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A framework for baryonic R-parity violation in grand unified theories
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We investigate the possibility of obtaining sizeable R-parity breaking interactions violating baryon
number but not lepton number within supersymmetric grand unified theories. Such a possibility
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coupling unification, one of its main phenomenological motivations. We show that this can be
achieved without fine-tuning or the need of large representations in simple SO(10) models.
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I. INTRODUCTION

Supersymmetric scenarios without R-parity [1–6] have
received a renewed interest after the negative results of
supersymmetry (SUSY) searches at the LHC. R-parity
accounts for the stability of the lightest supersymmet-
ric particle (LSP), whose escape from the detector gives
rise to the prototypical supersymmetry signal: missing
energy. R-parity violation (RPV) may allow supersym-
metric particles to evade the latter, stringent searches.
In particular, it has been argued that scenarios in which
R-parity is violated through baryon-number-violating in-
teractions could be particularly suited to hide supersym-
metric signals into QCD backgrounds, thus implying a
significant reduction of the current LHC lower bounds
on the mass of the superpartners. Hence the intense re-
search activity on the subject in the recent years [7–29].

In order for baryon number violating RPV operators
to be sizeable enough to hide supersymmetric particles,
lepton number violating operators should be very sup-
pressed, possibly absent. The simultaneous presence of
∆B 6= 0 and ∆L 6= 0 interactions is in fact extremely con-
strained by matter stability. Indeed, R-parity was orig-
inally introduced in order to obtain (accidental) lepton
and baryon number conservation in the minimal super-
symmetric standard model (MSSM), thus protecting it
from renormalizable sources of potentially way too large
proton decay rate and neutrino masses. However, it is
known that it suffices to assume the absence of R-parity
lepton number violating operators, by means of a “lep-
tonic R-parity”, to get rid of such sources [4, 5].

Introducing baryonic RPV is therefore relatively safe
if leptonic RPV is absent. On the other hand, one can
wonder whether such an asymmetry between lepton and
baryon number violating operators is compatible with
grand unified theories (GUTs). After all, one of the mo-
tivations to persist on supersymmetric models despite
the lack of signals is the very success of supersymmet-
ric grand unification. This is the issue we would like to
address in this paper.

In the presence of grand unification, the natural expec-
tation is that baryonic and leptonic RPV couplings are

either absent or simultaneously present, as quarks and
leptons share the same grand-unified multiplets [30–35].
Indeed, exact SU(5) invariance forces baryonic RPV to
be accompanied by leptonic RPV. However, a source of
asymmetry between the two types of RPV can be gener-
ated by SU(5) breaking.
To be more specific let us state our problem in the

following terms: we would like to find a supersymmetric
GUT whose low-energy limit, well below the unification
scale MG, is described by the MSSM field content and
gauge group and by a superpotential whose renormaliz-
able part is given by

Wren = WMSSM + λ′′

ijku
c
id

c
jd

c
k, (1)

where λ′′

ijk is antisymmetric in the flavour indices j, k.
The extra operator violates R-parity and baryon number
(∆B = −1). Since grand unified gauge groups trans-
forms leptons into baryons (preserving B−L in the min-
imal case of SU(5)), one would expect that operator to
be accompanied by RPV and lepton-number violating
(∆L = 1) operators such as λijke

c
i lj lk and λ′

ijkqid
c
j lk.

Indeed, in minimal SU(5) grand unification dci and li are
unified in a 5i and qi, u

c
i , e

c
i are unified in a 10i and the

three above operators all come from Λijk10i5j5k, which
gives λijk = 1

2λ
′

ijk = λ′′

ijk = Λijk. In this case, the
bounds from matter stability require Λijk to be smaller
than at least 10−10 for any value of i, j, k and for su-
perpartners around the TeV scale [36]. Such tiny cou-
plings would be irrelevant for collider physics since the
LSP would be stable on the scale of the detector size. We
then need to find a way to obtain sizeable λ′′ couplings
together with vanishing λ, λ′.
While leptonic RPV in GUTs has been investigated

in a number of papers, see e.g. [4, 36–44], to our knowl-
edge, such a problem was only considered in the con-
text of SU(5) by Smirnov and Vissani [36] and by Tam-
vakis [45].1 In [36], the vanishing of λ and λ′ was achieved

1 There also exist models of baryonic R-parity violation in Flipped-
SU(5) [42, 45] and SU(5) ⊗ SU(3) [23].
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through the fine-tuning of independent parameters, sim-
ilar to the one necessary to achieve doublet-triplet split-
ting in the Higgs sector. In ref. [45], a mechanism similar
to the missing-partner solution of the 2–3 splitting in
SU(5) [46, 47] was considered, at the price of introducing
a number of relatively large representations. In this pa-
per we will show that the superpotential in Eq. (1) can be
obtained without the need of fine-tuning in a relatively
simple SO(10) model involving only fundamental, spino-
rial, and adjoint representations, thanks to the vacuum
expectation value (vev) of an adjoint aligned along the
T3R or TB−L direction.

II. THE FRAMEWORK

In this section, we define the rules of the game and sys-
tematically explore the options available in SU(5) and
SO(10) to generate the superpotential in Eq. (1). The
reader interested to specific models can jump to section
IV. The main assumptions will be i) the use of represen-
tations that can arise in perturbative string theory [48],
ii) a renormalizable origin of the extra term in Eq. (1),
and iii) the absence of fine-tuning.

A. SU(5)

The case of SU(5) turns out not to offer any viable
option. Still, it is useful to review it in order to illustrate
the logic we will follow in this section, to find results that
we will use in the next subsection, and to demonstrate
that the fine-tuned method used in [36] is the only way
to obtain Eq. (1) using only the representations 5, 10, 15,
24 (and conjugated, where relevant) available according
to our assumptions.
In order to identify the renormalizable SU(5) origin of

the operator uc
id

c
jd

c
k (i, j, k fixed and j 6= k), let us first

observe that the light uc
i field must be contained in a 10

of SU(5), while dcj and dck must be contained into two

different 5, 5
′

of SU(5), so that uc
id

c
jd

c
k originates from

the SU(5) operator 10 5 5
′

.
Let us denote by L, L′ the SU(5) partners of dcj , d

c
k in

5, 5
′

respectively and by Ec, Q the SU(5) partners of uc
i

in 10. Then

10 55
′

= uc
id

c
jd

c
k + EcLL′ +QdcjL

′ +QLdck. (2)

In order for lepton number violating operators involv-
ing light fields not to be generated at the renormalizable
level, at least two out of the four fields L, L′, Ec, Q
should not be light or partially light, in the sense that
they should not contain the light fields li, qi, e

c
i even as a

component. A splitting, analogous to the doublet-triplet

splitting in the Higgs sector, must occur in either 5 or 5
′

or 10.
Let us first consider the case in which one of the two

leptonic fields is heavy, say L for definitess, and denote

by 5a the additional SU(5) representation containing the
light lepton doublet la, a = 1, 2, 3. Note that extra
matter representations (four antifundamentals overall,
51, 52, 53, 5) are needed to realize a split embedding of the
SM fermions. In order to preserve the Standard Model
(SM) chirality content, one fundamental, 5, must also be
present, to compensate the extra 5. A super-heavy mass
term is then allowed in the form

5(µa + αa 〈24H〉)5a, (3)

where the 24H is an SU(5) adjoint getting vev along the
hypercharge generator, 〈24H〉 = V Y . Now, our defini-
tions and assumptions require dcj to have a component

in 5 and the doublets la to be light. In order for the
light dcj to have a component in 5, the mass term arising
from Eq. (3) must be non-zero for some a = 1, 2, 3,

µa +
αa

3
V 6= 0 , (4)

otherwise the dca would also be fully contained in the
5a. As a consequence, at least one of the two vectors
(µa)a=1,2,3 and (αa)a=1,2,3 should be non-vanishing. On
the other hand, in order for the doublets la to be light,
with no heavy component, the leptonic mass term arising
from Eq. (3) must vanish,

µa −
αa

2
V = 0 . (5)

The two above relations imply a fine-tuning in the
necessary alignment of the two non-vanishing vectors
(µa)a=1,2,3 and (αa)a=1,2,3, and in the determination of
the vev V . The argument easily generalizes to the case
of more than two extra 5 ⊕ 5, or more than an adjoint
getting vev.
The argument above also applies to the case in which

neither L nor L′ are fully heavy. In such a case, Q and
Ec should both be, in order to prevent lepton number
violating operators involving light fields to be generated.
And again a splitting must be arranged between uc

i and
its SU(5) partners, Q and Ec, such that uc

i ends up hav-
ing a vanishing mass. Since the only source of SU(5)
breaking available, the vev of the SU(5) adjoints, never
vanishes on the L, L′, Ec, Q fields, a fine-tuned cancel-
lation with another mass term must be invoked.2

The above discussion identifies two important ingre-
dients to obtain baryonic RPV in a natural way: i) a
source of SU(5) breaking splitting the mass of some uni-
fied multiplets in such a way that a component remains
massless, i.e. a source of SU(5) breaking projecting out
some components of a unified multiplet; and ii) addi-
tional (vector-like) matter, in order to be able to realize
a split embedding of the SM fermions. SU(5) misses the
first ingredient, which is however available in SO(10).

2 In principle such a cancellation could be forced to arise dynam-
ically, as in the sliding singlet solution of the 2-3 splitting prob-
lem [49], but this does not seem to be trivially possible in SU(5).
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B. SO(10)

In the case of SO(10), the available non-trivial rep-
resentations are 10, 16, 16, 45, 54. The fields uc can
be contained in the representations 16 and 45, while the
fields dc can be contained in the representations 16 and
10. Therefore, the only SO(10)-invariant renormalizable
origins of the operator uc

id
c
jd

c
k are 16 16′10 (where 16 and

16′ can coincide) and 45 1010′ (where 10 and 10′ must be
different).
In both cases, the embedding of uc

i proceeds through
a 10 of SU(5) and the embedding of dcj and dck proceeds

through a 5 and 5
′

of SU(5) respectively. The opera-
tor uc

id
c
jd

c
k then again arises from the SU(5) operator

10 5 5
′

appearing in the decomposition of both 16 16′10
and 45 10 10′. We can then conclude that in both cases
the decomposition of the SO(10) operator will contain
the RHS of Eq. (2), where we have denoted with L, L′,

Ec, Q the SU(5) partners of dcj , d
c
k, u

c
i in 5, 5

′

, 10, as
before. Again, at least two out of the fields L, L′, Ec, Q
must not contain a light component.
Let us again first suppose that one of the two heavy

fields is a lepton doublet, say L for definiteness. Then the
light (SM) leptons la, a = 1, 2, 3, should be contained in
three 5a independent of 5. We then have at least four
anti-fundamentals of SU(5), which means that at least
one fundamental of SU(5), 5, must exist as well, with the
mass mixing 5 5a non vanishing for the coloured compo-
nents (otherwise the light dca would be entirely contained
in the 5a, with no component in the 5) but vanishing for
the lepton components (because the la must be entirely
contained in the 5a, with no component in the 5).
Unlike SU(5), SO(10) offers the possibility to achieve

such a splitting without fine-tuning. As argued, a source
of SU(5) breaking vanishing on the lepton components is
needed. With the available field content, such a source
can only be provided by the appropriately oriented vev
of an adjoint. More precisely, there are two options, de-
pending on the SO(10) operator from which the mass
mixing 5 5a arises (which for simplicity we assume to be
the same for the three families).

• If the operator originates from the SU(5) funda-
mental and antifundamental components of a 16
and three 16a, a mass term mixing the coloured
components of 5 and 5a, but not the lepton ones,
can be obtained through the SO(10) interaction

αa16 45H16a , (6)

with the SO(10) adjoint 45H getting a vev 〈45H〉 =
V45T3R along the 3R direction. Such a vev can
be obtained without fine-tuning in a number of
ways [50, 51].

• If the operator originates from the SU(5) funda-
mental and antifundamental of a 10 and three 10a,
a mass term mixing the coloured components of 5

and 5a, but not the lepton ones, can be obtained
through the SO(10) interaction

αa10 45H10a , (7)

with the SO(10) adjoint 45H getting a vev 〈45H〉 =
V45TB−L along the B-L direction. Such a vev can
also be obtained without fine-tuning in a number
of ways [50, 51].

In the next section, we will see that both the options
can be implemented in the context of simple, minimal
models.3

So far we have assumed that at least one of the two
heavy fields among L, L′, Ec, Q is a lepton doublet. Let
us now assume that this is not the case. Then, both Ec

and Q should be fully heavy. And the light (SM) eca, qa,
a = 1, 2, 3 should be contained in three 10a of SU(5),
independent of the 10 containing uc

i . We then have at
least four 10 of SU(5). Which means that at least one
10 must exist, with the mass mixing 10 10a vanishing
for the lepton singlet and quark doublet components but
non-vanishing on the quark singlet components. Unfortu-
nately, not even SO(10) allows to achieve such a splitting
without fine-tuning, independently of whether the 10a of
SU(5) are embedded in spinorial or adjoint representa-
tions of SO(10). Therefore, the cases considered above
are the only relevant ones.

III. EXPLICIT MODELS

In this section we discuss simple, minimal realizations
of the two basic mechanisms outlined in the previous sec-
tion to obtain Eq. (1). In both cases, the RPV operator
will arise from the decomposition of an SO(10) operator
in the form 16 16′10 (where 16 and 16′ may or may not
coincide). Models in which RPV arises from an operator
in the form 45 10 10′ are also possible, but since they in-
volve a larger number of fields we will not present them
here.
The vev of a 45H along the T3R or TB−L direction can

be obtained as in [50, 51] through an SO(10) breaking
sector that also generates a vev for a 16H⊕16H along the
SM-singlet direction, as necessary to fully break SO(10)
to the SM. A renormalizable superpotential WH , also
involving a 54H and an SO(10) singlet, is sufficient to
achieve such vevs. The SO(10) breaking fields above will
always appear together with two “matter fields” in the
rest of the superpotential, which guarantees that the su-
persymmetric minimum provided by WH is not affected
by the rest of the superpotential.

3 In the complete models, the 5, 5a defined in the SU(5) subsection
end up being superpositions of the antifundamentals in 16a, 16
or 10a, 10.
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A. Adjoint vev along the T3R direction

In this case, the operator relevant for the necessary
splitting of leptons and baryons is αa16 45H16a, with
45H assumed to get a vev 〈45H〉 = V45T3R in the T3R

direction. On top of the three 16a needed to reproduce
the SM chiral field content, the “matter” content nec-
essarily involves a 16 ⊕ 16 and a 10 (the latter in order
to be able to write a RPV source in the form 16 16 10).
As mentioned, the SO(10)-breaking sector must involve
a 16H ⊕ 16H getting vev along the SM-singlet compo-
nents. The case in which the role of 16H ⊕ 16H is played
by 16 ⊕ 16 can be in principle considered, but here we
will assume for simplicity that this is not the case. The
minimal matter content relevant to our goal is then

16a, 16, 16, 10 45H , 16H , 16H . (8)

The three possible sources of the RPV operator uc
id

c
jd

c
k

are 16 16 10, 16a16 10, 16a16b10. The last one is not ideal,
as it generically also generates lepton number violating
operators, unless a specific flavour structure is specified.
On the other hand, it is relatively easy to use 16 16 10
or 16a16 10. In both cases the superpotential leading, at
low energy, to Eq. (1), is essentially unique.
If the RPV operator originates from 16 16 10, we are

lead to a superpotential in the form

W1 = λ16 16 10 + αa16 45H16a
+ βa16H16a10 +M161616 . (9)

The RPV operator arises from 16 16 10 because of the
mixing between 16a, 16, 10 induced by the terms
αa16 45H16a and βa16H16a10 after SO(10) breaking.
The first term only affects the singlet fields uc, dc, ec,
while the second term only affects the dc, l fields. The
light quark doublets qa are not mixed by either operators,
and therefore lie in the 16a. One lepton doublet acquires
a component in the 10 because of the βa 〈16H〉 16a10 mix-
ing. One lepton singlet and one up quark singlet acquire
a component in the 16 because of the αa16 〈45H〉 16a
mixing. The down quark singlets spread in the 16a, 16,
and 10 as they are affected by both mixing terms. As
a consequence, the operators qid

c
j lk and eci lj lk are not

generated by 16 16 10, while uc
id

c
jd

c
k are. A more detailed

discussion can be found in Appendix A.
Notice that the two vectors αa and βa need to be lin-

early independent in order to obtain λ′′

ijk 6= 0. This
can be seen as follows. If αa and βa were parallel, it
would be possible to choose a basis for the 16a such that
α1,2 = β1,2 = 0. In such a basis, the first two families
of the light fermions are contained in 161,2 and only the
third family mixes with 16 and 10. There is therefore
only a single light eigenstate dcl with components in both
16 and 10. The coupling λ′′

ijk then vanishes because the
antisymmetry in j, k requires two different light eigen-
states to have components in 16 and 10. Another way of
rephrasing this result is that λ′′

ijk vanishes in the U(2)-

symmetric limit, where U(2) acts on 161,2 [52–55]. If the

size of U(2) breaking is set by the light Yukawa couplings
of the SM, baryonic RPV will necessarily end up being
correspondingly suppressed.
There is no room for a light Higgs field with the spec-

trum in Eq. (8) and the superpotential in Eq. (9). An
additional 10H must therefore be added in order to ac-
commodate it. The MSSM Yukawas are then gener-
ated by terms in the form y161610H or ya16a1610H or
yab16a16b10H . Doublet-triplet splitting should be ac-
counted for separately, but all the ingredients for the
Dimopoulos-Wilczek mechanism are available [50, 56–
63].
In Eq. (9) we have included only interactions coupling

16H , 16H , 45H to two matter fields, as anticipated. A
mass term in the form 1616a can be eliminated by a SU(4)
rotation of the four spinorials 16, 16a, a = 1, 2, 3. Pos-
sible λa16a16 10 and λab16a16b10 terms are not allowed
as they would give rise to q dcl operators. On the other
hand, terms such as 16H16 10, 16 45H16, M1010

2, would
not modify our conclusions.
The second case we consider is associated to the fol-

lowing superpotential

W2 = λa16a16 10 + αa16 45H16a
+ β16H1610 + β 16H1610 +M161616 . (10)

The RPV operator arises from 16a16 10 because of
the mixing between 16a, 16, 10 induced by the terms
αa16 45H16a and β16H1610 after SO(10) breaking. The
light lepton and quark doublets are fully contained in the
16a, so that no lepton number violating operators can be
generated. The two vectors αa and λa need to be linearly
independent in order to obtain λ′′

ijk 6= 0.
The light Higgs could be in principle accommodated

in the 10, 163 and 16 (in the basis in which α1,2 = 0)

and doublet-triplet splitting achieved for free if β = 0.
In such a case, however, the light down singlets would
be contained in 161,2 and 10 and no down quark Yukawa

would be generated. Therefore, we need to assume β 6= 0
(or, equivalently, a non-vanishing mass termM1010

2) and
to add an additional 10H to accommodate the light Higgs
fields. The MSSM Yukawas are then generated by terms
in the form y161610H or ya16a1610H or yab16a16b10H .
A mass term in the form 1616a in Eq. (10) can be

eliminated by a SU(4) rotation of the four spinorials 16,
16a, a = 1, 2, 3. Possible βa16H16a10 and λab16a16b10
terms are not allowed as they would give rise to q dcl
operators. The presence of the terms λ16 16 10, λ16 16 10,
α1645H16 would not affect the conclusions above.

B. Adjoint vev along the TB−L direction

In this case, the operator relevant for the necessary
splitting of leptons and baryons in the unified multiplets
is αa10 45H10a, with 45H assumed to get a vev 〈45H〉 =
V45TB−L in the TB−L direction. On top of the three
16a needed to reproduce the SM chiral field content, the
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“matter” content involves a 10 and three 10a, a = 1, 2, 3.
The minimal matter content relevant to our goal is then

16a, 10a, 10 45H , 16H , 16H . (11)

The possible sources of the RPV operator uc
id

c
jd

c
k are

16a16b10, 16a16b10c. The latter generically also gener-
ates lepton number violating operators, unless a specific
flavour structure is specified. Let us then consider the
following superpotential involving the former:

W3 = λab16a16b10 + αa10 45H10a
+ αab10a45H10b + hab16H16a10b. (12)

The light fields qa, u
c
a, e

c
a are only contained in the 16a.

The operator hab16H16a10b forces the light lepton dou-
blets la to lie in the 10a only, whereas the light d

c
i are both

in the 10a, the 16a, and the 10 because of the mixing in-
duced by αa10 45H10a and αab10a45H10b (note that the
second one is necessary otherwise only a single light com-
ponent would appear in both 16a and 10 and λ′′

ijk would

vanish because of the antisymmetry). Only the lepton
number conserving RPV operator is thus generated.
The embedding of the la and part of the dca in the

10a, forced by the operator hab16H16a10b allows to ob-
tain positive, universal sfermion masses at the tree level,
if supersymmetry is broken by the vev of a 16 [64–68].
In this context, the presence of three 16a ⊕ 10a can be
associated to a further stage of unification in E6 [69].
The embedding through 16a ⊕ 10a also allows to obtain
a predictive framework for leptogenesis [70, 71].
The doublet-triplet splitting in the Higgs sector could

be in principle obtained for free. Indeed, the doublets
in the 10 are also light and could play the role of the
Higgs doublets. The up Yukawa interactions would in
this case provided by the very same operator generating
λ′′

ijk . However, no lepton Yukawa would be generated.
Therefore, we need to add again an additional 10H to
accommodate the light Higgs fields and make the dou-
blets in the 10 heavy by adding a M1010

2 mass term.
Adding the term λabc16a16b10c or mass terms in the

form Mab10a10b or Ma10a10 would introduce lepton
number violation. All other terms involving two matter
fields are allowed.

C. On the naturalness of the superpotential

A comment on the flavour structure of the superpo-
tential in Eq. (9) is in order. We achieved our goal of
generating an isolated baryonic RPV operator without
invoking a special structure with respect to the flavour in-
dex a = 1, 2, 3. On the other hand, we implicitely distin-
guished the three 16a from the 16H and 16. For example,
we assumed 16H16a10 to be present in the superpoten-
tial in Eq. (9), while 16a16b10 is not. The question then
arises whether it is possible to find a symmetry forcing
the superpotential to have the desired form. The an-
swer to this question depends on the form of WH , which

constrains the quantum numbers of 16H , 16H , 45H . Let
us consider for example the case in which WH contains
the terms M4545

2
H and X(16H16H − V 2

16), where X is
an SO(10) singlet, as e.g. in [50, 65]. In such a case, it
turns out that it is not possible to find a symmetry that
allows all the terms we need and forbids the ones that
should not appear. In particular, it is not possible to find
any symmetry that distinguishes the fields 16H and 16a.

4

Nonetheless, the structure of the superpotential we need
can be justified at a more fundamental level, once the
origin of the flavour structure of the superpotential (and
of the SM fermions) is addressed. For instance, one could
envisage the presence of an SU(3)H horizontal symmetry
under which the 16a transforms as the fundamental of
SU(3)H , while the 16H transforms trivially. The flavor
symmetry is then formally restored in the superpotential
considering the various couplings as spurions. We will
illustrate this point in more detail in Sect. IVA.

IV. ANALYSIS OF A SIMPLE MODEL

In this section we study in greater detail the first model
of Sect. III A. To this end we consider the superpotential
in Eq. (9) augmented with a mass term for the 10, namely

WRPV = λ16 16 10 + αa16 45H16a

+ βa16H16a10 +M161616 +
M10

2
10 10 , (13)

where the adjoint gets a vev along the 3R generator. For
simplicity, we will assume in what follows all the para-
meters to be real.

The M10 mass term does not change the conclusions
of Sect. III A and it allows to derive a limit where the
expression of λ′′

ijk assumes a simple form in terms of the

superpotential parameters of Eq. (13). Let us consider,
indeed, the limit in which the extra vector-like states
10⊕ 16⊕ 16 are much heavier than the the GUT vevs,

M10,M16 ≫ V16, V45. (14)

In such a case the light MSSM superfields are mostly
contained (up to V/M corrections) in the 16a and one
can integrate out the heavy fields 10, 16 and 16 at the
SO(10) level, thus obtaining at the leading order in 1/M

10 ≈ − 1

M10
(βa16H16a)10 , (15)

16 ≈ − 1

M16
(αa45H16a)16 , (16)

4 On the other hand, is it possible to find a Z2 symmetry which dis-
criminates 16 from 16H and 16a (and 16 from 16H as well). An
explicit example being: Z2(45H , 10, 16a, 16, 16H , 16, 16H ,X) =
(−,+,+,−,+,−,+,+).
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where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting the full solutions for 10, 16, 16 into Eq. (13) and
expanding at the third order in 1/M we get

W eff
RPV ≈ − 1

2M10
(βa16H16a)

2
10

− 1

M2
16M10

λ (αa45H16a)
2
16 (βc16H16c)10 . (17)

While the first term in Eq. (17) is irrelevant for our pur-
pose, the second one leads, upon GUT-symmetry break-
ing, to the ∆B = 1 RPV operator λ′′

abcu
c
ad

c
bd

c
c, with

λ′′

abc =
V 2
45 V16

M2
16 M10

λαaα[bβc] . (18)

In the expression above the square brackets denote anti-
symmetrization.
The result in Eq. (18) can be derived in a number of

different ways. For instance, one can directly inspect the
mass matrices of the relevant fields upon GUT-symmetry
breaking (cf. Eq. (A37) in Appendix A) or, from a dia-
grammatic point of view, compute the tree-level graph in
Fig. 1.

FIG. 1: SO(10) super-diagram leading to the ∆B = 1 RPV
operator in the effective MSSM theory. The vertices and prop-
agators are specified by the superpotential in Eq. (13).

Note that the light fields uc
a, dca in Eq. (18) do not

necessarily correspond to fermion mass eigenstates. The
latter are in fact determined by the diagonalisation of
the SM Yukawa couplings, which have not been specified
so far. In the fermion mass eigenstate basis, in which
the low-energy bounds on λ′′

ijk are extracted, Eq. (18)
becomes

λ′′

ijk ∝ (Vuc)ai (Vdc)b[j(Vdc)ck]αaαbβc , (19)

where Vuc and Vdc are the unitary transformations used
to diagonalize the up and down Yukawa couplings (on the
quark singlet side), determined by the SO(10) Yukawa
sector.
This leads us to the discussion of the Yukawa sector.

As anticipated in Sect. III A, an additional 10H must be

added in order to accommodate the Higgs field. The SM
Yukawa interactions then follow from

WY = yab16a 16b 10H+ya16a16 10H+y 16 16 10H , (20)

where the last term does not to contribute as the 16
turns out to contain only SU(2)L singlet fields (see Ap-
pendix A).
Simple expressions for the SM Yukawa matrices can

be obtained at the leading order in the limit M ≫ V by
using Eq. (16):

W eff
Y = yab16a 16b 10H − ya

M16
16a (αb45H16b)16 10H .

(21)
Denoting the up-quark, down-quark, charged-lepton and
Dirac-neutrino mass matrices by Mu, Md, Me and MD

respectively, Eq. (21) leads to

(Mu)ab = (2yab + θ yaα̂b)vu , (22)
(Md)ab = (2yab − θ yaα̂b)vd , (23)
(Me)ab = (2yab − θ yaα̂b)vd , (24)
(MD)ab = (2yab + θ yaα̂b)vu , (25)

where yab is symmetric, θ ≡ αV45/M16, α ≡
√
∑

a α
2
a,

and vu,d are the EW vevs. The above equations can re-
produce the observed patter of fermion masses and mix-
ings,5 but the larger hierarchy of masses in the up sec-
tor and the deviations from SU(5) relations for the light
down quark and charged lepton require a certain amount
of fine-tuning. Moreover, the above equations do not ad-
dress the origin of the fermion mass hierarchy. Both such
issues can be addressed in the context of flavour models,
as shown by the simple example in the next subsection.

A. Addressing flavour

So far, we did not make any assumption on the flavour
structure of the couplings in Eq. (13). On the other hand,
the latter is relevant for three reasons: i) to account at
the same time for the pattern of SM fermion masses and
mixings, ii) to distinguish different representations with
the same gauge quantum number (e.g. 16H and 16a), thus
making the superpotential in Eq. (13) technically natu-
ral, and iii) to relate the size of the RPV couplings to
the pattern of fermion masses and mixings. In this sec-
tion we analyse the consequences of having a controlled
flavour structure by means of a simple flavour model.
Let us assume that the theory specified by Eq. (13)

and Eq. (20) is invariant under the horizontal symmetry

5 The relation Mu = MD implies that the neutrino sector must
be extended with a Majorana mass term for νcνc. This can
be achieved, for instance, by means of the effective operator
16i16j16H16H/Λ. In this context it is worth to recall that,
due to the selection rules imposed by kinematics and Lorentz
invariance, the simultaneous presence of ∆B = 1 and ∆L = 2
interactions do not endanger matter stability.
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group SU(3)H ,6 with the 16a transforming as a triplet
and all the other fields transforming trivially. Let us also
assume then that the horizontal symmetry is broken by
the vev of two linearly independent spurion fields A and
B, which transform as anti-triplets of SU(3)H and whose
absolute values are hierarchical, |A| ≫ |B|. We neglect
the masses and mixings related to the first families, which
are zero in absence of a third source of SU(3)H breaking.

Being A and B the only sources of flavour symmetry
breaking, we can write the parameters αa, βa, ya, yab in
terms of the spurions Aa and Ba, in such a way that
the superpotential in Eq. (13) and Eq. (20) is formally
invariant under the horizontal SU(3)H :

αa = rαAa + sαBa , (26)
βa = rβAa + sβBa , (27)
ya = rzAa + szBa , (28)
yab = ryAaAb + syBaBb + ty (AaBb +BaAb) , (29)

where the coefficients r#, s# and ty are O(1) numbers,
but they could be assumed to be small or vanishing with-
out fine-tuning. For the same reason, unwanted interac-
tions such as λa16a16 10 can be assumed to be absent
from Eq. (13) without fine-tuning.

In what follows it turns out to be useful to trade the
vectors Aa and Ba for αa and βa and, by means of an
SU(3)H rotation, to go in the basis (αa) = α(0, 0, 1) and
(βa) = β(0, ǫ, 1), where α and β are O(1) numbers and
ǫ ≪ 1, as a consequence of |B| ≪ |A|. In the latter ba-
sis the remaining parameters of the superpotential trans-
forming non-trivially under the flavour group are

y33 ∼ y3 = O(1) , (30)

y23 = y32 ∼ y2 = O(ǫ) , (31)

y22 = O(ǫ2) . (32)

For simplicity we shall factor out the appropriate ǫ depen-
dence from the parameters in Eqs. (31)–(32), i.e. y23 →
y23ǫ, y2 → y2ǫ and y22 → y22ǫ

2, so that all the para-
meters of the superpotential except ǫ are O(1) numbers.

At this point one can inspect the mass matrices after
SO(10)-symmetry breaking from Eq. (13) and find the
light MSSM content of 16a, 16, 10 (cf. Eqs. (B1)–(B5)
in Appendix B). The Yukawa matrices (in the 2 × 2 ap-
proximation) can then be read directly from Eq. (20).
We report them for completeness in Eqs. (B6)–(B8) of
Appendix B. At the leading order in ǫ they yield the

6 The horizontal SU(3)H symmetry in the context of GUTs was
originally discussed in Refs. [72–74].

following relations for the physical observables:

mt = (2cθy33 + sθy3)vu , (33)

mc = ǫ2
(

2y22 − 2y23
2cθy23 + sθy2
2cθy33 + sθy3

)

vu , (34)

mb = N (2cθy33 − sθy3) vd , (35)

ms = ǫ2
(

2y22 − 2y23
2cθy23 − sθy2
2cθy33 − sθy3

)

vd , (36)

mτ = cφ (2cθy33 − sθy3) vd , (37)

mµ = ǫ2
(

2y22 − 2y23
2cθy23 − sθy2
2cθy33 − sθy3

)

vd , (38)

|Vts| = |Vcb| = ǫ

∣

∣

∣

∣

2cθy23 + sθy2
2cθy33 + sθy3

− 2cθy23 − sθy2
2cθy33 − sθy3

∣

∣

∣

∣

, (39)

where we defined the quantities:

tθ ≡ V45α

M16
, tφ ≡ V16β

M10
, N ≡

(

1 + t2θ
1 + t2θ + t2φ

)

1
2

, (40)

with t, s and c denoting the tan, sin and cos functions
respectively.
The expression above show that the larger hierarchy

in the up sector, (mc/mt)GUT ≪ (ms/mb)GUT at the
GUT scale, can be due to N ≪ 1 (so that a cancellation
between the two terms in 2cθy33 − sθy3 does not need
to be invoked). Moreover, (mb)GUT ≈ (mτ )GUT follows
from N ≈ cφ. The two conditions are both satisfied if
t2θ ≪ 1 ≪ t2φ, i.e. if

M10 < V16, V45 < M16, (41)

which can be interpreted as a sign of a two-step breaking
SO(10) → SU(5) at the scale V16 ∼ M16 followed by
SU(5) → GSM at the lower scale V45 ∼ M10.
On the other hand, the expressions in Eqs. (33)–(38)

show that, independent of the limit chosen, mµ ≈ ms at
the GUT scale, which is not phenomenologically viable.
This conclusion can be evaded if the subleading spurion
B is not SU(5) invariant (which may be associated to its
being subleading). Let us then concentrate on the third
family relations. In the limit in Eq. (41), the expressions
for the third family fermion masses become

mt ≈ 2y33vu , (42)

mb ≈ 2y33

(

M10

βV16

)

vd , (43)

mτ ≈ 2y33

(

M10

βV16

)

vd . (44)

Let us now consider the size and the structure of the
RPV couplings. The latter are obtained by projecting
the 16 16 10 operator in Eq. (13) onto the light compo-
nents (cf. Eq. (B11) in Appendix B) and by taking into
account the subsequent EW rotation matrices Vuc and
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Vdc (cf. Eqs. (B9)–(B10) in Appendix B). This yields:

λ′′

tbs = 2λ ǫ
sθtθtφ

(1 + t2θ + t2φ)
1/2

, (45)

λ′′

cbs = −ǫ
2y23

2cθy33 + sθy3
λ′′

tbs . (46)

The RPV couplings involving the first family vanish be-
cause, having introduced only two spurions, we have ne-
glected the structure associated to the first family masses.
Note also that the RPV coupling is proportional to the
small misalignment between the 3-vectors αa and βa, i.e.
Eqs. (45)–(46) vanish in the ǫ → 0 limit. Eventually, we
obtain an hierarchical structure for the RPV couplings.
In the limit in Eq. (41), the expressions above simplify
to

λ′′

tbs = 2λ ǫ t2θ , (47)

λ′′

cbs = −ǫ
y23
y33

λ′′

tbs . (48)

The RPV couplings are therefore proportional to t2θ,
which is the same parameter that controls the deviation
of mb/mτ from 1 at the unification scale.

V. PHENOMENOLOGICAL REMARKS

The baryon number RPV interactions are subject to
stringent low-energy constraints coming mainly from pro-
ton decay, di-nucleon decay, n-n oscillations and flavour
violating observables. Rescaling the bounds in ref. [75]
for superpartners around 500 GeV and assuming a grav-
itino heavier than the proton (in order to evade the con-
straints from proton decay) but not too heavy (in order
not to enhance flavour-anarchical supergravity effects)
one gets:7

|λ′′

uds| < O(10−5) [NN → KK] , (49)

|λ′′

udb| < O(10−2) [n− n] , (50)

|λ′′

tds| < O(10−1) [n− n] , (51)

|λ′′

tdb| < O(10−1) [n− n] , (52)

and

|λ′′

cdb λ
′′

csb| < O(10−3) [K −K] , (53)

|λ′′

tdb λ
′′

tsb| < O(10−3) [K −K] , (54)

|λ′′

ids λ
′′

idb| < O(10−1) [B+ → K0π+] , (55)

|λ′′

ids λ
′′

isb| < O(10−3) [B− → φπ−] , (56)

with i = u, c, t for the product of two RPV couplings.

7 The quoted bounds have a strong dependence on the spectrum of
the superpartners, and large uncertainties related to the flavour
structure of the soft terms and the hadronic matrix elements.
However, for the purposes of our discussion an order of magni-
tude estimate is sufficient (see e.g. [75] and references therein).

On the other hand, the RPV couplings cannot be too
small, if the SUSY searches based on the missing energy
signature are to be evaded. This is the case if the NLSP
(we assume the LSP to be the gravitino) has a prompt
decay corresponding to a decay length smaller than about
2 mm [28].8

This way supersymmetry can be “hidden” into QCD
backgrounds and the lower bounds on superpartners can
be relaxed with respect to the R-parity conserving case.
To illustrate this point, let us compare the current ex-

clusion limits from LHC in standard MSSM scenarios to
the case with bayonic RPV. In the case of the R-parity
conserving MSSM the present lower bounds on the stop
and gluino masses are respectivelymt̃ & 700 GeV [76, 77]
and mg̃ & 1.3 TeV [78, 79].9 In the case of the simplified
squark-gluino-neutralino model one gets mg̃,mt̃ & 1.5
TeV (with only 5.8 fb−1 of integrated luminosity and√
s = 8 TeV) [80]. On the other hand, if we allow the

light colored s-particles (gluinos and squarks) to decay
promptly via the ucdcdc operator the bounds are much
less stringent. For instance, if the stop decays directly
into jets neither ATLAS nor CMS can currently place
significant limits on the stop mass [17, 81–83]. The de-
cay of the gluino can proceed either through g̃ → t̃t (and
consequently t̃ → bs for example) or directly into jets. In
the former case the bound on the gluino mass is 890 GeV
(with 20.7 fb−1 and

√
s = 8 TeV) [84], while in the latter

case 666 GeV (with 4.6 fb−1 and
√
s = 7 TeV) [85].

Let us quantify now the minimal amount of RPV
needed in order to have a prompt vertex. As a benchmark
scenario we consider the case of a right-handed squark
NLSP decaying into two SM fermions. In such a case the
decay length reads

L = 2mm(βγ)

(

500 GeV

mq̃c

)(

0.9 · 10−7

λ′′

)2

, (57)

where β is the velocity of the decaying particle and γ is
the Lorentz boost factor. Hence, a decay length smaller
than about 2 mm, requires λ′′ > O(10−7). Therefore, a
RPV coupling in the range 10−7 . λ′′ . 10−5 would give
rise to a prompt decay, while also satisfying the bounds
in Eqs. (49)–(56) independent of its flavour numbers.10

Nevertheless, it is worth to mention that the flavour
structure of the GUT-induced λ′′

ijk which emerges from

Eq. (19) is of the type

λ′′

ijk ∝ αiβ[jγk] , (58)

where αi, βj and γk are independent 3-vectors in the
flavour space. This non-generic structure implies a set of

8 Larger decay lengths give rise to displaced vertices which require
dedicated analysis. See for instance [10, 44].

9 These conservative bounds apply in the case of a light neutralino
and away from the kinematical configuration mt̃ ≈ mt +mχ.

10 There could be cases where a larger λ′′ is needed for a prompt
decay. For example in the case of a gluino decaying in the kine-
matical configuration mg̃ ≈ mt +mt̃ [10].
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low-energy correlations among the RPV couplings. For
instance, we find that the following relations

λ′′

ids

λ′′

jds

=
λ′′

idb

λ′′

jdb

=
λ′′

isb

λ′′

jsb

, (59)

must be satisfied for i, j = u, c, t. However, the rela-
tions in Eq. (59) are irrelevant when crossed with the
low-energy bounds in Eqs. (49)–(56) whenever the abso-
lute size of λ′′ is smaller than O(10−5).
The absolute size of λ′′ predicted by the GUT model

is in general model dependent. Interestingly, in the case
of a hierarchy such as the one in Eq. (41) or Eq. (14), the
value for the couplings λ′′ can be expected to lie in the
10−7 . λ′′ . 10−5 window mentioned above, which sat-
isfies all the low-energy bounds. Upper bounds coming
from the requirement of not washing out a pre-existing
baryon asymmetry generated above the EW scale turn
out to give λ′′ < 3 · 10−7 for sfermion masses of about 1
TeV [75].
In the presence of additional assumption on a common

origin of the flavour structure of both the SM fermions
and the RPV couplings, the RPV couplings also show
a hierarchical pattern, as illustrated by the example in
Sect. IVA. A simple consequence is that a stop will decay
predominantly into t̃ → bs.

VI. SUMMARY

Supersymmetric models with R-parity violation have
the potential to relieve some of the pressure on the nat-
uralness of supersymmetric extensions of the SM due
to the lack of signals at the LHC. This is welcome, as
providing a natural framework for electroweak symme-
try breaking is one of the main phenomenological moti-
vations of supersymmetry. On the other hand, this re-
quires baryon number violating RPV operators not to be
accompanied by lepton number violating ones, which in
turn may seem to require giving up another important
phenomenological motivation: the possibility to explain
the SM fermion gauge quantum numbers within a grand
unified framework leading to a successful prediction for
the unification of gauge couplings. We have shown that
this is not the case. Dimension four lepton number violat-
ing interactions can vanish, despite the presence of size-
able baryon number violating interactions and the exis-
tence of a grand unified gauge symmetry relating baryon
and leptons, in models in which the necessary sources of
GUT-breaking split the unified multiplets and additional
vector-like matter is added to the MSSM chiral content.
In particular, we have shown that this can be achieved

without fine-tuning or the need of large representations
in simple renormalizable SO(10) models in which the ad-
joint vev is aligned along the 3R or B-L generators. In
this context, it is also possible to relate the size of bary-
onic R-parity violation to the origin of the SM fermion
mass hierarchy and to the success (to some extent) of
unified relations among third family fermion masses.
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Appendix A: Details of the model in Sect. IV

In this appendix we illustrate the details of the anal-
ysis of the model specified by Eq. (13) and Eq. (20) of
Sect. IV. In order to identify the light MSSM components
populating the SO(10) fields 16a, 16, and 10, one has to
inspect the mass matrices stemming from Eq. (13) upon
SO(10)-symmetry breaking. In particular, the piece of
superpotential responsible for the non-pure embedding of
the MSSM degrees of freedom into the relevant SO(10)
representations reads

W ⊃ αa16 45H16a + βa16H16a10

+M161616 +
M10

2
10 10 , (A1)

where the Higgs superfields 45H and 16H are assumed to
pick up a GUT-scale vev 〈45H〉 = V45T3R and 〈16H〉 =
V16, along the SU(4)PS ⊗ SU(2)L ⊗ U(1)R and SU(5)
invariant directions respectively.
The mechanism we are going to consider is based on

the fact that the 45H vev picks up the SU(2)L singlet
components of 16a and the vev of the 16H picks up the
516a and 510 SU(5) components of 16a and 10. Hence,
upon SO(10)-symmetry breaking, Eq. (A1) leads to the
following mass matrices involving the MSSM-like degrees
of freedom:

(

d
c

16 d
c

10

)

(

V45 αa M16 0
V16 βa 0 M10

)





dc16a
dc16
dc10



 , (A2)

(

l16 l10
)

(

0 M16 0
V16 βa 0 M10

)





l16a
l16
l10



 , (A3)

(

uc
16

) (

−V45 αa M16

)

(

uc
16a
uc
16

)

, (A4)

(

ec
16

) (

V45 αa M16

)

(

ec16a
ec16

)

, (A5)

(

q16
) (

0 M16

)

(

q16a
q16

)

. (A6)

Let us leave aside for a while the dc-like states and focus
on the others. From Eqs. (A3)–(A6) one can readily find
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the heavy (GUT-scale) mass eigenstates

L1 = l16 , (A7)

L2 = cosφ l10 + sinφ β̂al16a , (A8)

U c = cos θ uc
16 − sin θ α̂au

c
16a , (A9)

Ec = cos θ ec16 + sin θ α̂ae
c
16a , (A10)

Q = q16 , (A11)

where we defined the quantities tan θ ≡ V45α/M16 and
tanφ ≡ V16β/M10, and the normalized vectors α̂a ≡
αa/α and β̂a ≡ βa/β, with α ≡

√
∑

a α
2
a and β ≡

√
∑

a β
2
a. The light MSSM components la, uc

a, eca, qa
(a = 1, 2, 3), can be identified with the linear combina-
tions orthogonal to those in Eqs. (A7)–(A11). A possible
choice is

l3 = − sinφ l10 + cosφ β̂al16a (A12)

uc
3 = sin θ uc

16 + cos θ α̂au
c
16a , (A13)

ec3 = − sin θ ec16 + cos θ α̂ae
c
16a , (A14)

while the remaining light components components: lm,
uc
m, ecm (m = 1, 2) and qa (a = 1, 2, 3) are only contained

in the 16a. In particular, we are interested in the pro-
jection of the 10 and 16 fields on the light eigenstates.
Inverting the transformations in Eqs. (A7)–(A14) we get

l10 → − sinφ l3 , (A15)
l16 → 0 , (A16)
uc
16 → sin θ uc

3 , (A17)
ec16 → − sin θ ec3 , (A18)
q16 → 0 . (A19)

The identification of the dc-like light states is more in-
volved. Therefore, let us first consider the simple limit
in which the vectors (αa) and (βa) are orthogonal, before
considering the general case. In such a case, the heavy
mass eigenstates are

Dc
1 = cos θ dc16 + sin θ α̂ad

c
16a , (A20)

Dc
2 = cosφdc10 + sinφ β̂ad

c
16a , (A21)

the light dca components can be chosen to be

dc3 = − sin θ dc16 + cos θ α̂ad
c
16a , (A22)

dc2 = − sinφdc10 + cosφ β̂ad
c
16a , (A23)

while dc1 is entirely contained in the 16a. The projection
of the 10 and 16 fields on the light dc-like states then
reads

dc16 → − sin θ dc3 , (A24)
dc10 → − sinφdc2 . (A25)

The only renormalizable (RPV) interaction generated by
the operator λ 161610 (cf. Eq. (13)) is therefore

2λ sin2 θ sinφuc
3d

c
3d

c
2 . (A26)

In the opposite case in which αa and βa are parallel,
both dc16 and dc10 contain only one linear combination of

the light fields and the baryon number violating RPV
operator would vanish by antisymmetry.
Let us now consider the general case. In order to iden-

tify the light dc eigenstates, it is useful to consider a basis
in the SO(10) flavour space in which β1 = 0, α1,2 = 0, so
that (αa) = (0, 0, α3), α3 > 0, (βa) = (0, β2, β3), α = α3,
β = (β2

2 + β2
3)

1/2. In such a basis, one of the three light
eigenstates is dc1 and the other two are linear combina-
tions of dc162 , d

c
163 , d

c
16, d

c
10 orthogonal to the heavy linear

combinations (linearly independent but not orthogonal
nor normalized)

Dc
1 = αV45d

c
163 +M16d

c
16 (A27)

Dc
2 = V16(β3d

c
163 + β2d

c
162) +M10d

c
10 . (A28)

A possible choice of the light fields is given by the exterior
products

dc2 = (Dc
1 ∧Dc

2 ∧ dc163)/N2 (A29)

dc3 = (Dc
1 ∧Dc

2 ∧ dc2)/N3 , (A30)

where N2 and N3 are normalization factors. The explicit
expressions are

dc2 =
dc162 − β̂2tφ d

c
10

(1 + (β̂2tφ)2)1/2
(A31)

dc3 =
(1 + (β̂2tφ)

2)(dc163 − tθd
c
16)− β̂3tφ(β̂2tφd

c
162 + dc10)

(1 + (β̂2tφ)2)1/2(1 + t2θ + t2φ + β̂2
2t

2
φt

2
θ)

1/2
,

(A32)

from which we get

λ16 16 10 = heavy+

2λα̂[3β̂2]sθtθtφ

(1 + t2θ + t2φ + (1− (α̂ · β̂)2)t2φt2θ)1/2
uc
3d

c
3d

c
2. (A33)

The coefficient of the RPV operator in the previous ex-
pression is independent of the choice of the two light
fields dc3, d

c
2 made in Eqs. (A29)–(A30), provided that

dc3, d
c
2 are orthonormal and orthogonal to dc161 , D

c
1, D

c
2.

The form in which it is written is independent of the ba-
sis in which the vectors (αa) and (βa) are written, as long
as α1 = β1 = 0.
In the t2θ ≪ 1 ≪ t2φ limit identified in Sect. IVA the

coefficient of the RPV operator becomes

2λsθtθα̂[3β̂2] ≈ 2λ
V 2
45α

2

M2
16

α̂[3β̂2] . (A34)

We remind that Eq. (A33) should be written in terms of
the fermion mass eigenstates, which are determined by
the SM Yukawas after electroweak symmetry breaking.
In Sect. IV, we also considered the limit M16,10 ≫

V45,16. In this limit, corresponding to small angles θ and
φ, the light dca states can be obtained as perturbations of
the states dc16a ,

dca ≈ dc16a − θ α̂ad
c
16 − φ β̂ad

c
10 . (A35)
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from which we get

λ 161610 ≈ 2λθ2φ α̂aα̂bβ̂cu
c
ad

c
bd

c
c ,+heavy (A36)

which yields the operator λ′′

abcu
c
ad

c
bd

c
c, with

λ′′

abc = λθ2φ α̂aα̂[bβ̂c] , (A37)

the same expression in Eq. (18), obtained by integrating
out the heavy vector-like fields 16⊕16⊕10 at the SO(10)
level.

Appendix B: Details of the flavor model

In order to obtain Eqs. (33)–(39), one can follow
the procedure illustrated in the previous Appendix with
(αa) = α(0, 0, 1) and (βa) = β(0, ǫ, 1), and expand at
the leading order in ǫ ≪ 1. In particular, we choose the
same basis as in Eqs. (A31)–(A32) for the light dc eigen-
states. Analogously, the light l eigenstates are defined by
replacing dc ↔ l and setting tθ = 0 in Eqs. (A31)–(A32).
The basis for the other light states follows the conven-
tions given in Appendix A. At the leading order in ǫ,
we find the following projections for the SO(10) current
eigenstates onto the light degrees of freedom:

• dc-like states

dc162 → dc2 − ǫNcθt
2
φd

c
3 ,

dc163 → Ncθd
c
3 ,

dc16 → −Nsθd
c
3 ,

dc10 → −ǫtφd
c
2 −Ncθtφd

c
3 , (B1)

where N is defined as in Eq. (40).

• l-like states

l162 → l2 − ǫsφtφl3 ,
l163 → cφl3 ,
l16 → 0 ,
l10 → −ǫtφl2 − sφl3 . (B2)

Notice that in the tθ → 0 limit, N → cφ.

• uc-like states

uc
162 → uc

2 ,

uc
163 → cθu

c
3 ,

uc
16 → sθu

c
3 . (B3)

• ec-like states

ec162 → ec2 ,

ec163 → cθe
c
3 ,

ec16 → −sθe
c
3 . (B4)

• q-like states

q162 → q2 ,
q163 → q3 ,
q16 → 0 . (B5)

By substituting Eqs. (B1)–(B5) into the Yukawa super-
potential of Eq. (20) we obtain the following Yukawa ma-
trices for the second and third families at the leading
order in ǫ:

Yu =

(

ǫ2(2y22) ǫ(2cθy23 + sθy2)
ǫ(2y23) 2cθy33 + sθy3

)

, (B6)

Yd =

(

ǫ2(2y22) ǫN(2cθy23 − sθy2)
ǫ(2y23) N(2cθy33 − sθy3)

)

, (B7)

Ye =

(

ǫ2(2y22) ǫ(2cθy23 − sθy2)
ǫ(2cφy23) cφ(2cθy33 − sθy3)

)

, (B8)

where the basis for Yu,d,e is chosen is such a way that the
SU(2)L doublets act from the left. Notice that Yd = Y T

e

in the tθ → 0 (and hence N → cφ) limit, as expected
from the fact that SU(5) is unbroken in this limit. Anal-
ogously, Yd = Ye in the tφ → 0 (and hence N → 1) limit,
as expected from the fact the Pati-Salam factor SU(4)PS
is unbroken in this limit.

The perturbative diagonalization of Eqs. (B6)–(B8)
lead to the physical masses and mixings collected in
Eqs. (33)–(39) and to right-handed rotation matrices
whose “2–3” sector has the following form:

Vuc =







1 −ǫ
2y23

2cθy33 + sθy3

ǫ
2y23

2cθy33 + sθy3
1






, (B9)

Vdc =







1 − ǫ

N

2y23
2cθy33 − sθy3

ǫ

N

2y23
2cθy33 − sθy3

1






.

(B10)

Finally, the RPV coupling at low-energy is obtained by
projecting the operator 16 16 10 onto the light states:

λ 16 16 10→ 2λ ǫ
sθtθtφ

(1 + t2θ + t2φ)
1/2

uc
3d

c
3d

c
2. (B11)

At the leading order in ǫ, the rotations in Eqs. (B9)–
(B10) do not affect the result, which can be obtained
expanding Eq. (A33) at the leading order in ǫ. Eqs. (45)–
(46) follow.
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