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Abstract: We apply a recently suggested new strategy to solve differential equations

for master integrals for families of Feynman integrals. After a set of master integrals has

been found using the integration-by-parts method, the crucial point of this strategy is to

introduce a new basis where all master integrals are pure functions of uniform transcen-

dentality. In this paper, we apply this method to all planar three-loop four-point massless

on-shell master integrals. We explicitly find such a basis, and show that the differential

equations are of the Knizhnik-Zamolodchikov type. We explain how to solve the latter to

all orders in the dimensional regularization parameter ǫ, including all boundary constants,

in a purely algebraic way. The solution is expressed in terms of harmonic polylogarithms.

We explicitly write out the Laurent expansion in ǫ for all master integrals up to weight six.
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1 Introduction

The method of differential equations (DE) suggested in [1, 2] is one of the most powerful

modern methods of evaluating multiloop Feynman integrals. It was presented in a system-

atic form in [3–6] where it was successfully applied to the evaluation of four-point two-loop

massless Feynman integrals with one leg off shell. In this formulation, DE are applied to

the evaluation of master integrals whose number is always finite [7]. This approach sup-

poses that one has a solution of integration by parts (IBP) relations [8] at hand, i.e. an

algorithm which expresses any Feynman integral of a given family as a linear combination

of the master integrals.1 There are several public codes to solve IBP relations [9–14] and

many private codes. In the present work, we applied the c++ version of FIRE [10, 11].

The idea of the method is to take derivatives of a given master integral with respect

to kinematical invariants and masses. Then the result of this differentiation is written in

terms of Feynman integrals of the given family and, according to the known IBP reduction,

in terms of the master integrals. In this way, one obtains a system of first-order differential

1We use the term family of Feynman integrals to refer to a set of integrals sharing the same denominator

factors, and possibly having numerators. In this terminology, an integral with all propagators present can

be thought of as the parent integral, and integrals with missing propagators as descendants.
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equations for the master integrals, and can then try to solve this system with appropriate

boundary conditions. The method of DE was successfully applied in many calculations.

For reviews, see [15, 16], and [17, 18] for some recent examples.

Despite its power and generality, one can encounter practical problems when using

this method for complicated families of Feynman integrals. One difficulty can lie in the

fact that the class of integral functions appropriate to describe the solution is complicated,

and it only becomes apparent in the course of the calculation which class of functions is

needed. Another difficulty can arise when there are several master integrals that satisfy

coupled differential equations. These can turn out rather cumbersome to solve in practice.

Also, the results for the master integrals are often rather lengthy and their structure is not

particularly transparent.

Quite recently a new strategy of solving DE for master integrals was suggested [19] by

one the authors of the present paper. When applicable, it overcomes the problems indicated

above. The key ingredient of this strategy is to choose a convenient basis of master integrals

having desirable properties. The goal is to choose all master integrals such that they are

pure functions of uniform weight, i.e uniform degree of transcendentality. For generalized

polylogarithms [20, 21] that are defined through iterated integrals over logarithmic differ-

ential forms, the weight of a function is defined as the number of integrations needed to

define it. A linear combination of such functions has uniform (i.e. homogeneous) weight if

all its summands have the same weight. Finally, a function is called pure if the weight of

its differential is lowered by one unit. This last property is motivated by the fact that such

functions satisfy simple differential equations. This will be important in the following. In

the remainder of this paper, we will use the terms weight and (degree of) transcendentality

without distinction.

The fact that certain loop integrals have uniform transcendentality was observed in

many calculations, especially in supersymmetric theories, see e.g. [22–26], and more recently

in [27, 28].2 Certainly results for generic scattering amplitudes in QCD do not appear

to have simple transcendentality properties, at least in the way they are conventionally

presented. One may ask, however, whether such results can be written in terms of a

finite number of building blocks that have the properties discussed above. Reference [19]

suggests that all master integrals can indeed be chosen to be pure functions of uniform

transcendentality, including the integrals needed for QCD, and provides criteria for finding

such a basis.

Suppose that for a given family the set of master integrals has already been identified,

using IBP relations. The main point of the strategy of [19] is then to turn to a new basis

of the master integrals which all have uniform transcendentality. This transition is given

by a linear transformation in the space of master integrals and the corresponding matrix is

rational with respect to dimension and usually algebraic w.r.t. kinematic invariants.

As explained in [19] one can use various strategies to reveal uniformly transcendental

master integrals. One efficient method is to replace propagators by delta functions and

2The concept of transcendentality also played an important role in a different context, at the level of

anomalous dimensions of composite operators, where the anomalous dimensions in N = 4 SUSY Yang–Mills

theory may be obtained from the leading-transcendentality contributions in QCD [29].
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analyze whether the resulting expression is uniformly transcendental. In other cases, explicit

integral representations can be derived, using Feynman parameters or other means [30], to

make the transcendental properties of the answer manifest. We also wish to mention related

work in the mathematical literature [31].

Let us denote the kinematical variables by x = (x1, . . . , xn), the set of N basis integrals

by f = (f1, . . . , fN ), and let us work in D = 4−2ǫ dimensions. The general set of differential

equations takes the form

∂if(ǫ, x) = Ai(ǫ, x)f(ǫ, x) , (1.1)

where ∂i =
∂
∂xi

, and each Ai is an N ×N matrix.

The existence of a basis of master integrals with the above properties is closely related

to the possibility to obtain a much simpler system of differential equations, as conjectured

in [19],

∂if(ǫ, x) = ǫAi(x)f(ǫ, x) . (1.2)

The essential difference w.r.t. (1.1) is that the matrix in the equation is just proportional

to ǫ. As a result such a system of equations can be solved in a very easy and natural way.

There is no general proof that, for any family of Feynman integrals, one can turn from (1.1)

to (1.2). However, we are going to provide non-trivial examples of Feynman integrals where

this is possible and thereby arrive at new results.

In [19] it was shown that this strategy can successfully be applied to all the on-shell

massless two-loop Feynman integrals, and previous results, in particular, for the two double

box integrals of this family [22, 32], can be reproduced.

The goal of the present paper is to derive new results with the strategy of [19]. We will

consider the two families of planar three-loop massless on-shell integrals corresponding to

the ladder (i.e. triple box) and the tennis court graph shown in Fig. 1. (The notation A and

E for the families of master integrals follows that of [33]. Other letters stand for non-planar

integrals.) These integrals have fifteen indices: we associate the first ten of them to the

edges of these graphs, as shown in Fig. 1, and the last five to numerators. Explicitly, we

have

FA
a1,...,a15(s, t;D) =

∫ ∫ ∫

dDk1 d
Dk2 d

Dk3
(−k21)

a1 [−(p1 + p2 + k1)2]a2(−k22)
a3

×
[−(k1 − p3)

2]−a11 [−(p1 + k2)
2]−a12 [−(k2 − p3)

2]−a13

[−(p1 + p2 + k2)2]a4(−k23)
a5 [−(p1 + p2 + k3)2]a6 [−(p1 + k1)2]a7

×
[−(p1 + k3)

2]−a14 [−(k1 − k3)
2]−a15

[−(k1 − k2)2]a8 [−(k2 − k3)2]a9 [−(k3 − p3)2]a10
, (1.3)

and

FE
a1,...,a15(s, t;D) =

∫ ∫ ∫

dDk1 d
Dk2 d

Dk3
[−(k1 − k3)2]a1 [−(p1 + k1)2]a2 [−(p1 + p2 + k1)2]a3

×
[−(p1 + p2 + k3)

2]−a11 [−(p1 + k2)
2]−a12 [−(k1 − p3)

2]−a13

[−(p1 + p2 + k2)2]a4 [−(k2 − p3)2]a5 [−(k2 − k3)2]a6 [−(k1 − k2)2]a7
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Figure 1. The triple box (A) and tennis court diagrams (E). Latin numbers refer to propagators

associated to line parameters ai, cf. eqs. (1.3) and (1.4). Lines associated to possible numerators

are not shown in the figures.

×
(−k21)

−a14(−k22)
−a15

(−k23)
a8 [−(p1 + k3)2]a9 [−(k3 − p3)2]a10

. (1.4)

Here s = (p1+ p2)
2 and t = (p1+ p3)

2 denote the Mandelstam invariants. For later use, we

note that u = (p2 + p3)
2 = −s− t.

As we explain presently, the master integrals for these two families represent all master

integrals needed to evaluate any massless planar on-shell three-loop four-point scattering

amplitude. We explicitly find a basis where all master integrals have uniform transcen-

dentality, and show that the differential equations are of the Knizhnik-Zamolodchikov type

[34]. We explain how to solve the latter to all orders in the dimensional regularization

parameter ǫ, including all boundary constants, in a purely algebraic way, for all master

integrals. The solution is expressed in terms of harmonic polylogarithms. We explicitly

write out the Laurent expansion in ǫ for all master integrals up to weight six. Up to now,

two analytical results for integrals of this family were known: for the triple box without

numerator [23] and for the tennis court diagram with a special numerator [24].

We would also like mention a perhaps surprising outcome of our analysis. As a by-

product of our calculation, we also obtained analytic results for single-scale integrals ap-

pearing in form factors. Naïvely, the DE method cannot be applied to these cases, since

their scale dependence is trivially fixed by their engineering dimension. However, they are a

part of the system of differential equations for the more general four-point integrals, where

they enter as boundary values. The latter, however, are greatly constrained by the finite-

ness of planar integrals in the u-channel as u → 0. As we will discuss in more detail below,

these consistency conditions fix all boundary constants, up to trivial propagator-type inte-

grals. In this way, one obtains results for non-trivial single-scale integrals, to any order in

ǫ. One may verify agreement with the planar form factor integrals computed in references

[25, 35–39]. We find this way of computing these integrals rather elegant.

Let us now explain why the master integrals computed above are sufficient to describe

all the families of three-loop four-point planar on-shell massless diagrams (which have fifteen
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indices, with the number of positive indices being lower or equal to ten.) To see this, let us

first observe that we can construct integrals with the maximal number of positive indices by

building graphs with trivalent vertices. A quartic vertex can always be obtained as a special

case, with one index being zero. Let us then observe than the triple box and the tennis

court are the only graphs composed of cubic vertices with no triangles as subgraphs. So,

any other graph has at least one triangle subgraph. In this case, one can use the presence

of such a triangle and apply IBP relations to reduce an index, either internal or external,

of this triangle to zero starting from positive values [8]. In graph-theoretical language, this

means shrinking the corresponding line to a point. By analyzing various graphs obtained

by this procedure we can see that the resulting reduced graphs can be also obtained, in

some way, either from the triple box or/and from the tennis court.

This paper is organized as follows. In section 2, we explain the strategy we use for

finding integrals that give rise to pure functions of uniform transcendentality, providing

several examples. We then present our basis choice for the master integrals. In section 3,

we present the differential equations satisfied by the latter, and explain how to solve them in

the ǫ expansion. We also discuss physical boundary conditions. We analyze the structure of

the solution. Explicit results for the ten-propagator integrals are relegated to Appendix B,

and for all integrals to the ancillary files resultA.m and resultE.m. For convenience, we

also present in these files the corresponding matrices appearing in the differential equations.

We conclude in section 4.

2 Choice of integral basis

An important part of the result of this paper is to provide a basis of master integrals for

the families of Feynman integrals A and E where each basis element is a pure function of

uniform weight. Ideas for how to construct such a basis where outlined in ref. [19]. In

practice, these lead to very useful criteria for choosing master integrals. Here we wish to

explain the criteria that we found most useful in the present context.

When constructing good candidate integrals at (L + 1) loops, it is very convenient to

have a solution of the problem at L loops at hand, as one can often infer from this which

integrals to choose at the next loop order. We will see this in more detail in the following

examples. In the present case, the solution at two loops was presented in [19].

2.1 Example 1: massless bubble subintegrals

Many of the three-loop integrals we are interested in have bubble subintegrals (we will also

sometimes refer to these as propagator-type subintegrals), i.e. they are lower-loop integrals

with certain bubble insertions. In fact, the integrals of Fig. 3 and Fig. 5 are all of this type.

For definiteness, let us consider the specific case of integral fA
19 of Fig. 3.

It is clear that we can always integrate out propagator subintegrals and obtain a lower-

loop integral, albeit with some power(s) shifted by ǫ. More concretely, we have

∫

dDk

[−k2]a1 [−(k + p)2]a2
=

Γ(a−D/2)Γ(D/2 − a1)Γ(D/2 − a2)

Γ(a1)Γ(a2)Γ(D − a)

iπD/2

(−p2)a−D/2
, (2.1)

– 5 –



(19)

1 + Ε

(19’)

Figure 2. Integrating out propagator subintegrals related the basis choice at (L + 1) loops to the

corresponding choice at L loops, up to some trivial prefactors, and indices shifted by ǫ.

where a = a1 + a2. In particular, if the indices a1 and a2 are equal to one and two, as in

the present case, we see that after integrating out the bubble subintegral, we obtain, up to

some inessential prefactor, a double box integral with one index shifted from 1 to 1 + ǫ, cf.

Fig. 2.

One might be worried about the effect of the shift of the power by ǫ. In fact, experience

shows that in most cases the shifts in ǫ can be ignored for the purposes of uniform transcen-

dentality. A qualitative explanation, which is applicable to many cases, is the following.

Consider the integral

I(x, ǫ) :=

∫ 1

0

1

x+ t
tǫ dt . (2.2)

For ǫ = 0, this evaluates to a logarithm, and hence has degree one. The full integral has a

Taylor expansion in ǫ. It is easy to see that the coefficient of ǫn has weight (n+1). Assigning

weight −1 to ǫ, we see that I(x, ǫ) is a function for which each term in the expansion in ǫ

has uniform weight one. We see that the presence of the factor tǫ had was inessential as far

as the transcendental weight of the integral was concerned.

We see that this reasoning motivates the choice for the master integrals shown in

Figs. 3,5. Similarly, in the case of triangle subintegrals, explicit parametrizations can be

useful. In particular, whenever there is a triangle integral with an on-shell corner, a well-

known trick is to use Feynman parameters to combine the two propagators adjacent to

the on-shell leg. In this way, one obtains a one-fold integral over a configuration with a

propagator subintegral, which was discussed above.

2.2 Example 2: leading singularities, (generalized) unitarity cuts

A more general method is to study leading singularities or the closely related (generalized)

unitarity cuts of loop integrals. In particular, a very useful cut can be done whenever

we have a box subintegral. In this case, we can consider the same integral with the four

propagators of the box cut, i.e. replaced by delta functions. Alternatively, we may view

this as replacing the integration by contours in the complex plane around the poles of the
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(1) (2) (3) (4) (5)*

(6) (7) (8) (9), (14)* (10)

(11) (12) (13) (18)*, (19) (22), (23)*

Figure 3. Master integrals for integral family A that have bubble subintegrals. Dots denote

doubled propagators. An asterisk indicates that there are numerator factors not shown in the

figure.

(17) (20) (21) (15) (16) (24), (25)*, (26)*

Figure 4. Master integrals for integral family A without bubble subintegrals. Dots denote doubled

propagators. An asterisk indicates that there are numerator factors not shown in the figure.

propagators. As a result, the subintegral is completely localized and can be easily evaluated.

In this way, we relate the (L+ 1)-loop integral to an L-loop integral. The strategy is then

to choose the integrals such that the resulting lower-loop integrals that can be obtained by

cutting lines have uniform transcendentality.
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(1) (2) (3) (4) (5) (6)*

(7) (8)* (9) (10) (11) (12)

(13) (14) (17)* (18) (19) (25)*

(26) (29), (30)*

Figure 5. Master integrals for integral family E that have bubble subintegrals. Dots denote doubled

propagators. An asterisk indicates that there are numerator factors not shown in the figure.

2.3 General comments

In summary, we can use these rules to generate candidate integrals that are expected to be

pure functions of uniform transcendentality. One can then use the IBP reduction to deter-

mine how many of the candidate integrals are linearly independent and can hence be used

as master integrals. One then proceeds by writing out the system of differential equations

in the new basis. As we discuss in the following section, this provides an immediate test of

the basis choice – when successful, the transcendentality properties of the basis functions

are made manifest by the differential equations. Before presenting our choice of integral

basis, we make a number of general comments on the strategy of finding such a basis.

The discussion of unitarity cuts in the examples was four-dimensional. Of course,

in principle one can also analyze these cuts in 4 − 2ǫ dimensions This is closely related to
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massive integrals. In practice, we have found that in most cases, the naïve four-dimensional

integrand analysis is sufficient. See also the related discussion for example 1.

We would also like to mention another fact that makes this approach extremely efficient

in practice: for a given family of integrals, one can start working in sectors with fewer

propagators (i.e. number of positive indices), which restricts the size of the basis. This

allows to verify the properties of the basis choice by looking at a small number of integrals

at a time, by inspecting the resulting differential equations.

In some cases, it can happen that the candidate integrals one selects using the above

criteria do not yet have the desired properties, e.g. if not enough cuts were considered, or

if there are subtle effects that invalidate a naïve four-dimensional analysis. Often, a small

modification to the candidate integral(s) is then sufficient to obtain the desired properties.

Exactly how to modify the integrals can be deduced by inspecting the differential equations.

An example of such a case are integrals fE
34 and fE

36 given below.

Finally, it should be obvious from the above discussion that the ideas for finding conve-

nient basis elements do not rely on planarity, massless particles, four-point kinematics, etc.,

although all of those features lead to technical simplifications. More generally, we would

also expect that generalizations of the ’d-log’ representations of ref. [30] can give insight

into transcendentality properties of loop integrals. For example, in the slightly simpler set-

ting of heavy quark effective theory (i.e. Wilson line) integrals, such representations were

used successfully, see [40].

2.4 Integral basis for integral classes A and E

In the way explained above we straightforwardly arrived at the basis choice depicted in the

Figs. 3,4,5 and 6. There are 26 master integrals in family A, and 41 in family E. 7 integrals

are shared between the two families, so that we have a total of 60 inequivalent integrals.

(Some further integrals can be obtained from interchanging s and t.)

In formulas, we define

fA
i = ǫ3 (−s)3ǫ

e3ǫγE

(iπD/2)3
gAi . (2.3)

This formula has three prefactors that we explain presently. The factor (−s)3ǫ is there to

make the basis functions fA
i dimensionless. The factor ǫ3 ensures that all basis functions

admit a Taylor expansion around ǫ = 0. Finally, we have pulled out a standard conventional

normalization factor for three-loop integrals. The functions gAi are defined as

gA1 =tFA
0,0,0,0,0,0,2,2,2,1,0,0,0,0,0, gA2 = sFA

0,2,0,0,1,0,0,2,2,0,0,0,0,0,0, (2.4)

gA3 =ǫsFA
0,0,0,0,1,1,2,2,1,0,0,0,0,0,0, gA4 = ǫsFA

0,0,0,1,2,0,2,1,1,0,0,0,0,0,0, (2.5)

gA5 =sFA
0,1,2,−1,0,1,0,2,2,0,0,0,0,0,0, gA6 = s2FA

0,2,2,0,2,1,0,1,0,0,0,0,0,0,0, (2.6)

gA7 =ǫstFA
0,0,0,0,1,1,2,2,1,1,0,0,0,0,0, gA8 = ǫ2(s+ t)FA

0,0,0,1,1,0,2,1,1,1,0,0,0,0,0, (2.7)

gA9 =ǫstFA
0,0,1,1,0,0,2,1,1,2,0,0,0,0,0, gA10 = ǫs2FA

0,0,1,1,2,1,2,1,0,0,0,0,0,0,0, (2.8)

gA11 =ǫ2(s+ t)FA
0,1,0,0,1,0,1,1,2,1,0,0,0,0,0, gA12 = −ǫ(2ǫ− 1)sFA

1,1,0,0,1,1,0,2,1,0,0,0,0,0,0, (2.9)

gA13 =s3FA
2,1,2,1,2,1,0,0,0,0,0,0,0,0,0, gA14 = ǫsFA

0,0,1,1,0,0,2,1,1,2,0,0,−1,0,0, (2.10)
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gA15 =ǫ3tFA
0,1,1,0,0,1,1,1,1,1,0,0,0,0,0, gA16 = ǫ2s2FA

0,1,2,0,0,1,1,1,1,1,0,0,0,0,0, (2.11)

gA17 =ǫ3sFA
0,1,1,0,1,1,1,1,1,0,0,0,0,0,0, gA18 = ǫ2s2FA

0,0,1,1,1,1,2,1,1,1,0,0,−1,0,0, (2.12)

gA19 =ǫ2s2tFA
0,0,1,1,1,1,2,1,1,1,0,0,0,0,0, gA20 = ǫ3s(s+ t)FA

0,1,1,0,1,1,1,1,1,1,0,0,0,0,0, (2.13)

gA21 =ǫ2s2tFA
0,1,1,0,1,1,1,2,1,1,0,0,0,0,0, gA22 = ǫ2s2tFA

1,1,0,0,1,1,1,2,1,1,0,0,0,0,0, (2.14)

gA23 =ǫ2s2FA
1,1,0,0,1,1,1,2,1,1,−1,0,0,0,0, gA24 = ǫ3s3tFA

1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, (2.15)

gA25 =ǫ3s3FA
1,1,1,1,1,1,1,1,1,1,−1,0,0,0,0, gA26 = ǫ3s3FA

1,1,1,1,1,1,1,1,1,1,0,0,−1,0,0 (2.16)

For integral family E, we have (2.3) with ’A’ replaced by ’E’, and

gE1 =s FE
0,0,1,0,0,2,2,2,0,0,0,0,0,0,0, gE2 = tFE

0,1,0,0,0,2,2,0,0,2,0,0,0,0,0, (2.17)

gE3 =− 2ǫtFE
0,0,1,0,0,2,2,0,1,1,0,0,0,0,0, gE4 = −2ǫtFE

0,0,1,0,1,2,2,0,1,0,0,0,0,0,0, (2.18)

gE5 =t2FE
0,2,0,0,2,0,1,0,2,1,0,0,0,0,0, gE6 = tFE

0,1,0,0,2,2,2,0,1,0,0,−1,0,0,0, (2.19)

gE7 =− 2ǫsFE
0,1,0,1,0,2,2,1,0,0,0,0,0,0,0, gE8 = +sFE

1,0,2,2,0,1,0,2,0,0,−1,0,0,0,0, (2.20)

gE9 =− 2ǫstFE
0,0,1,0,0,2,2,1,1,1,0,0,0,0,0, gE10 = 4ǫ2(s+ t)FE

0,0,2,0,1,1,1,1,1,0,0,0,0,0,0, (2.21)

gE11 =4ǫ2tFE
0,2,0,1,0,1,1,0,1,1,0,0,0,0,0, gE12 = 4ǫ2(s+ t)FE

0,2,0,1,0,1,1,1,0,1,0,0,0,0,0, (2.22)

gE13 =− 2ǫstFE
0,2,0,1,1,2,1,1,0,0,0,0,0,0,0, gE14 = 4ǫ2(s+ t)FE

0,1,1,0,0,2,1,1,0,1,0,0,0,0,0, (2.23)

gE15 =4ǫ2tFE
1,0,1,0,1,1,1,0,2,0,0,0,0,0,0, gE16 = 4ǫ2sFE

1,0,1,0,2,1,1,1,0,0,0,0,0,0,0, (2.24)

gE17 =− 2ǫtFE
2,0,1,2,0,1,0,0,1,1,−1,0,0,0,0, gE18 = 4ǫ2stFE

0,2,0,1,0,1,1,1,1,1,0,0,0,0,0, (2.25)

gE19 =4ǫ2stFE
0,2,0,1,1,1,1,1,1,0,0,0,0,0,0, gE20 = −8ǫ3tFE

0,1,1,0,1,1,1,0,1,1,0,0,0,0,0, (2.26)

gE21 =− 8ǫ3sFE
0,1,1,0,1,1,1,1,1,0,0,0,0,0,0, gE22 = 4ǫ2t2FE

0,1,1,0,2,1,1,1,1,0,0,0,0,0,0, (2.27)

gE23 =− 8ǫ3(s+ t)FE
1,0,1,0,1,1,1,1,1,0,0,0,0,0,0, gE24 = 4ǫ2stFE

1,0,2,0,1,1,1,1,1,0,0,0,0,0,0, (2.28)

gE25 =− 2ǫstFE
2,0,1,2,0,1,0,1,1,1,−1,0,0,0,0, gE26 = 4ǫ2stFE

1,0,2,1,1,1,0,1,1,0,0,0,0,0,0, (2.29)

gE27 =− 8ǫ3tFE
1,1,1,1,1,1,0,1,0,0,0,0,0,0,0, gE28 = 4ǫ2s2FE

1,1,1,1,1,1,0,2,0,0,0,0,0,0,0, (2.30)

gE29 =4ǫ2st2FE
0,2,0,1,1,1,1,1,1,1,0,0,0,0,0, gE30 = 4ǫ2t2FE

0,2,0,1,1,1,1,1,1,1,−1,0,0,0,0, (2.31)

gE31 =− 8ǫ3t(s+ t)FE
0,1,1,0,1,1,1,1,1,1,0,0,0,0,0, gE32 = 4ǫ2st2FE

0,1,1,0,1,1,2,1,1,1,0,0,0,0,0, (2.32)

gE33 =4stFE
1,2,0,1,1,1,1,1,0,1,0,0,−1,0,0ǫ

2, gE35 = 4ǫ2stFE
1,1,1,1,1,1,1,2,0,0,−1,0,0,0,0, (2.33)

gE34 =8ǫ3t

(

t

s+ t
FE
1,0,1,0,1,1,1,1,1,0,0,0,0,0,0 − FE

1,1,0,1,1,1,1,1,0,1,0,0,0,0,−1

)

, (2.34)

gE36 =− 8ǫ3s

(

t

s+ t
FE
1,0,1,0,1,1,1,1,1,0,0,0,0,0,0 + FE

1,1,1,1,1,1,1,1,0,0,0,−1,0,0,0

)

, (2.35)

gE37 =− 8ǫ3t2FE
1,1,1,1,1,1,1,0,1,1,−1,0,0,0,0, gE38 = −8ǫ3stFE

1,1,1,1,1,1,1,1,0,1,−1,0,0,0,0, (2.36)

gE39 =− 8ǫ3st2FE
1,1,1,1,1,1,1,1,1,1,−1,0,0,0,0, gE40 = −8ǫ3t2FE

1,1,1,1,1,1,1,1,1,1,−2,0,0,0,0, (2.37)

gE41 =− 8ǫ3stFE
1,1,1,1,1,1,1,1,1,1,−1,−1,0,0,0 . (2.38)

Having found a convenient set of master integrals, let us now study the system of

differential equations they satisfy. We will find that the ladder indeed make all the properties

that we were looking for manifest.
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(15) (16) (20) (21) (22) (23)

(24) (27) (28) (31) (32) (33)*

(34)* (35)* (36)* (37)* (38)* (39)*, (40)*, (41)*

Figure 6. Master integrals for integral family E without bubble subintegrals. Dots denote dou-

bled propagators. An asterisk indicates that there are numerator factors not shown in the figure.

Integrals 34 and 36 involve an admixture of integral 23, see eqs. in the main text.

3 Knizhnik-Zamolodchikov equation for four-point integrals

Here we study the differential equations satisfied by the master integrals. We find that with

the above choice of basis, the differential equations take the form predicted in ref. [19]. The

basis integrals discussed in the previous section were normalized to be dimensionless, and

hence only depend on the ratio x = t/s. In this variable, the differential equations take the

following form,

∂x f(x, ǫ) = ǫ

[

a

x
+

b

1 + x

]

f(x, ǫ) . (3.1)

This is a specialization of eq. (1.2) to one variable, with a specific form of the matrix

A(x). Here a and b are N × N matrices with constant indices, with N = 26 and N =

41, respectively for cases A and E. Explicit exressions for these matrices are presented in

Appendix A. We obtain this system of equations for both the triple ladder and the tennis

court family of integrals.

We wish to emphasize that the size of the system does not pose any problems when

solving the equations, since the solution is obtained in a completely algebraic way.
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We see that equation (3.1) has three regular singularities, at x = 0, x = −1, and x = ∞.

These three points correspond to the limits s = 0, u = 0, and t = 0, respectively. The

absence of singularities of planar integrals as u → 0 will provide an important boundary

condition, as discussed in the next section. We remark that equation (3.1) is a particular

case of the Knizhnik-Zamolodchikov equations [34]. It can also be described as a Fuchsian

system of differential equations with three regular singular points.

Let us now discuss the solution of those equations. The normalization of the master

integrals in eq. (2.17) was chosen such that functions fi are finite as ǫ → 0. We are

interested in a solution near D ≈ 4 dimensions, so we parametrize, e.g. for family A,

fA
i (x, ǫ) =

6
∑

j=0

ǫjfA,j
i (x) +O(ǫ7) . (3.2)

From eq. (3.1) it is clear that the iterative solution in ǫ for all functions fi can be expressed

in terms of harmonic polylogarithms [41] of argument x and with indices drawn from 0,−1.

Equation (3.1) determines the solution up to boundary constants. We will determine the

latter in the next section. Here we would already like to mention that the boundary

constants have the property of uniform weight, and this, together with the structure of eq.

(3.1), implies that all basis functions are pure functions of uniform weight, as anticipated.

3.1 Boundary conditions

For planar graphs we expect the limit u → 0, i.e. x → −1 to be finite. Another condition

that we can impose it that the solution be real for x > 0, i.e. when s and t have the same

sign. For planar graphs, this is obvious from the Feynman parametrization. As we will see,

these assumptions fix almost all of the boundary constants in this problem, except for some

elementary propagator-type integrals.

As can be seen from (3.1), the entries 1/(1 + x) can lead to terms singular as x → −1,

and the regularity at x → −1 therefore imposes constraints on the integration constants.

For example, at order ǫ, this condition means that H1(x) = log(1 + x) must come with

zero coefficient, and this imposes constraints on the integration constants at order ǫ0. The

absence of the function Li2 at order ǫ2 in our results can be understand in this way. Given

these constraints, one might wonder how one can obtain functions different from logarithms.

The answer is the following. At higher orders, there can be an interplay between boundary

constants at different orders, as the following example shows,

π2

∫ x

−1+δ
d log(1 + y)−

∫ x

−1+δ
log2 y d log(1 + y) , (3.3)

which is finite as δ → 0, and hence there can be finite combinations of HPLs with indices

−1.

In practice, we found that when computing up to order ǫn, considering the consistency

condition with x → −1 at order ǫ(n+1) and ǫ(n+2) gives all constraints. These constraints

are very powerful. We found that, together with condition that the solution be real for

x > 0, they determine most boundary conditions.
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The only additional information needed can easily be obtained from the propagator-

type integral f1, which can be expressed in terms of Γ functions,

fA
1 = e3ǫγEΓ4(1− ǫ)Γ(1 + 3ǫ)/Γ(1− 4ǫ)

= 1− ǫ2
π2

4
− 29ǫ3 ζ3 − ǫ4

71

160
π4 + ǫ5

(

29

4
π2ζ3 −

1263

5
ζ5

)

+ ǫ6
(

−
11539

24192
π6 +

841

2
ζ23

)

+O(ǫ7) . (3.4)

3.2 Summary and explicit results

In summary, the equations (3.1), together with finiteness at x → −1, reality of the solution

in the region x > 0, and the exact result for the trivial integral (3.4) determines all basis

functions to all orders in ǫ. The solution can be obtained in an algebraic way. At each

order ǫn, it is given by a linear combination of HPLs. The transcendental weight of each

term is n. In Appendix B, we present explicit results for the ten-propagator integrals, up

to order ǫ6, i.e. transcendental weight 6. Explicit results for all integrals, and up to weight

6, can be found in the ancillary files resultA.m and resultE.m.

We performed a series of analytical and numerical checks of our results. The highest

poles in ǫ were evaluated using the general Mellin-Barnes representations derived in refs. [23,

24]. The two known analytical results for the triple box without numerator [23], i.e. fA
24 and

for the tennis court diagram with a special numerator [24] i.e. fE
39 also served as important

checks. All the master integrals (except for the ten-propagator integrals of family E) were

also numerically checked with FIESTA [42, 43] with sufficient accuracy.

Finally, we wish to mention that the symbol [44, 45] of the terms in the solution can

be obtained in an even more straightforward way, and in that case the only information

required in addition to eq. (3.1) is the value of the first term in the ǫ expansion. The

latter follows from the boundary conditions, as explained above, but we give it here for

convenience. We have

fA,0 ={1, 1,−
1

9
,−

1

6
, 1,−1,

16

9
, 0, 1,

1

4
, 0, 0, 1,−

1

4
, 0,−

1

4
, 0,−

4

9
,
49

36
, 0,

7

3
,
25

9
,

−
16

9
,
16

9
,−

49

36
,−

4

9
} , (3.5)

and

fE,0 ={1, 1,
2

9
,
1

3
,−1, 1,

1

3
, 1,−

32

9
, 0, 0, 0,−

8

3
, 0, 0,

1

9
,
2

9
,−

8

9
,−

8

9
, 0, 0,−1, 0,−

4

9
,−

32

9
,

−
8

9
, 0,−1,

77

9
,−

16

3
, 0,

28

3
,−

49

9
, 0,−

49

9
, 0,−

2

9
,−

14

9
,
128

9
,−

98

9
,−

56

9
} . (3.6)

This, together with the differential equations (3.1) and the explicit form of the matrices

a and b given in eqs. (A.1) - (A.4) completely specifies the symbol of the answer, to any

order in ǫ.

4 Discussion and outlook

In this work, we computed the master integrals for planar massless four-point integrals. Via

IBP, they are sufficient to compute all integrals relevant for virtual corrections to 2 → 2
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scattering at that order. We wrote out results in the small ǫ expansion up to weight six,

and using the information provided here, higher-order results can be obtained at will.

It is interesting to note that as a by-product of our analysis, we also obtained result for

three-loop single scale integrals that naïrely cannot be obtained from differential equations.

We found that they were entirely determined from consistency of the system of differential

equations with the physical boundary conditions.

We focused on the phenomenologically relevant expansion of the master integrals for

ǫ → 0, and solved this problem in principle to all orders in ǫ. It is interesting to ask if

one can write down a solution for the master integrals valid for finite ǫ. The Knizhnik-

Zamolodchikov equations should be a good starting point for such an analysis. See for

example ref. [46] and references therein for cases where the solution can be expressed in

terms of (generalized) hypergeometric functions.

An obvious future direction is to apply this method to previously unknown non-planar

integrals at three loops. The latter are required in order to evaluate the three-loop non-

planar contributions to supersymmetric Yang-Mills and supergravity theories, where explicit

representations in terms of loop integrals are available, see [33] and references therein.

The knowledge that certain integrals are pure functions of uniform transcendental-

ity, can also be of practical advantage independently of the differential equations methods.

Apart from serving as an important check of calculations, this property simplifies very much

the application of the so-called PSLQ algorithm [47] because one then needs to consider only

transcendental numbers of a given weight, and not numbers of lower weights. Another char-

acteristic example of uniform transcendentality is within the method suggested in ref. [48],

where the dependence of the coefficient at the n-th term of a Taylor series is revealed from

the information about finite number of terms and the uniform transcendentality essentially

restricts the number of terms in the corresponding Ansatz.

It would be interesting to understand further criteria for integrals to be pure functions

of uniform transcendentally. It is possible that this might also be of interest for mathemati-

cians, who have been investigating transcendental properties of Feynman integrals, see e.g.

[31, 49] and references therein, albeit usually for particular classes of single-scale off-shell

integrals in strictly four dimensions.
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A Matrices in Knizhnik-Zamolodchikov equation

The non-zero matrix elements of a and b in (3.1) for both cases are given by the following

relations:

aA1,1 = −3, aA7,1 = 4/3, aA7,7 = −3, aA8,1 = −1/6, aA8,4 = −1, aA8,8 = −3, aA9,1 = 1,

aA9,9 = −3, aA11,1 = −1/3, aA11,2 = 1/3, aA11,11 = −3, aA14,1 = −1/4, aA14,9 = 1/2,

aA15,15 = 3, aA16,1 = 1/3, aA16,4 = −8, aA16,5 = −8/3, aA16,15 = 12, aA16,16 = −3,

aA18,1 = 2, aA18,3 = −2/3, aA18,4 = −40/9, aA18,7 = −1, aA18,8 = −24, aA18,9 = −2,

aA18,10 = 4/3, aA18,14 = −8/3, aA18,18 = 1, aA18,19 = 2/3, aA19,1 = −2, aA19,4 = 8,

aA19,7 = 3/2, aA19,8 = 24, aA19,9 = 2, aA19,19 = −3, aA20,1 = 23/27, aA20,2 = 17/54,

aA20,3 = −1/6, aA20,4 = −56/9, aA20,5 = −14/9, aA20,6 = 1/6, aA20,7 = −1, aA20,8 = −20/3,

aA20,11 = −2, aA20,15 = 8/3, aA20,16 = −2, aA20,17 = −2/3, aA20,20 = 1, aA20,21 = 1/3,

aA21,1 = −4/3, aA21,2 = −4/3, aA21,7 = 3, aA21,11 = 12, aA21,21 = −3, aA22,1 = −4/3,

aA22,2 = −4/3, aA22,7 = 3, aA22,11 = 12, aA22,22 = −3, aA23,1 = 20/9, aA23,2 = 19/9,

aA23,3 = −2, aA23,7 = −3, aA23,11 = −20, aA23,12 = 1, aA23,22 = 2, aA23,23 = 1,

aA24,19 = 4, aA24,21 = −4, aA24,22 = 2, aA24,24 = −3, aA25,1 = −8/3, aA25,2 = 41/18,

aA25,3 = −7/2, aA25,4 = 68/3, aA25,5 = 14/9, aA25,6 = 7/2, aA25,8 = 48, aA25,9 = 4,

aA25,10 = 3, aA25,11 = −12, aA25,12 = 3, aA25,13 = 1, aA25,17 = −2, aA25,19 = −6,

aA25,21 = 6, aA25,22 = −2, aA25,24 = 2, aA25,25 = 1, aA26,1 = −28/9, aA26,2 = −7/6,

aA26,3 = 9/2, aA26,4 = 20/3, aA26,5 = 22/9, aA26,6 = 3/2, aA26,7 = 3, aA26,8 = 16,

aA26,10 = 3, aA26,11 = 12, aA26,13 = 1, aA26,15 = −16, aA26,16 = 4,

aA26,17 = 6, aA26,19 = −2, aA26,20 = −12, aA26,21 = 2, aA26,22 = −3,

aA26,23 = −3, aA26,24 = 1, aA26,25 = 1 , (A.1)

bA7,1 = −4/3, bA7,3 = 4, bA7,7 = 1, bA8,8 = 2, bA9,1 = −1, bA9,9 = 2, bA9,14 = 4,

bA11,11 = 3, bA14,1 = 1/4, bA14,9 = −1/2, bA14,14 = −1, bA15,1 = −1/12, bA15,4 = 2,

bA15,5 = 2/3, bA15,8 = 2, bA15,15 = −3, bA15,16 = 1, bA16,1 = −1/3, bA16,4 = 8,

bA16,5 = 8/3, bA16,15 = −12, bA16,16 = 4, bA18,1 = −2, bA18,3 = 2/3, bA18,4 = 40/9,

bA18,7 = 1, bA18,8 = 24, bA18,9 = 2, bA18,10 = 2/3, bA18,14 = 8/3, bA18,18 = −1,

bA18,19 = −2/3, bA19,1 = 2, bA19,3 = 4, bA19,4 = −40/3, bA19,7 = −3/2, bA19,8 = −24,

bA19,9 = −2, bA19,10 = −2, bA19,18 = 3, bA19,19 = 2, bA20,20 = 1, bA21,1 = −16/9,

bA21,2 = 13/9, bA21,3 = 7, bA21,4 = 40/3, bA21,5 = 4, bA21,6 = 2, bA21,8 = 16,

bA21,15 = −16, bA21,16 = 4, bA21,17 = 4, bA21,20 = −12, bA21,21 = 1, bA22,1 = 4/3,

bA22,2 = 5/3, bA22,3 = 6, bA22,7 = −3, bA22,11 = −12, bA22,12 = −3, bA22,22 = 3,

bA22,23 = 3, bA23,1 = −20/9, bA23,2 = −10/9, bA23,7 = 3, bA23,11 = 20, bA23,12 = 2,
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bA23,22 = −2, bA23,23 = −2, bA24,2 = −17/9, bA24,3 = 7, bA24,4 = −40/3, bA24,5 = −28/9,

bA24,6 = −7, bA24,10 = −6, bA24,12 = −6, bA24,13 = −2, bA24,17 = 4, bA24,19 = −4,

bA24,21 = 4, bA24,22 = −2, bA24,24 = 3, bA24,25 = 2, bA24,26 = 2, bA25,1 = 52/9,

bA25,2 = −1/2, bA25,3 = −5/2, bA25,4 = −100/3, bA25,5 = −22/9, bA25,6 = 3/2, bA25,7 = −3,

bA25,8 = −64, bA25,9 = −4, bA25,10 = −1, bA25,12 = 3, bA25,13 = 1, bA25,15 = 16,

bA25,16 = −4, bA25,17 = −6, bA25,18 = 6, bA25,19 = 6, bA25,20 = 12, bA25,21 = −4,

bA25,22 = 2, bA25,24 = −2, bA25,25 = −1, bA25,26 = −2, bA26,1 = 28/9, bA26,2 = 7/6,

bA26,3 = −9/2, bA26,4 = −20/3, bA26,5 = −22/9, bA26,6 = 3/2,

bA26,7 = −3, bA26,8 = −16, bA26,10 = 3, bA26,11 = −12, bA26,13 = 1, bA26,15 = 16,

bA26,16 = −4, bA26,17 = −6, bA26,19 = 2, bA26,20 = 12, bA26,21 = −2, bA26,22 = 3,

bA26,23 = 3, bA26,24 = −1, bA26,25 = −1 , (A.2)

aE2,2 = −3, aE3,3 = −3, aE4,4 = −3, aE5,5 = −3, aE6,6 = −3, aE9,3 = −4, aE9,9 = −1,

aE10,1 = 2/3, aE10,4 = −2, aE10,10 = −2, aE11,11 = −3, aE12,2 = −2/3, aE12,7 = 2,

aE12,12 = −3, aE13,4 = −4, aE13,13 = −2, aE14,1 = 4/3, aE14,2 = −4/3, aE14,14 = −3,

aE15,15 = −3, aE17,17 = −3, aE18,7 = −8/3, aE18,11 = −4, aE18,12 = 4, aE18,18 = −1,

aE19,4 = −8, aE19,6 = 16/3, aE19,13 = 2, aE19,19 = −3, aE20,20 = −3, aE21,1 = −2/3,

aE21,4 = −8, aE21,6 = 16/3, aE21,10 = 4, aE21,21 = −3, aE21,22 = 2, aE22,22 = −4,

aE23,1 = 1/3, aE23,4 = 8/3, aE23,7 = 4, aE23,10 = −4, aE23,13 = 1, aE23,15 = −10/3,

aE23,16 = −3, aE23,23 = −3, aE23,24 = −1, aE24,24 = −3, aE25,17 = −4, aE25,25 = −1,

aE26,26 = −3, aE27,27 = 3, aE28,2 = 4/3, aE28,7 = 16, aE28,8 = −32/3, aE28,27 = −6,

aE28,28 = −3, aE29,2 = −4, aE29,4 = 16, aE29,5 = −6, aE29,6 = −16/3, aE29,29 = −3,

aE29,30 = −2, aE30,5 = 6, aE30,30 = −3, aE31,1 = 184/27, aE31,2 = 68/27, aE31,3 = 2/3,

aE31,4 = 224/9, aE31,5 = 4/3, aE31,6 = −112/9, aE31,9 = 4, aE31,10 = −40/3, aE31,14 = −4,

aE31,20 = 2/3, aE31,21 = −8/3, aE31,22 = −4, aE31,31 = −5, aE31,32 = 2/3, aE32,1 = 112/9,

aE32,2 = −4/9, aE32,3 = 14, aE32,4 = 80/3, aE32,5 = −8, aE32,6 = −16, aE32,9 = 6,

aE32,10 = −16, aE32,14 = −12, aE32,20 = 2, aE32,21 = −8, aE32,22 = −4, aE32,31 = −6,

aE32,32 = −1, aE33,2 = 38/3, aE33,4 = 22/3, aE33,6 = −24, aE33,15 = 25/3, aE33,22 = −4,

aE33,24 = 11/2, aE33,33 = −3, aE33,34 = 5, aE34,34 = −3, aE35,2 = −8/3, aE35,4 = 8/3,

aE35,15 = 20/3, aE35,24 = 4, aE35,35 = −2, aE36,1 = 29/6, aE36,2 = 12/5, aE36,4 = 40/3,

aE36,7 = 28, aE36,8 = −40/3, aE36,10 = −18, aE36,12 = −8, aE36,13 = 27/5, aE36,15 = −8/3,

aE36,16 = −3/2, aE36,24 = −8/5, aE36,27 = −24/5, aE36,28 = −4, aE36,35 = −2/5, aE36,36 = 1,

aE37,37 = −3, aE38,2 = −4, aE38,4 = −12, aE38,6 = 16, aE38,15 = −10, aE38,22 = 4, aE38,24 = −5,

aE38,34 = −10, aE38,35 = 2, aE38,38 = −3, aE39,1 = −224/9, aE39,2 = −64/9, aE39,3 = −28,

aE39,4 = 104/3, aE39,5 = −8, aE39,6 = −64/3, aE39,9 = −12, aE39,10 = 32, aE39,14 = 24,

– 16 –



aE39,15 = 20, aE39,20 = −4, aE39,21 = 16, aE39,24 = 10, aE39,30 = −8, aE39,31 = 12,

aE39,32 = −4, aE39,34 = 20, aE39,39 = −3, aE39,40 = −2, aE40,1 = 224/9, aE40,2 = 136/9,

aE40,3 = 28, aE40,4 = −32/3, aE40,5 = 8, aE40,6 = −32/3, aE40,9 = 12, aE40,10 = −32,

aE40,14 = −24, aE40,20 = 4, aE40,21 = −16, aE40,22 = −8, aE40,30 = 8, aE40,31 = −12,

aE40,32 = 4, aE40,40 = −3, aE41,1 = −26/9, aE41,2 = 124/3, aE41,3 = −28, aE41,4 = 208/3,

aE41,5 = 4, aE41,6 = −32, aE41,7 = 208/3, aE41,8 = 128/9, aE41,10 = 40, aE41,12 = −140,

aE41,13 = 46, aE41,14 = −18, aE41,15 = −4/3, aE41,16 = 2, aE41,17 = 16, aE41,18 = −6,

aE41,19 = −16, aE41,20 = −4, aE41,21 = −8, aE41,22 = −12, aE41,23 = 2, aE41,24 = −3,

aE41,25 = −4, aE41,26 = −2, aE41,27 = 4, aE41,28 = 4, aE41,29 = −4,

aE41,30 = −4, aE41,31 = 6, aE41,32 = 2, aE41,33 = −4, aE41,35 = 2,

aE41,37 = 1, aE41,38 = −1, aE41,39 = 1, aE41,40 = 1 , (A.3)

bE9,1 = 8/3, bE9,3 = 4, bE9,9 = 1, bE10,10 = 2, bE12,12 = 2, bE13,4 = 4,

bE13,7 = 4, bE13,13 = 1, bE14,14 = 3, bE18,7 = 8/3, bE18,11 = 4, bE18,12 = −4,

bE18,18 = 1, bE19,4 = 8, bE19,6 = −16/3, bE19,13 = −2, bE19,19 = 3, bE21,1 = 2/3,

bE21,4 = 8, bE21,6 = −16/3, bE21,10 = −4, bE21,21 = −3, bE21,22 = −2, bE22,1 = −4/3,

bE22,4 = −16, bE22,6 = 32/3, bE22,21 = 6, bE22,22 = 4, bE23,23 = 5, bE24,1 = −2,

bE24,2 = −4/3, bE24,4 = 16/3, bE24,7 = 8, bE24,10 = −8, bE24,12 = 4, bE24,15 = −8/3,

bE24,16 = −6, bE24,23 = 4, bE24,24 = 1, bE25,8 = 8/3, bE25,17 = 4, bE25,25 = 1,

bE26,7 = 8, bE26,8 = −16/3, bE26,13 = −2, bE26,26 = 3, bE27,2 = 2/3, bE27,7 = 8,

bE27,8 = −16/3, bE27,12 = −4, bE27,27 = −3, bE27,28 = −2, bE28,2 = −4/3, bE28,7 = −16,

bE28,8 = 32/3, bE28,27 = 6, bE28,28 = 4, bE29,2 = 4, bE29,4 = −16, bE29,5 = 6,

bE29,6 = 16/3, bE29,18 = 3, bE29,19 = 2, bE29,29 = 2, bE29,30 = 2, bE30,2 = −2,

bE30,5 = −3, bE30,6 = 8/3, bE30,7 = −4, bE30,11 = −6, bE30,12 = 6, bE30,13 = 2,

bE30,18 = −3, bE30,19 = −4, bE30,29 = −1, bE30,30 = −1, bE31,31 = 1, bE32,1 = −64/9,

bE32,2 = 52/9, bE32,3 = −14, bE32,4 = −80/3, bE32,5 = 8, bE32,6 = 16, bE32,10 = 16,

bE32,20 = −2, bE32,21 = 8, bE32,22 = 4, bE32,31 = 6, bE32,32 = 1, bE33,1 = −2,

bE33,2 = −18, bE33,4 = −18, bE33,6 = 24, bE33,7 = −16, bE33,10 = 16, bE33,12 = 16,

bE33,13 = −8, bE33,15 = −3, bE33,16 = 2, bE33,22 = 4, bE33,23 = −8, bE33,24 = −3/2,

bE33,33 = 2, bE33,34 = −5, bE34,1 = −13/15, bE34,2 = −16/5, bE34,4 = −122/5, bE34,6 = 40/3,

bE34,7 = −12, bE34,10 = 28/5, bE34,12 = 58/5, bE34,13 = −16/5, bE34,15 = 1/5, bE34,16 = 11/5,

bE34,21 = 24/5, bE34,22 = 4, bE34,23 = −14/5, bE34,24 = −3/5, bE34,33 = 2/5, bE34,34 = −1,

bE35,1 = −39/2, bE35,2 = −14/3, bE35,4 = −52/3, bE35,7 = −24, bE35,8 = 24, bE35,10 = 22,

bE35,12 = 22, bE35,13 = −11, bE35,15 = 2/3, bE35,16 = 3/2, bE35,23 = −6, bE35,24 = 3/2,

bE35,28 = 4, bE35,35 = 2, bE35,36 = −5, bE36,1 = −9/2, bE36,2 = −12/5, bE36,4 = −32/3,
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bE36,7 = −24, bE36,8 = 40/3, bE36,10 = 14, bE36,12 = 8, bE36,13 = −22/5, bE36,15 = −2/3,

bE36,16 = −3/2, bE36,23 = 2, bE36,24 = 3/5, bE36,27 = 24/5, bE36,28 = 4, bE36,35 = 2/5,

bE36,36 = −1, bE38,2 = 4, bE38,4 = 12, bE38,6 = −16, bE38,15 = 10, bE38,22 = −4,

bE38,24 = 5, bE38,34 = 10, bE38,35 = −2, bE38,38 = 3, bE39,1 = 68/9, bE39,2 = −8/9,

bE39,3 = 28, bE39,4 = −56, bE39,5 = 8, bE39,6 = 64/3, bE39,12 = 8, bE39,13 = −12,

bE39,14 = −12, bE39,15 = −52/3, bE39,16 = −4, bE39,18 = 12, bE39,20 = 4, bE39,21 = −16,

bE39,23 = −4, bE39,24 = −8, bE39,25 = 8, bE39,26 = 4, bE39,30 = 8, bE39,31 = −12,

bE39,32 = 4, bE39,34 = −20, bE39,38 = 2, bE39,39 = 3, bE39,40 = 2, bE39,41 = 2,

bE40,1 = −68/9, bE40,2 = −64/9, bE40,3 = −28, bE40,4 = 32, bE40,5 = −8, bE40,6 = 32/3,

bE40,12 = −8, bE40,13 = 12, bE40,14 = 12, bE40,15 = −8/3, bE40,16 = 4, bE40,18 = −12,

bE40,20 = −4, bE40,21 = 16, bE40,22 = 8, bE40,23 = 4, bE40,24 = −2, bE40,25 = −8,

bE40,26 = −4, bE40,30 = −8, bE40,31 = 12, bE40,32 = −4, bE40,35 = 4, bE40,37 = 1,

bE40,38 = −6, bE40,39 = −2, bE40,40 = −1, bE40,41 = −2, bE41,1 = 26/9, bE41,2 = −332/9,

bE41,3 = 28, bE41,4 = −208/3, bE41,5 = −4, bE41,6 = 32, bE41,7 = −80, bE41,10 = −40,

bE41,12 = 124, bE41,13 = −30, bE41,14 = 18, bE41,15 = 4/3, bE41,16 = −2, bE41,17 = −16,

bE41,18 = 6, bE41,19 = 16, bE41,20 = 4, bE41,21 = 8, bE41,22 = 12, bE41,23 = −2,

bE41,24 = 3, bE41,25 = −4, bE41,26 = −6, bE41,29 = 4, bE41,30 = 4, bE41,31 = −6,

bE41,32 = −2, bE41,33 = 4, bE41,35 = −2, bE41,37 = −1, bE41,38 = 1,

bE41,39 = −1, bE41,40 = −1 . (A.4)

B Explicit results up to weight six

Here are results for master integrals with ten propagators. We denote harmonic polylog-

arithms [41] by H~w = H~w(x). All the other results can be found in the ancillary files

resultA.m and resultE.m.

B.1 Triple ladder master integrals

fA
24(x, ǫ) =

16

9
−

11

3
ǫH0 + ǫ2

(

−
3π2

2
+ 6H0,0

)

+ ǫ3
(

−
3

2
π2H

−1 +
65

12
π2H0 − 3H

−1,0,0

−3H0,0,0 −
131ζ3
9

)

+ ǫ4
(

−
1411π4

1080
−

3

2
π2H

−1,−1 +
7

2
π2H

−1,0 +
23

2
π2H0,−1 − 19π2H0,0

−3H
−1,−1,0,0 + 18H

−1,0,0,0 + 23H0,−1,0,0 − 36H0,0,0,0 − 3H
−1ζ3 +

82

3
H0ζ3

)

+ǫ5
(

−
13

8
π4H

−1 +
683

160
π4H0 −

3

2
π2H

−1,−1,−1 +
7

2
π2H

−1,−1,0 +
35

2
π2H

−1,0,−1

−
55

4
π2H

−1,0,0 +
47

2
π2H0,−1,−1 −

185

6
π2H0,−1,0 −

119

2
π2H0,0,−1 +

261

4
π2H0,0,0

−3H
−1,−1,−1,0,0 + 18H

−1,−1,0,0,0 + 35H
−1,0,−1,0,0 − 81H

−1,0,0,0,0 + 47H0,−1,−1,0,0

−138H0,−1,0,0,0 − 119H0,0,−1,0,0 + 243H0,0,0,0,0 +
73π2ζ3

4
− 3H

−1,−1ζ3 − 49H
−1,0ζ3
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+47H0,−1ζ3 − 33H0,0ζ3 −
301ζ5
15

)

+ ǫ6
(

−
624607π6

544320
−

13

8
π4H

−1,−1 +
323

120
π4H

−1,0

+
641

72
π4H0,−1 −

665

48
π4H0,0 −

3

2
π2H

−1,−1,−1,−1 +
7

2
π2H

−1,−1,−1,0 +
35

2
π2H

−1,−1,0,−1

−
55

4
π2H

−1,−1,0,0 +
107

2
π2H

−1,0,−1,−1 −
317

6
π2H

−1,0,−1,0 −
151

2
π2H

−1,0,0,−1

+51π2H
−1,0,0,0 +

71

2
π2H0,−1,−1,−1 −

353

6
π2H0,−1,−1,0 −

247

2
π2H0,−1,0,−1

+
427

4
π2H0,−1,0,0 −

311

2
π2H0,0,−1,−1 +

1025

6
π2H0,0,−1,0 +

531

2
π2H0,0,0,−1

−
441

2
π2H0,0,0,0 − 3H

−1,−1,−1,−1,0,0 + 18H
−1,−1,−1,0,0,0 + 35H

−1,−1,0,−1,0,0

−81H
−1,−1,0,0,0,0 + 107H

−1,0,−1,−1,0,0 − 210H
−1,0,−1,0,0,0 − 151H

−1,0,0,−1,0,0

+324H
−1,0,0,0,0,0 + 71H0,−1,−1,−1,0,0 − 282H0,−1,−1,0,0,0 − 247H0,−1,0,−1,0,0

+621H0,−1,0,0,0,0 − 311H0,0,−1,−1,0,0 + 714H0,0,−1,0,0,0 + 531H0,0,0,−1,0,0

−1134H0,0,0,0,0,0 −
37

12
π2H

−1ζ3 −
220

3
π2H0ζ3 − 3H

−1,−1,−1ζ3 − 49H
−1,−1,0ζ3

+107H
−1,0,−1ζ3 + 138H

−1,0,0ζ3 + 71H0,−1,−1ζ3 + 141H0,−1,0ζ3 − 311H0,0,−1ζ3

−48H0,0,0ζ3 +
167ζ23
9

+ 57H
−1ζ5 −

444

5
H0ζ5

)

+O(ǫ7) . (B.1)

fA
25(x, ǫ) = −

49

36
+

5

2
ǫH0 + ǫ2

(

241π2

144
− 3H0,0

)

+ ǫ3
(

11

4
π2H

−1 −
47

8
π2H0 +

11

2
H

−1,0,0

−
9

2
H0,0,0 +

641ζ3
36

)

+ ǫ4
(

847π4

640
+

23

4
π2H

−1,−1 −
89

12
π2H

−1,0 −
63

4
π2H0,−1 +

39

2
π2H0,0

+
23

2
H

−1,−1,0,0 − 33H
−1,0,0,0 −

63

2
H0,−1,0,0 + 54H0,0,0,0 +

23

2
H

−1ζ3 − 39H0ζ3

)

+ǫ5
(

1609

720
π4H

−1 −
4141

960
π4H0 +

35

4
π2H

−1,−1,−1 −
173

12
π2H

−1,−1,0 −
119

4
π2H

−1,0,−1

+
207

8
π2H

−1,0,0 −
171

4
π2H0,−1,−1 +

183

4
π2H0,−1,0 +

287

4
π2H0,0,−1 −

513

8
π2H0,0,0

+
35

2
H

−1,−1,−1,0,0 − 69H
−1,−1,0,0,0 −

119

2
H

−1,0,−1,0,0 +
297

2
H

−1,0,0,0,0 −
171

2
H0,−1,−1,0,0

+189H0,−1,0,0,0 +
287

2
H0,0,−1,0,0 −

567

2
H0,0,0,0,0 −

3737π2ζ3
144

+
35

2
H

−1,−1ζ3 +
65

2
H

−1,0ζ3

−
171

2
H0,−1ζ3 +

117

2
H0,0ζ3 +

1143ζ5
20

)

+ ǫ6
(

3710783π6

4354560
+

3181

720
π4H

−1,−1

−
4181

720
π4H

−1,0 −
185

16
π4H0,−1 +

2111

160
π4H0,0 +

47

4
π2H

−1,−1,−1,−1 −
257

12
π2H

−1,−1,−1,0

−
203

4
π2H

−1,−1,0,−1 +
395

8
π2H

−1,−1,0,0 −
371

4
π2H

−1,0,−1,−1 +
1085

12
π2H

−1,0,−1,0

+
531

4
π2H

−1,0,0,−1 −
177

2
π2H

−1,0,0,0 −
471

4
π2H0,−1,−1,−1 +

499

4
π2H0,−1,−1,0

+
755

4
π2H0,−1,0,−1 −

1203

8
π2H0,−1,0,0 +

923

4
π2H0,0,−1,−1 −

2645

12
π2H0,0,−1,0
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−
1179

4
π2H0,0,0,−1 +

837

4
π2H0,0,0,0 +

47

2
H

−1,−1,−1,−1,0,0 − 105H
−1,−1,−1,0,0,0

−
203

2
H

−1,−1,0,−1,0,0 +
621

2
H

−1,−1,0,0,0,0 −
371

2
H

−1,0,−1,−1,0,0 + 357H
−1,0,−1,0,0,0

+
531

2
H

−1,0,0,−1,0,0 − 594H
−1,0,0,0,0,0 −

471

2
H0,−1,−1,−1,0,0 + 513H0,−1,−1,0,0,0

+
755

2
H0,−1,0,−1,0,0 −

1701

2
H0,−1,0,0,0,0 +

923

2
H0,0,−1,−1,0,0 − 861H0,0,−1,0,0,0

−
1179

2
H0,0,0,−1,0,0 + 1215H0,0,0,0,0,0 −

703

24
π2H

−1ζ3 + 93π2H0ζ3 +
47

2
H

−1,−1,−1ζ3

+
149

2
H

−1,−1,0ζ3 −
371

2
H

−1,0,−1ζ3 − 137H
−1,0,0ζ3 −

471

2
H0,−1,−1ζ3 −

13

2
H0,−1,0ζ3

+
923

2
H0,0,−1ζ3 −

9901ζ23
72

+
163

2
H

−1ζ5 − 82H0ζ5

)

+O(ǫ7) . (B.2)

fA
26(x, ǫ) = −

4

9
+

13π2ǫ2

36
+

1

2
ǫH0 + ǫ3

(

9

4
π2H

−1 −
15

8
π2H0 +

9

2
H

−1,0,0 −
9

2
H0,0,0 −

71ζ3
18

)

+ǫ4
(

61π4

720
+

21

4
π2H

−1,−1 −
25

4
π2H

−1,0 −
21

4
π2H0,−1 +

25

4
π2H0,0 +

21

2
H

−1,−1,0,0

−27H
−1,0,0,0 −

21

2
H0,−1,0,0 + 27H0,0,0,0 +

21

2
H

−1ζ3 − 2H0ζ3

)

+ǫ5
(

337

240
π4H

−1 −
1217

960
π4H0 +

33

4
π2H

−1,−1,−1 −
53

4
π2H

−1,−1,0 −
93

4
π2H

−1,0,−1

+
165

8
π2H

−1,0,0 −
33

4
π2H0,−1,−1 +

53

4
π2H0,−1,0 +

93

4
π2H0,0,−1 −

165

8
π2H0,0,0

+
33

2
H

−1,−1,−1,0,0 − 63H
−1,−1,0,0,0 −

93

2
H

−1,0,−1,0,0 +
243

2
H

−1,0,0,0,0 −
33

2
H0,−1,−1,0,0

+63H0,−1,0,0,0 +
93

2
H0,0,−1,0,0 −

243

2
H0,0,0,0,0 −

859π2ζ3
72

+
33

2
H

−1,−1ζ3 +
27

2
H

−1,0ζ3

−
33

2
H0,−1ζ3 −

27

2
H0,0ζ3 −

1457ζ5
30

)

+ ǫ6
(

2029π6

217728
+

287

80
π4H

−1,−1 −
311

80
π4H

−1,0

−
287

80
π4H0,−1 +

311

80
π4H0,0 +

45

4
π2H

−1,−1,−1,−1 −
81

4
π2H

−1,−1,−1,0 −
177

4
π2H

−1,−1,0,−1

+
353

8
π2H

−1,−1,0,0 −
249

4
π2H

−1,0,−1,−1 +
269

4
π2H

−1,0,−1,0 +
377

4
π2H

−1,0,0,−1

−
135

2
π2H

−1,0,0,0 −
45

4
π2H0,−1,−1,−1 +

81

4
π2H0,−1,−1,0 +

177

4
π2H0,−1,0,−1

−
353

8
π2H0,−1,0,0 +

249

4
π2H0,0,−1,−1 −

269

4
π2H0,0,−1,0 −

377

4
π2H0,0,0,−1 +

135

2
π2H0,0,0,0

+
45

2
H

−1,−1,−1,−1,0,0 − 99H
−1,−1,−1,0,0,0 −

177

2
H

−1,−1,0,−1,0,0 +
567

2
H

−1,−1,0,0,0,0

−
249

2
H

−1,0,−1,−1,0,0 + 279H
−1,0,−1,0,0,0 +

377

2
H

−1,0,0,−1,0,0 − 486H
−1,0,0,0,0,0

−
45

2
H0,−1,−1,−1,0,0 + 99H0,−1,−1,0,0,0 +

177

2
H0,−1,0,−1,0,0 −

567

2
H0,−1,0,0,0,0

+
249

2
H0,0,−1,−1,0,0 − 279H0,0,−1,0,0,0 −

377

2
H0,0,0,−1,0,0 + 486H0,0,0,0,0,0 −

255

8
π2H

−1ζ3
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+
97

4
π2H0ζ3 +

45

2
H

−1,−1,−1ζ3 +
111

2
H

−1,−1,0ζ3 −
249

2
H

−1,0,−1ζ3 − 99H
−1,0,0ζ3

−
45

2
H0,−1,−1ζ3 −

111

2
H0,−1,0ζ3 +

249

2
H0,0,−1ζ3 + 99H0,0,0ζ3 +

275ζ23
18

−
15

2
H

−1ζ5 +
351

5
H0ζ5

)

+O(ǫ7) . (B.3)

B.2 Tennis court master integrals

fE
39(x, ǫ) =

128

9
−

52

3
ǫH0 + ǫ2

(

−
38π2

3
+ 8H0,0

)

+ ǫ3
(

−10π2H
−1 +

157

9
π2H0 − 20H

−1,0,0

+28H0,0,0 −
964ζ3
9

)

+ ǫ4
(

2429π4

810
− 10π2H

−1,−1 +
50

3
π2H

−1,0 + 6π2H0,−1 − 4π2H0,0

−20H
−1,−1,0,0 + 80H

−1,0,0,0 + 12H0,−1,0,0 − 64H0,0,0,0 − 20H
−1ζ3 +

328

3
H0ζ3

)

+ǫ5
(

5

18
π4H

−1 −
10913π4H0

1080
− 10π2H

−1,−1,−1 +
50

3
π2H

−1,−1,0 + 30π2H
−1,0,−1

−
71

3
π2H

−1,0,0 − 26π2H0,−1,−1 +
82

3
π2H0,−1,0 + 70π2H0,0,−1 −

227

3
π2H0,0,0

−20H
−1,−1,−1,0,0 + 80H

−1,−1,0,0,0 + 60H
−1,0,−1,0,0 − 172H

−1,0,0,0,0 − 52H0,−1,−1,0,0

+112H0,−1,0,0,0 + 140H0,0,−1,0,0 − 140H0,0,0,0,0 +
3257π2ζ3

27
− 20H

−1,−1ζ3 − 20H
−1,0ζ3

−52H0,−1ζ3 + 52H0,0ζ3 −
3556ζ5

5

)

+ ǫ6
(

1391417π6

408240
+

5

18
π4H

−1,−1 +
641

90
π4H

−1,0

−
1207

90
π4H0,−1 +

3163

180
π4H0,0 − 10π2H

−1,−1,−1,−1 +
50

3
π2H

−1,−1,−1,0 + 30π2H
−1,−1,0,−1

−
71

3
π2H

−1,−1,0,0 + 126π2H
−1,0,−1,−1 − 66π2H

−1,0,−1,0 − 98π2H
−1,0,0,−1 + 66π2H

−1,0,0,0

−218π2H0,−1,−1,−1 +
562

3
π2H0,−1,−1,0 + 270π2H0,−1,0,−1 −

527

3
π2H0,−1,0,0

+358π2H0,0,−1,−1 −
926

3
π2H0,0,−1,0 − 394π2H0,0,0,−1 +

746

3
π2H0,0,0,0

−20H
−1,−1,−1,−1,0,0 + 80H

−1,−1,−1,0,0,0 + 60H
−1,−1,0,−1,0,0 − 172H

−1,−1,0,0,0,0

+252H
−1,0,−1,−1,0,0 − 144H

−1,0,−1,0,0,0 − 196H
−1,0,0,−1,0,0 + 296H

−1,0,0,0,0,0

−436H0,−1,−1,−1,0,0 + 688H0,−1,−1,0,0,0 + 540H0,−1,0,−1,0,0 − 940H0,−1,0,0,0,0

+716H0,0,−1,−1,0,0 − 1136H0,0,−1,0,0,0 − 788H0,0,0,−1,0,0 + 1208H0,0,0,0,0,0 +
269

3
π2H

−1ζ3

−
1916

9
π2H0ζ3 − 20H

−1,−1,−1ζ3 − 20H
−1,−1,0ζ3 + 252H

−1,0,−1ζ3 + 32H
−1,0,0ζ3

−436H0,−1,−1ζ3 + 44H0,−1,0ζ3 + 716H0,0,−1ζ3 − 608H0,0,0ζ3 +
788ζ23
3

−516H
−1ζ5 +

8432

5
H0ζ5

)

+O(ǫ7) . (B.4)

fE
40(x, ǫ) = −

98

9
+

50

3
ǫH0 + ǫ2

(

755π2

54
− 10H0,0

)

+ ǫ3
(

28π2H
−1 −

635

18
π2H0 + 56H

−1,0,0
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−58H0,0,0 + 122ζ3

)

+ ǫ4
(

331π4

144
+ 84π2H

−1,−1 −
244

3
π2H

−1,0 − 92π2H0,−1 +
463

6
π2H0,0

+168H
−1,−1,0,0 − 320H

−1,0,0,0 − 184H0,−1,0,0 + 310H0,0,0,0 + 168H
−1ζ3 − 238H0ζ3

)

+ǫ5
(

197

45
π4H

−1 +
91

80
π4H0 + 284π2H

−1,−1,−1 −
748

3
π2H

−1,−1,0 − 276π2H
−1,0,−1

+
554

3
π2H

−1,0,0 − 308π2H0,−1,−1 +
724

3
π2H0,−1,0 + 236π2H0,0,−1 −

665

6
π2H0,0,0

+568H
−1,−1,−1,0,0 − 928H

−1,−1,0,0,0 − 552H
−1,0,−1,0,0 + 1096H

−1,0,0,0,0 − 616H0,−1,−1,0,0

+832H0,−1,0,0,0 + 472H0,0,−1,0,0 − 826H0,0,0,0,0 −
839π2ζ3

6
+ 568H

−1,−1ζ3 − 392H
−1,0ζ3

−616H0,−1ζ3 + 370H0,0ζ3 +
17818ζ5

15

)

+ ǫ6
(

−
393371π6

181440
+

527

45
π4H

−1,−1 +
59

45
π4H

−1,0

+
319

45
π4H0,−1 −

7927

240
π4H0,0 + 948π2H

−1,−1,−1,−1 −
2452

3
π2H

−1,−1,−1,0

−908π2H
−1,−1,0,−1 +

1630

3
π2H

−1,−1,0,0 − 988π2H
−1,0,−1,−1 +

2092

3
π2H

−1,0,−1,0

+692π2H
−1,0,0,−1 − 220π2H

−1,0,0,0 − 1052π2H0,−1,−1,−1 +
2380

3
π2H0,−1,−1,0

+740π2H0,−1,0,−1 −
970

3
π2H0,−1,0,0 + 836π2H0,0,−1,−1 −

1444

3
π2H0,0,−1,0

−332π2H0,0,0,−1 −
1009

6
π2H0,0,0,0 + 1896H

−1,−1,−1,−1,0,0 − 3008H
−1,−1,−1,0,0,0

−1816H
−1,−1,0,−1,0,0 + 2968H

−1,−1,0,0,0,0 − 1976H
−1,0,−1,−1,0,0 + 2208H

−1,0,−1,0,0,0

+1384H
−1,0,0,−1,0,0 − 2192H

−1,0,0,0,0,0 − 2104H0,−1,−1,−1,0,0 + 2656H0,−1,−1,0,0,0

+1480H0,−1,0,−1,0,0 − 1576H0,−1,0,0,0,0 + 1672H0,0,−1,−1,0,0 − 1216H0,0,−1,0,0,0

−664H0,0,0,−1,0,0 + 118H0,0,0,0,0,0 − 518π2H
−1ζ3 +

2629

6
π2H0ζ3 + 1896H

−1,−1,−1ζ3

−1272H
−1,−1,0ζ3 − 1976H

−1,0,−1ζ3 + 592H
−1,0,0ζ3 − 2104H0,−1,−1ζ3 + 1800H0,−1,0ζ3

+1672H0,0,−1ζ3 − 238H0,0,0ζ3 − 505ζ23 + 1272H
−1ζ5 − 2930H0ζ5

)

+O(ǫ7) . (B.5)

fE
41(x, ǫ) = −

56

9
+ 4ǫH0 + ǫ2

(

166π2

27
+ 4H0,0

)

+ ǫ3
(

8π2H
−1 −

11

3
π2H0 + 16H

−1,0,0

−12H0,0,0 +
200ζ3
3

)

+ ǫ4
(

−
151π4

36
+ 12π2H

−1,−1 −
20

3
π2H

−1,0 + 20π2H0,−1 − 21π2H0,0

+24H
−1,−1,0,0 − 16H

−1,0,0,0 + 40H0,−1,0,0 − 44H0,0,0,0 + 24H
−1ζ3 − 44H0ζ3

)

+ǫ5
(

−
248

45
π4H

−1 +
271

24
π4H0 − 24π2H

−1,−1,−1 +
88

3
π2H

−1,−1,0 + 64π2H
−1,0,−1

−
140

3
π2H

−1,0,0 + 152π2H0,−1,−1 −
344

3
π2H0,−1,0 − 160π2H0,0,−1 +

313

3
π2H0,0,0

−48H
−1,−1,−1,0,0 + 128H

−1,−1,0,0,0 + 128H
−1,0,−1,0,0 − 224H

−1,0,0,0,0 + 304H0,−1,−1,0,0

−384H0,−1,0,0,0 − 320H0,0,−1,0,0 + 420H0,0,0,0,0 −
334π2ζ3

3
− 48H

−1,−1ζ3 − 80H
−1,0ζ3
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+304H0,−1ζ3 − 196H0,0ζ3 +
6856ζ5
15

)

+ ǫ6
(

−
43585π6

27216
−

197

45
π4H

−1,−1 −
341

45
π4H

−1,0

+
997

45
π4H0,−1 −

3767

360
π4H0,0 − 180π2H

−1,−1,−1,−1 +
700

3
π2H

−1,−1,−1,0

+316π2H
−1,−1,0,−1 −

694

3
π2H

−1,−1,0,0 + 364π2H
−1,0,−1,−1 − 332π2H

−1,0,−1,0

−316π2H
−1,0,0,−1 +

416

3
π2H

−1,0,0,0 + 692π2H0,−1,−1,−1 −
1724

3
π2H0,−1,−1,0

−636π2H0,−1,0,−1 + 386π2H0,−1,0,0 − 748π2H0,0,−1,−1 +
1700

3
π2H0,0,−1,0

+540π2H0,0,0,−1 −
643

3
π2H0,0,0,0 − 360H

−1,−1,−1,−1,0,0 + 1040H
−1,−1,−1,0,0,0

+632H
−1,−1,0,−1,0,0 − 1320H

−1,−1,0,0,0,0 + 728H
−1,0,−1,−1,0,0 − 1264H

−1,0,−1,0,0,0

−632H
−1,0,0,−1,0,0 + 1280H

−1,0,0,0,0,0 + 1384H0,−1,−1,−1,0,0 − 2064H0,−1,−1,0,0,0

−1272H0,−1,0,−1,0,0 + 1896H0,−1,0,0,0,0 − 1496H0,0,−1,−1,0,0 + 1904H0,0,−1,0,0,0

+1080H0,0,0,−1,0,0 − 1532H0,0,0,0,0,0 −
530

3
π2H

−1ζ3 +
721

3
π2H0ζ3 − 360H

−1,−1,−1ζ3

+136H
−1,−1,0ζ3 + 728H

−1,0,−1ζ3 − 584H
−1,0,0ζ3 + 1384H0,−1,−1ζ3 − 904H0,−1,0ζ3

−1496H0,0,−1ζ3 + 1076H0,0,0ζ3 −
1364ζ23

3
+ 984H

−1ζ5 −
3892

5
H0ζ5

)

+O(ǫ7) . (B.6)
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