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1. Method

Exploiting the analyticity of the vacuum polarization function Π(q2) around q2 = 0 and
using dispersion relations, the derivatives at q2 = 0 can be expressed as weighted integrals
over the imaginary part of Π(q2), which in turn is given by the cross section for electron-
positron annihilation into hadrons. Let us denote the normalised cross section for heavy
quark production as RQ(s) ≡ σQ(s)/σpoint(s). The moments of RQ, defined as

Mexp
n ≡

∫

ds

sn+1
RQ(s) , (1)

can be directly related to the perturbatively calculated Taylor coefficients. In total one thus
obtains the MS quark mass in terms of experimentally weighted integrals of RQ and the
perturbatively calculable coefficients C̄n,

mQ(µ) =
1

2

(

9Q2
QC̄n

4Mexp
n

)1/(2n)

. (2)

This strategy has been suggested originally in Ref. [1] and applied to a precise charm and
bottom mass determination in Ref. [2] once the three-loop results had become available. A
significantly improved reanalysis based on four-loop moments as obtained in Refs. [3, 4, 5,
6, 7, 8] and with new data has been performed in Ref. [9], additional updates and improve-
ments from new data and the precise analytical evaluation of the perturbative moments
can be found in Refs. [10, 11]. For the extraction of RQ from the data the issue of sin-
glet contributions and secondary radiation of heavy quarks has been discussed in some
detail in Ref. [9]. Furthermore, the potential influence of a non-vanishing gluon condensate
〈αs

π
GG〉 = 0.006 ± 0.012 GeV4 on the charm mass determination has been analysed [9, 11]

and found to be small.

2. Results

Let us now present the experimental results for the moments, first for charm, later for
bottom. For charm the integration region is split into one covering the narrow resonances
J/ψ and ψ′, the “threshold region” between 2mD and 4.8 GeV and the perturbative contin-
uum above. Note that we assume the validity of pQCD in this region with high precision, an
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n Mres
n Mthresh

n Mcont
n Mexp

n Mnp
n (NLO)

×10(n−1) ×10(n−1) ×10(n−1) ×10(n−1) ×10(n−1)

1 0.1201(25) 0.0318(15) 0.0646(11) 0.2166(31) −0.0002(5)
2 0.1176(25) 0.0178(8) 0.0144(3) 0.1497(27) −0.0005(10)
3 0.1169(26) 0.0101(5) 0.0042(1) 0.1312(27) −0.0008(16)
4 0.1177(27) 0.0058(3) 0.0014(0) 0.1249(27) −0.0013(25)

Table 1: Experimental moments in (GeV)−2n as defined in Eq. (1), separated according to
the contributions from the narrow resonances, the charm threshold region and the continuum
region above

√
s = 4.8 GeV. In the last column the NLO contribution from the gluon

condensate is shown.

n mc(3 GeV) exp αs µ npNLO total
1 0.986 0.009 0.009 0.002 0.001 0.013
2 0.975 0.006 0.014 0.005 0.002 0.016
3 0.975 0.005 0.015 0.007 0.003 0.017
4 0.999 0.003 0.009 0.031 0.003 0.032

Table 2: Results for mc(3 GeV) in GeV. The errors are from experiment, αs, variation of µ
and the gluon condensate.

assumption that is well consistent with present measurements but for the moment remains
an assumption, to be verified e.g. by future BESS experiments (for charm) and Belle (for
bottom).

The results for the moments from one to four and the error budget are listed in Table 1,
those for the quark mass in Table 2. The moment with n = 1 is most robust from the theory
side, as evident from the relatively smaller coefficient in the perturbative series. In view of
the smallest sensitivity to αs and to the choice of the renormalisation scale µ we adopt the
value as derived from n = 1 as our final result:

mc(3 GeV) = 986(13) MeV. (3)

Tables 1 and 2 also illustrate the path to a further reduction of the error. For n = 1
important contributions arise from all three regions. Improved determinations of Γe(J/ψ)
would reduce the errors of all three moments. Improved measurements ofRQ in the threshold
region and at 4.8 GeV would have a strong impact on n = 1 and strengthen our confidence
in the validity of pQCD close to, but above 4.8 GeV. Another interesting option would be
a simultaneous fit to all three moments, taking the proper experimental correlations into
account.

Similar statements can be made for the determination of the bottom quark mass. A
recent measurement of the cross section in the threshold region between 10.6 GeV and
11.2 GeV was employed in Ref. [10] and has lead to a significant reduction of the experi-
mental error on mb. Still, additional measurements in the region around and above 11 GeV
would be welcome in order to confirm the validity of perturbative QCD relatively close to
threshold. The result for the second moment has been adopted as our final answer

mb(10 GeV) = 3610(16) MeV (4)



and corresponds to mb(mb) = 3610(16) MeV.
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