integrator uses one core, but it can be
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changed with this option. This setting also corresponds to the par-
allelization during integration. Normally NumberOfLinks is more effi-
cient, but there might be situations when increasing CubaCores leads
to better results;

• STRATEGY: sector decomposition strategy. By default we use STRATEGY_S
(our strategy), but there are also such options as STRATEGY_B (Bogner
andWeinzierl), STRATEGY_X (Binoth and Heinrich), STRATEGY_SS (Speer
sectors) and STRATEGY_KU, STRATEGY_KU0, STRATEGY_KU2 (Kaneko and
Ueda). Among the last three strategies the last variant is the full im-
plementation of the algorithm from [27], the first two are faster but
might result in more sectors;

• QHullPath: if one uses strategies KU, KU0, KU2 or the new SDExpandAsy
syntax, a correct path to the qhull executable should be provided. By
default it is set to qhull assuming that the package is installed on the
system, however one might provide a specific path;

• CIntegratePath: by default the integration pool chooses itself the
integration binary, however one might provide another path;

• UsingC: by default this option is set to True. This means that FIESTA
uses the c++ integration. If set to False, it switches to Mathematica
integration, however this is not recommended. With UsingC set to
False the option ExactIntegrationOrder (if set) specifies the order
in epsilon where FIESTA tries exact integration for some time. The
default time is 10 seconds per sector and can be modified by the
ExactIntegrationTimeout option;

• UsingQLink: by default this option is set to True. Switching it off
will turn off database usage, however in FIESTA 3 this is possible only
together with UsingC=False;

• OnlyPrepare: by default this option is set to False. In this case
the calculation is performed completely, otherwise a database is pre-
pared for integration and a shell command to run CIntegrate with-
out Mathematica is printed. This can be used if one are preparing
a database on one computer and is integrating elsewhere, or if one is
willing to try different integrators or precision requests;
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• SeparateTerms: if True, the integrator receives integrable terms in-
dependently, not whole expressions for each sector; on one hand, this
simplifies the integrands and the integrators return better precision,
on the other hand the error grows after summing up the results, so
normally there is no recommendation on whether to use this option or
not. However, in the MPI mode this option might lead to a significant
speedup since in this case it leads to a better parallelization;

• ComplexMode (False by default): with this setting set to True FIESTA
performs a contour deformation in order to avoid poles in physical
regions. The deformation size depends on a parameter, that is either
set manually by giving a value to the ComplexShift variable or is
tuned automatically in the interval from zero to MaxComplexShift (1
by default). Increasing the option LambdaSplit (4 by default) might
result in better tuning but slows the preparation; same is true for the
search option LambdaIterations that is set by default to 1000;

The contour transformation cannot deal with cases where F turns to
zero for the reason that some variables are equal to 1. In order to trace
those cases, set TestF1=True. In order to handle those singularities,
set the BisectionVariables equal to the list of variables such that the
integration cube is divided into two parts. By default, the separation
point is equal to 1/2, however this can be changed either by setting the
BisectionPoint value, or by providing a list of BisectionPoints;

• CurrentIntegrator: (vegasCuba by default): the integrator used at
the final stage. The options allowed in the current setup are vegasCuba,
suaveCuba, divonneCuba and cuhreCuba. It is also possible to add
your own integrators by modifying the integrators.c source file, how-
ever this is far beyond the standard usage of FIESTA. Related parame-
ter (CurrentIntegratorOptions) presents a list of options of the cur-
rently chosen integrator (for details see [28]). By default it has no value
and the actual options are printed out when one starts the evaluation
(the defaults are stored within the c++ part). The most commonly
used integrator option is maxeval, which can be set, for example, by
CurrentIntegratorOptions = {{"maxeval","500000"}}. The de-
fault value is 50000. One more virtual integrator is justEvaluate.
It simply evaluates the integrand at a given point, by default it is the
point where all coordinates are equal to 1/2. Its options are x1, x2 and
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so on representing the integration coordinates;

• SmallX, MPThreshold, PrecisionShift, MPPrecision, MPMinb: the
options that allow to fine-tune the MPFR subsystem. For details see
the previous paper on FIESTA [14];

• RegVar: an option introduced for SDExpandAsy but usable also in other
situations. Sets an extra regularization variable;

• AnalyticIntegration: an option used only for SDExpandAsy, True by
default, tells FIESTA to try to take some integrations analytically after
introducing regions;

• FastASY: (False by default) specifies the region search mode (used in
SDExpandAsy). With FastASY set to False the polynomial U × F is
analyzed, with True — the F polynomial. The FastASY variant might
work significantly faster and will produce correct results almost all the
time, but one should use it at his own risk;

• PolesMultiplicity: an option used only for SDAnalyze, False by
default, changes the answer so that it returns not only values of d but
also maximal pole multiplicities;

• MathematicaBinary: a path to the executable Mathematica kernel. If
set, it is passed to the integration pool, so it can request Mathematica
for values of functions it cannot evaluate itself (currently this feature
is used only for PolyGamma);

• BucketSize (25 by default): an option tuning the database usage (for
details see the documentation on KyotoCabinet); increasing this vari-
able might result is faster database access, but increases the RAM
usage;

• MixSectors (0 by default): lets FIESTA to sum up integrands in differ-
ent sectors before integration;

• RemoveDatabases (True by default): specifies whether the database
files should be removed after the integration;

• d0 (4 by default): specifies the space-time dimension;
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• ReturnErrorWithBrackets: (False by default) changes the output —
with True the error estimates are printed as pm[NUMBER] instead of
pmNUMBER;

• FixSectors: (True by default) — for the reason of fixing sector num-
bers and easier debugging we perform the variable substitutions stage
on the main kernel. If one sets this option to false, this stage will be
also made parallel, however it normally does not influence the total
time much;

• PrimarySectorCoefficients: one might specify the list of coefficients
before primary sectors. A zero means that this sector will be ignored.
With this setting one can split the problem into parts and also take
diagram symmetries into account;

• NoDatabaseLock: prevents FIESTA from locking the database. This
may be away to avoid restrictions on some file systems but might result
in corrupted databases.

5.4. CIntegratePool options
If one runs FIESTA with OnlyPrepare=True, then it prints out the com-

mand to be executed, for example,
bin/CIntegratePool -in /temp/db2in -out /temp/db2out
-all -direct -threads 4 -complex

After executing such a command and achieving a result, one might wish
to rerun the integration with different options. Here we provide the list of
arguments accepted by CIntegratePool:

• -in: provides the path to the database with integrands (without the
.kch suffix);

• -out: provides the path to the database where results are stored;

• -direct: instructs CIntegratePool that it was called directly and not
from Mathematica, so that it saves the results in the output database,
does not use temporary files in order to transfer results back and prints
the results to stdout;

• -math: provides the path to the Mathematica binary;
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• -bucket: provides the bucket value for the output database;

• -CIntegratePath: provides the path to the CIntegrate binary. This
can be either a full path (starting with /) or just a filename, in this case
CIntegratePool searches for this file in the same directory. If this op-
tion is missing, it searches either for CIntegrateMP or CIntegrateMPC
depending on whether the complex mode is on or off;

• -integrator: sets the integrator to be used. -intpar sets some inte-
grator parameter, for example, -intpar maxeval 500000. For the list
of integrators see section 5.3;

• -MPThreshold, -MPPrecision, -PrecisionShift, -SmallX, -MPMin:
options that are fine-tuning the MPFR subsystem;

• -threads: sets the number of CIntegrate processes launched by the
pool. This option is meaningless in the MPI mode;

• -CubaCores: sets the number of processes that the integrator starts for
each integrand;

• -test: perform an integrator test only, -notest: do not perform this
test, -nopreparse: do not perform parse check of all expressions before
integration;

• -complex: specifies that the expression is complex. If one knows it
do be real, this setting should not be used since it can slow down the
integration a lot;

• -all: perform all integration; to the contrary, -task followed by a
number instruct the code to evaluate only expression related to one
SDEvaluate call. Normally, there is only one task in the database, so
one would call -task 1, but the SDExpandAsymode uses multiple tasks.
-prefix can be used only when -task is set and tell the program to
integrate only with given powers of ε and RegVar. For example -task
1 -prefix "{-2,-{1, 2}}" corresponds to integrals having ε order
−2 and RegVar coefficient RegVar * Ln [RegVar]ˆ2;

• -separate_terms: instructs the algorithm not to group expressions
by sectors and to integrate each integrable term separately, might be
useful if one is using massive MPI parallelization;
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• -testF: instead of the integration, the code checks whether the sign
of the imaginary part of F is negative. Might be used for debugging
special cases in complex mode, for details see section 2;

• -debug: used to print all integration results.

5.5. CIntegrate options
The integration pool program, CIntegratePool or CIntegratePoolMPI

distributes tasks between on of the integration programs provided with the
package — CIntegrate, CIntegrateMP, CIntegrateMPC or even something
external. However, the integration programs can be called on their own.
They have no options on start, accept input from stdin and print it to
stdout. Each command sent to the program is ended with a new line symbol.

The main command to be provided to the program input is Integrate.
After that one should send the expression. It consists of a number of lines,
each of them should be ended with the ; symbol. At the end should be a
line consisting of the | symbol. The expression lines are the following:

• The number of variables;

• The number of intermediate functions;

• A number of lines each representing an intermediate expression. If the
second line is 0;, then this part should be missing;

• The final expression.

The expressions might contain algebraic operations such as +, -, *,
/, bracket symbols, numbers with a floating point. The integration vari-
ables should be referred as x[1], x[2] and so on, intermediate functions as
f[1], f[2] and so on. Power is represented as p[expr,exponent], natu-
ral logarithm as l[expr]. One can also use P for π and G for EulerGamma.
PolyGamma[arg1,arg2] also works but one needs to provide a path to the
Mathematica binary — the integrator cannot evaluate this function on its
own.

Example:
1;
0;
x[0]+0.2;
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|
If one feeds this example into the CIntegrate program after the Integrate

command then it will result in integrating x+ 0.2 from 0 to 1.
The program also accepts the following commands (most of them require

an argument passed as next line):

• Parse: same as Integrate, but the expression is only parsed;

• Exit: quit the program;

• CubaCores: sets the number of cores used by the integrator, default
value is 1;

• SetMath: provides a path to the Mathematica binary;

• SetIntegrator: sets the integrator to be used;

• SetCurrentIntegratorParameter: sets one of the integrator param-
eters, the next line should be the parameter name, the line after that
— the value;

• GetCurrentIntegratorParameters: simply returns the list of current
parameters and their values;

• MPFR, Native and Mixed (default variant): chooses whether the inte-
grand should use MPFR everywhere, the double precision or the mixed
mode. The mixed mode used the following five options to determine
in which parts of the integration cube which arithmetics should be used:
SetMPPrecision, SetMPPrecisionShift, SetMPMin, SetMPThreshold,
SetSmallX;

• Debug: makes the code print values in all integration points;

• TestF: instead of the integration the code checks the sign of the imag-
inary part of the integrand;

• Help: list all those commands.
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5.6. Setup for cluster calculations
In order to perform integrations on a cluster one should do the following:

1. Run FIESTA with OnlyPrepare=True.
2. Save the database file produced by the integrand preparation stage.
3. Use the command printed out by the Mathematica part to launch

it on a cluster. One can replace the call to CIntegratePool with
CIntegratePoolMPI in order to use the MPI version. The syntax to
launch MPI program varies, so one will have to use instructions for the
cluster in use. One can also adjust the integrator options, for example
by increasing the number of sampling points.

4. The result is printed out in the c++ log and also saved to a small output
database. To see the result in the Mathematica form one should load
FIESTA, provide the proper DataPath and run GenerateAnswer[]. No
more options are required.

6. Conclusion

We have presented the new version of FIESTA — a program for automatic
numerical evaluation and analytic expansion of Feynman integrals. The new
version contains new sector decomposition and expansion algorithms, pro-
vides possibilities to integrate in physical regions and to perform cluster
parallelization. We believe that this upgrade is an essential improvement in
automatic numerical evaluations of Feynman integrals. FIESTA development
is not over. One of the future plans is to make use of GPUs in order to speed
up the integration.
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