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Light color octet scalars in the minimal SO(10) grand unification
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We analyze the relation between the present (and foreseen) bounds on matter stability and the
presence of TeV-scale color octet scalar states in non-supersymmetric SO(10) grand unification
with one adjoint Higgs representation triggering the symmetry breaking. This scenario, discarded
since long due to tree-level tachyonic instabilities appearing in all phenomenologically viable
breaking patterns, has been recently revived at the quantum level. Including the relevant two-loop
corrections we find a tight correlation between the octet mass and the unification scale which either
requires a light color octet scalar within the reach of the LHC or, alternatively, a proton lifetime
accessible to the forthcoming megaton-scale facilities.
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I. INTRODUCTION

The class of SO(10) models where the first step of the
spontaneous symmetry breaking is driven by the vacuum
expectation value (VEV) of a Higgs adjoint was for a
long time considered to be phenomenologically impracti-
cable due to instabilities of the classical vacuum configu-
rations supporting potentially viable symmetry breaking
chains [1–4]. However, it was shown recently [5] that
such instabilities can be removed at the quantum level
and, thus, the non-supersymmetric SO(10) unification
with the minimal Higgs content has been revived as a
potentially realistic framework.

In a recent work [6] we analyzed a simple non-
supersymmetric SO(10) gauge model with 45H ⊕ 126H

in the Higgs sector focusing on the details of the scalar
spectrum as a key ingredient to a detailed understand-
ing of the gauge unification constraints. Surprisingly, the
theory turned out to be capable of supporting viable uni-
fying patterns with the B − L-breaking scale stretching
as high as 1014 GeV, right within the ballpark assumed
for a natural implementation of the seesaw for neutrinos
(see [7] for a systematic discussion).

In particular, we pointed out that a seesaw-scale in
the 1013 − 1014 GeV range is obtained along the break-
ing chains featuring intermediate SU(3)c ⊗ SU(2)L ⊗
SU(2)R ⊗U(1)B−L or SU(4)C ⊗ SU(2)L ⊗U(1)R gauge
symmetries when either an intermediate-scale color sex-
tet (transforming as a weak triplet) or a light color octet
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(weak doublet) appear in the scalar spectrum; the latter
case is especially interesting because there the unifica-
tion constraints allow for a colored scalar octet in the
vicinity of the electroweak scale which can be very inter-
esting from the collider physics point of view. On top of
that, the mass of the octet turns out to be anti-correlated
with the masses of the GUT-scale vector bosons govern-
ing the d = 6 proton decay and, hence, a lower bound on
the matter lifetime translates to an upper bound on the
octet mass.

From the bottom-up perspective, the existence of light
color octet (or sextet) scalars in the sub-TeV domain
was recently advocated in [8, 9] as a possible explana-
tion for the H → γγ excess observed in the LHC data
[10–12]. To this end, it has been pointed out [13] that
only the standard Higgs doublets or color octets with
the Higgs-like weak quantum numbers can naturally cou-
ple to quarks without introducing large flavor changing
neutral currents (FCNC). The implementation of a cus-
todial symmetry in these settings can then help further
with taming the associated radiative corrections so that
a Standard model (SM)-like setup is maintained. Light
colored scalars have been widely discussed in connection
to various new physics scenarios and in the recent years
with great emphasis on their implications for the LHC
physics [14–48].

In this paper we restrict the systematic discussion of
ref. [6] to the possibility of a light color octet scalar. We
refine the analysis of gauge unification to the two-loop
level and we enter the details of the calculation of the
width of the dominant proton decay mode. We entirely
focus on the minimal SO(10) light color octet (weak dou-
blet) scenario since, unlike the intermediate-scale sextet
case (with the typical sextet mass at about 1011 GeV),
it is far more interesting from the collider perspective.
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We find that the two-loop corrections strengthen the
correlation between the scalar octet mass and the uni-
fication scale in such a way that strict bounds on the
scalar mass can be derived from the proton lifetime lim-
its. In particular, for the present day proton stability
constraints we find a conservative 2000 TeV upper bound
on the color octet mass which is further pushed down to
about 20 TeV in case of a null result in the next genera-
tion proton decay searches. In any case, a large fraction
of the parameter space of the minimal SO(10) grand uni-
fied theory (GUT) allows for a scalar octet mass in the
TeV (and even sub-TeV) regime.

II. LIGHT COLOR OCTET SCALAR IN THE
MINIMAL SO(10)

A. The 45-126 Higgs model

We consider an SO(10) Higgs sector including one 45H

adjoint representation together with one 126H
1. The

consideration of an additional 10H (or two) is not rele-
vant for the purpose of this paper and we shall comment
on it only later in Sect. II C 4 b.

The most general renormalizable scalar potential that
can be written with just 45H and 126H at hand reads

V = V45 + V126 + Vmix , (1)

where

V45 = −µ
2

2
(φφ)0 +

a0

4
(φφ)0(φφ)0 +

a2

4
(φφ)2(φφ)2 , (2)

V126 = −ν
2

5!
(ΣΣ∗)0 (3)

+
λ0

(5!)2
(ΣΣ∗)0(ΣΣ∗)0 +

λ2

(4!)2
(ΣΣ∗)2(ΣΣ∗)2

+
λ4

(3!)2(2!)2
(ΣΣ∗)4(ΣΣ∗)4 +

λ′4
(3!)2

(ΣΣ∗)4′(ΣΣ∗)4′

+
η2

(4!)2
(ΣΣ)2(ΣΣ)2 +

η∗2
(4!)2

(Σ∗Σ∗)2(Σ
∗Σ∗)2 ,

Vmix =
iτ

4!
(φ)2(ΣΣ∗)2 +

α

2 · 5!
(φφ)0(ΣΣ∗)0 (4)

+
β4

4 · 3!
(φφ)4(ΣΣ∗)4 +

β′
4

3!
(φφ)4′ (ΣΣ∗)4′

+
γ2

4!
(φφ)2(ΣΣ)2 +

γ∗2
4!

(φφ)2(Σ
∗Σ∗)2 .

1 Minimally, one would prefer to consider 16H in place of 126H .
On the other hand 〈16H〉 breaks the B − L symmetry only by
one unit and, thus, the seesaw requires a pair of 〈16H 〉 inser-
tions. This can be implemented at the renormalizable level by,
e.g., a variant of the Witten’s radiative mechanism [49–51] or,
giving up renormalizability, by a d = 5 operator. In either case
the “effective” ∆(B − L) = 2 seesaw-scale is further suppressed
with respect to the “genuine” B−L breaking VEV and the light
neutrino masses are typically overshot by many orders of mag-
nitude.

Here the φ and Σ stand for the components of 45H and
126H, respectively. The detailed breakdown of all the
contractions (with the subscripts denoting the number
of open indices in the relevant brackets) is given in App.
A of ref. [6]. All couplings are real but η2 and γ2.

There are in general three SM singlets in the reducible
45H ⊕126H representation of SO(10). Using BL ≡ (B−
L) and labelling the field components with respect to the
3c 2L 2R 1BL (i.e., SU(3)c⊗SU(2)L⊗SU(2)R⊗U(1)BL)
algebra, the SM singlets reside in the (1, 1, 1, 0) and
(1, 1, 3, 0) sub-multiplets of 45H and in the (1, 1, 3,+2)
component of 126H. In what follows we shall denote

〈(1, 1, 1, 0)〉 ≡ ωBL, 〈(1, 1, 3, 0)〉 ≡ ωR, 〈(1, 1, 3,+2)〉 ≡ σ,
(5)

where ωBL,R are real and σ can be made real by a
phase redefinition of the 126H . Different VEV configura-
tions trigger the spontaneous breakdown of the SO(10)
symmetry into several qualitatively distinct subgroups.
Namely, for σ = 0 one finds (in an obvious notation)

ωR = 0, ωBL 6= 0 : 3c 2L 2R 1BL ,

ωR 6= 0, ωBL = 0 : 4C2L1R ,

ωR 6= 0, ωBL 6= 0 : 3c 2L 1R 1BL , (6)

ωR = −ωBL 6= 0 : flipped 5′ 1Z′ ,

ωR = ωBL 6= 0 : standard 5 1Z ,

with 5 1Z and 5′ 1Z′ standing for the two inequivalent
embeddings of the SM hypercharge operator Y into
SU(5) ⊗ U(1) ⊂ SO(10) usually called the “standard”
and the “flipped” SU(5) scenarios [52, 53], respectively.
In the standard case, Y = T 3

R + 1
2TBL belongs to the

SU(5) algebra and the orthogonal Cartan generator Z
is given by Z = −4T 3

R + 3TBL. In the flipped (5′1Z′)
case, the right-handed isospin assignment of quarks and
leptons is turned over so that the flipped hypercharge
generator reads Y ′ = −T 3

R + 1
2TBL. Accordingly, the ad-

ditional U(1)Z′ generator reads Z ′ = 4T 3
R + 3TBL (for

further details see, e.g., ref. [5]).
For σ 6= 0 all the intermediate gauge symmetries (6)

are spontaneously broken down to the SM group, with
the exception of the last case which maintains the SU(5)
subgroup unbroken.

B. Gauge unification and the scalar octet mass

There are several basic criteria we impose on each vac-
uum of the theory featuring a light color octet scalar.
Besides the very consistency of the gauge unification pic-
ture at two loops we demand compatibility with the pro-
ton lifetime constraints and require a reasonably high
seesaw-scale in order to support a renormalizable (and,
hence, potentially predictive) implementation of the see-
saw mechanism. This program for the minimal SO(10)
setting here considered has been initiated in [6]. The goal
of the current study is to include the relevant two-loop
running effects and to assess their impact on the breaking
pattern and the scalar spectrum.
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1. Two-loop gauge unification constraints

The Higgs setting we are considering here (i.e., with an
adjoint Higgs driving the SO(10) breaking) was shown
to provide phenomenologically interesting breaking pat-
terns only if at least the one-loop effective potential is
considered [5]. Gauge unification constraints and the
shape of the scalar spectrum have been discussed in [6],
where it is shown that an acceptable B −L scale for the
renormalizable seesaw implementation is obtained only if
the scalar spectrum exhibits ”light” colored scalar states
(in particular, an octet or a sextet). This result improved
on previous analyses (see for instance [7] and refs. [54–56]
for earlier studies) based on the minimal survival hypoth-
esis (MSH) [57], where just the scalar spectrum necessary
for the spontaneous symmetry breaking at each stage is
assumed at the corresponding scale. This allows a for sys-
tematic analysis, albeit preliminary to a detailed study
of the vacuum constraints.

In what follows we shall consider only the setting with
the light color octet scalar transforming as a weak dou-
blet, i.e., H8 ≡ (8, 2,+ 1

2 ), for its potential relevance to
the TeV physics scale. A discussion of the shape of the
relevant one-loop scalar spectrum, the effects of the heavy
scalar thresholds and the constraints obtained from the
gauge unification and the absolute neutrino mass scale
will be given in Section II C.

a. The tree-level scalar spectrum. Adopting the con-
vention in which the mass term in the Lagrangian is
written as 1

2ψ
TM2ψ, where ψ = (φ,Σ∗,Σ) is a 297-

dimensional vector, the scalar spectrum is obtained read-
ily by evaluating the relevant functional scalar mass ma-
trix of the schematic form

M2(φ,Σ∗,Σ) =



Vφφ VφΣ∗ VφΣ

VΣ∗φ VΣ∗Σ∗ VΣ∗Σ

VΣφ VΣΣ∗ VΣΣ


 (7)

on the SM vacuum. The subscripts here denote the
derivatives of the scalar potential with respect to a spe-
cific set of fields. Subsequently, this matrix can brought
to a block-diagonal form (i.e., into the SM basis) by a uni-
tary transformation. The complete tree-level spectrum is
found in App. B of ref. [6].

b. One-loop scalar spectrum. Conceptually, a com-
plete two-loop analysis of the unification pattern requires
a thorough understanding of the one-loop spectrum of
the theory. This, however, is extremely demanding in full
generality. On the other hand, for the sake of the current
analysis it is sufficient to focus on the most prominent
one-loop corrections to the scalar masses, namely, those
that cure the instabilities of the tree level potential [5].

The leading loop-induced non-logarithmic correction in
the scalar sector comes from tadpoles [58] which, among
other contributions, yield the “universal” (SO(10) sym-
metric) shift to the scalar masses via the τ term in the
potential. It is not difficult to see that the only source of
a τ2-proportional non-log term is associated to the renor-
malization of the stationarity conditions imposed on the

scalar potential. Diagrammatically, it corresponds to a
special cluster of one-loop graphs contributing to the one-
point function of 45H , cf. [6]. Given the SO(10) structure
of the relevant τ -vertex in (4) one finds

∆M2
τ2 =

35τ2

32π2
(8)

that can be viewed as a typical one-loop correction of
the scalar masses in the vicinity of the GUT scale. This
is numerically relevant namely for those states in 45H

that are tachyonic at the tree-level [6], thus allowing for
a simplified treatment of the scalar spectrum.

c. Effective gauge theories and matching scales:

The generic structure of the vacua supporting a light
color octet scalar, namely ωR ≫ (ωBL, σ), was discussed
in [6]. This suggests that the breaking of the SO(10)
gauge symmetry can be conveniently described by the
following series of effective gauge theories [59]

SO(10) (9)
↓µ2

SU(4)C ⊗ SU(2)L ⊗ U(1)R

↓µ1

SU(3)c ⊗ SU(2)L ⊗ U(1)Y (SM + H8)
↓µ0

SU(3)c ⊗ SU(2)L ⊗ U(1)Y (SM)

where µ2 > µ1 > µ0 denote the relevant matching scales.
Unlike for the first two steps where the gauge symmetry
of the effective theory changes (as does the associated
vector boson spectrum with all subtleties associated to
that), the third arrow corresponds to the decoupling of
just the light H8 at a certain scale µ0 with no change in
the gauge sector and, as such, it is almost trivial. In the
numerical simulation in Sect. II C the scales µ1,2 are nat-
urally chosen in the vicinity of the masses of the gauge
bosons associated to the two relevant symmetry break-
ings triggered by the VEVs ωR and σ, i.e.,

µ2 = g0
GωR , µ1 = g0

Gσ , (10)

where g0
G = 0.6 is the typical value of the gauge couplings

at (or around) the GUT-scale identified in [6].
Strictly speaking, the scheme (9) is naturally implied

for σ & ωBL which, indeed, corresponds to our main
interest in settings with a maximum allowed σ, cf. Sec-
tion II B 3. In the opposite case, i.e., for ωBL & σ, one
may for simplicity consider an extra stage with an inter-
mediate SU(3)c ⊗ SU(2)L ⊗U(1)R ⊗U(1)BL symmetry.
Since, however, this is mostly a matter of language (as
the difference between the two approaches can be essen-
tially subsumed into a set of extra threshold effects in the
simple scheme above) we shall consider only four effective
theories along with three effective matching scales for all
settings. The interested reader can find further remarks
on the consistency of this approach in section II C 1.

d. The two-loop beta functions: In what follows we
shall pass through all the steps in (9) and list all the ai
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and bij coefficients entering the two-loop renormalization
group equations for the gauge couplings [60–63]2

d

dt
α−1

i = −ai −
bij
4π
αj , (11)

where

t =
1

2π
logµ/MZ (12)

provided

ai = −11

3
C2(Gi) +

4

3
κS2(Fi) +

1

3
ηS2(Si) , (13)

bij =

[
−34

3
(C2(Gi))

2
(14)

+

(
4C2(Fi) +

20

3
C2(Gi)

)
κS2(Fi)

+

(
4C2(Si) +

2

3
C2(Gi)

)
ηS2(Si)

]
δij

+ 4
[
κC2(Fj)S2(Fi) + ηC2(Sj)S2(Si)

]

(no summation over i). Here S2 and C2 denote the in-
dex (including multiplicity factors) and the quadratic
Casimir of a given representation, κ = 1, 1

2 for Dirac and

Weyl fermions and η = 1, 1
2 for complex and real scalar

fields, respectively. For a detailed account of the sub-
tleties related to the case with more than a single abelian
gauge factor the interested reader may refer to the discus-
sion in ref. [7] and references therein. For |ωj(t−t0)| < 1,
with ωj ≡ ajαj(t0), the expression

α−1
i (t)−α−1

i (t0) = −ai (t−t0)+
bij

4πaj

log [1 − ωj(t− t0)]

(15)
is, to a great accuracy, a solution of Eq. (11).

Above µ2 the spectrum of the theory under consid-
eration is defined by the 45-dimensional adjoint repre-
sentation containing the gauge fields, three copies of the
16-dimensional matter spinors, a real 45-dimensional ad-
joint scalar and a complex 126-dimensional anti-self-dual
component of the 5-index antisymmetric SO(10) tensor.
This altogether yields

a = −37/3 , b = 9529/6 . (16)

The scale µ2 characterizes the SO(10) breaking to
SU(4)C ⊗ SU(2)L ⊗ U(1)R. At this stage, the propa-
gating gauge bosons fill the (15, 1, 0)⊕ (1, 3, 0)⊕ (1, 1, 0)
reducible representation of the gauge group, together

2 The two-loop contribution of the Yukawa couplings is here ne-
glected. As a matter of fact we checked that the top-Yukawa
coupling contributes to less than the 10% to the difference be-
tween the one- and two-loop results. In addition, such a contri-
bution produces an almost uniform shift on the evolved gauge
couplings, thus affecting only the determination of the unified
gauge coupling (cf. e.g. the discussion in Sect. IV D of [7]).

with matter multiplets in three copies of the (4, 2, 0) ⊕
(4, 1,+ 1

2 )⊕ (4, 1,− 1
2 ) representation and complex scalars

in (10, 1,−1) ⊕ (15, 2,+ 1
2 ). Note that the latter is just

the minimal set of fields that may trigger the subsequent
steps of the gauge symmetry breaking and, thus, the nat-
ural expectation of the minimal survival shape of the
scalar spectrum is conformed. With all this at hand one
has

ai = (−7,− 5
6 ,

59
6 ) , bij =




265
2

57
2

43
2

285
2

217
6

15
2

645
2

45
2

101
2


 , (17)

where i, j ∈ {4C , 2L, 1R}.
Below µ1 the effective theory is the SM plus H8

scalar. The gauge fields are grouped into (8, 1, 0) ⊕
(1, 3, 0)⊕ (1, 1, 0) while the matter resides in three copies
of (3, 2, 1

6 )⊕(1, 2,− 1
2 )⊕(3, 1,− 2

3 )⊕(3, 1,+ 1
3 )⊕(1, 1,−1).

The surviving H8 scalars transform as (8, 2,+ 1
2 ) ⊕

(1, 2,+ 1
2 ). The RGE beta coefficients read:

ai = (−5,− 11
6 ,

49
10 ) , bij =




58 45
2

47
10

60 139
6

33
10

188
5

99
10

271
50


 , (18)

where i, j ∈ {3c, 2L, 1Y }.
After H8 is integrated out (at µ0 ≡ M8), the minimal

set of the SM fields (including one Higgs doublet) yields:

ai = (−7,− 19
6 ,

41
10 ) , bij =




−26 9
2

11
10

12 35
6

9
10

44
5

27
10

199
50


 . (19)

At MZ (i.e., at t = 0) the SU(5)-normalized SM gauge
couplings are required to fall into the current 1-σ bands

α1 = 0.0169225± 0.0000039 ,
α2 = 0.033735± 0.000020 , (20)
α3 = 0.1173± 0.0007 ,

were these data refer to the modified minimal subtrac-
tion scheme (MS) in the full SM, i.e. the top being not
integrated out [64–66].

e. Threshold corrections. What remains to be de-
tailed is the matching between all the gauge theories in
(9). The general form of the one-loop matching condi-
tion between effective theories in the framework of dimen-
sional regularization has been discussed in [59, 67]. Let
us consider first a simple gauge group G spontaneously
broken into subgroups Gi. The one-loop matching for
the gauge couplings can be then written as

g−2
i = g−2 − λi(µ) , (21)

where

λi(µ) =
1

48π2

[
TrT 2

iV − 21TrT 2
iV log

MV

µ
(22)

+ 8TrT 2
iF log

MF

µ
+ TrT 2

iS log
MS

µ

]
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with V , F and S denoting the massive vectors, fermions
and scalars that are integrated out at the matching
scale µ (classified with respect to the preserved symme-
tries Gi)

3. Let us also note that Ti stand for the corre-
sponding group generators and the relevant multiplicities
are looked after the traces.

In the notation of Eq. (14) the matching corrections
can be written as

λi(µ) =
1

48π2
S2(Vi) +

1

8π2

[
−11

3
TrT 2

Vi
log

MVi

µ
(23)

+
4

3
κTrT 2

Fi
log

MFi

µ
+

1

3
ηTrT 2

Si
log

MSi

µ

]
,

where the (Feynman gauge) Goldstone bosons have been
conveniently included in the scalar part of the expression.
Note that S2(Vi) can here be written as C2(G)−C2(Gi).

When multiple U(1) factors are present one must be
careful about the abelian mixing effects; in what follows
we shall follow the notation and discussion of ref. [7].
Consider the breaking of N copies of U(1) gauge factors
to a subset of M elements U(1) (with M < N). Denoting

by Tn (n = 1, ..., N) and by T̃m (m = 1, ...,M) their
properly normalized generators we have

T̃m = PmnTn (24)

with the orthogonality condition PmnPm′n = δmm′ . Let
us denote by gna (n, a = 1, ..., N) and by g̃mb (m, b =
1, ...,M) the matrices of abelian gauge couplings above
and below the breaking scale respectively. Writing the
abelian gauge boson mass matrix in the broken vacuum
and identifying the massless states one finds the following
matching condition

(g̃g̃T )−1 = P
(
ggT

)−1

eff
PT , (25)

where

g−2
eff AB ≡ g−2

AB − λAB(µ) , (26)

with A,B = 1, ..., N . Eq. (25) depends on the choice
of basis for the U(1) charges (via P ) but it is invari-
ant under orthogonal rotations of the gauge boson fields
(gOTOgT = ggT ). Notice that whenever the decoupled
states are classified by multiple U(1) charges the presence
of non-vanishing off-diagonal entries in λAB is crucial for
the correct matching even if no multiple-U(1)-symmetric
stage is actually considered (i.e., for diagonal g−2

AB).
The general case of a gauge group U(1)1⊗...⊗U(1)N ⊗

G1⊗...⊗GN ′ spontaneously broken to U(1)1⊗...⊗U(1)M

with M ≤ N +N ′ is taken care of by replacing (ggT )−1

in Eq. (25) with the block-diagonal (N +N ′)× (N +N ′)
matrix

(GGT )−1 = Diag
[
(ggT )−1, g−2

i

]
, (27)

3 As a matter of fact, one may choose any proper subgroup G′
i of

Gi for the classification of the decoupled fields. This freedom is

ensured by the identity S2(RG) =
P

RG′ S2(RG′
).

thus providing, together with the extended version of
Eq. (24), the necessary generalization of Eq. (21).

At the SO(10) → SU(4)C ⊗ SU(2)L ⊗ U(1)R

breaking scale µ2 the following components are de-
coupled (the subscripts denote the origin of the
listed multiplets in terms of the SO(10) scalar irreps
[cf. also TABLEs IV and V], while the superscripts
V and GB indicate their vector and/or Goldstone-
boson nature): (1, 1,±1)V , (1, 1,±1)GB

45 , (6, 2,± 1
2 )V ,

(6, 2,± 1
2 )GB

45 , (6, 1, 0)126, (10, 3, 0)126+h.c., (10, 1, 0)126+

h.c., (10, 1,+1)126+h.c., (1, 1, 0)45, (1, 3, 0)45, (15, 1, 0)45
and the heavy eigenstate of the (15, 2,± 1

2 )126 + h.c. sys-
tem. Let us stress that the last item of the list above
corresponds to the state orthogonal to the component
hosting the light SM doublet Higgs that has been identi-
fied as “active” throughout the 421 stage in Sect. II B 1 d.

At the SU(4)C ⊗SU(2)L ⊗U(1)R → SM +H8 match-
ing scale, we have to take into account that the SM hy-
percharge generator is a weighted average of that of the
U(1)BL subgroup of SU(4)C and the U(1)R charge. In
terms of the canonically normalized abelian charges one

has Y =
√

3
5T

3
R +

√
2
5X , where X =

√
3
8 (B − L) obeys

TrX2 = 1 in the defining 10-dimensional vector repre-
sentation of SO(10). In what follows, it will be useful to

define the hypercharge projector PY =
(√

3
5 ,
√

2
5

)
for

which Y = PY (T 3
R, X)T .

In terms of the 3c2L1R1BL quantum numbers, the
fields that decouple at µ1 are (with sub- and su-
perscripts as above): (3, 1, 0,− 4

3 )V + h.c., the light

eigenstate of the (3, 1,−1,+ 2
3 )126 ⊕ (3, 1, 0,− 4

3 )45 +
h.c. system playing the role of the associated Gold-
stone boson4, (1, 1,−1,+2)126 + h.c., (6, 1,−1,− 2

3 )126,

(3, 2,+ 1
2 ,+

4
3 )126 + h.c. and (3, 2,− 1

2 ,+
4
3 )126 + h.c.. An

explicit example of the one-loop massive spectrum can be
found in Table II. With all this at hand one can construct
the corresponding 2 × 2 abelian matching matrix

λ(µ1) =

(
λRR λRX

λXR λXX

)
, (28)

which, subsequently, enters the hypercharge matching
condition

α−1
Y (µ1) = 4πPY

[
(GGT )−1(µ1) − λ(µ1)

]
PT

Y . (29)

In particular,

4π(GGT )−1(µ1) =

(
α−1

R (µ1) 0
0 α−1

4 (µ1)

)
(30)

4 It is simple to check that even though the specific shape of
the λ matrix (28) does depend on the details of the projec-
tion of the light eigenstate onto the two underlying components
(3, 1,−1, + 2

3
)126 ⊕ (3, 1, 0,− 4

3
)45 there is actually no need to

worry about this because both theses components individually
provide the same contribution to the PY λ(µ1)P T

Y factor in (29)
and so does any of their properly normalised linear combinations.
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is the matrix of the abelian gauge couplings wich, in the
case of our interest, is trivially diagonal since there is
no explicit intermediate 3211 running in the relevant se-
quence of the effective gauge theories (9). A specific ex-
ample of the λ(µ1) matrix is reported in Appendix B.

Finally, at µ0 fixed to the mass of H8 (henceforth de-
noted by M8) the effective theory becomes the pure SM.
Needless to say, since the matching scale is conveniently
chosen at the mass of the decoupled state, the matching
is technically trivial.

2. Proton lifetime limits

a. Gauge-induced d = 6 proton decay: With a de-
tailed information on the heavy spectrum of the model at
hand one can rather accurately estimate the proton life-
time for all specific settings of interest. The master for-
mula adjusted for the SO(10) gauge content reads [33, 68]

Γ(p→ π0e+) =
π

4
A2

L(1 + F +D)2
|α|2
f2

π

mpα
2
G ×

×


A2

SR

(
1

M2
(X,Y )

+
1

M2
(X′,Y ′)

)2

+
4A2

SL

M4
(X,Y )


 , (31)

where AL = 1.25 is the factor encoding the renormaliza-
tion from the electroweak scale to the proton mass, D =
0.81, F = 0.44, α = −0.011 GeV3 and fπ = 139 MeV are
phenomenological parameters given by the chiral pertur-
bation theory and lattice, mp = 938.3 MeV is the proton
mass and αG is the GUT-scale gauge coupling. Let us
also note that ASL and ASR are the RGE factors due to
the renormalization of the relevant d = 6 proton decay
operators from the GUT-scale to the weak scale

ASL(R) =

3∏

i=1

MZ≤mP <MG∏

P

[
αi(mP+1)

αi(mP )

] γL(R)i

P

MZ≤mQ≤mP
Q

∆aiQ .

(32)
Here, γL = (23

20 ,
9
4 , 2), γR = (11

20 ,
9
4 , 2), P and Q are labels

of states relevant at each stage and ∆aiQ is the contri-
bution of the field Q to the one-loop beta function, cf.
Sect. II B 1 d. Furthermore, M(X,Y ) and M(X′,Y ′) denote
the masses of the underlying GUT-scale gauge bosons
(i.e., those transforming, respectively, as (3, 2,+ 5

6 ) and

(3, 2,− 1
6 ) under the SM gauge group). The latter are

given, for the model under consideration, in Appendix C
of ref. [6].

Due to the lack of information about the flavour sec-
tor of the theory, we have set all the flavour matrices
governing the baryon and lepton number violating cur-
rents [69, 70] coupled to the heavy gauge fields to a 3× 3
unit matrix; hence, we do not entertain any accidental
cancellations in the relevant amplitudes which, in turn,
makes our results conservative.

Given this, we shall implement namely the basic
constraint corresponding to the current best Super-

Kamiokande (SK) limit [71]:

τ(p → e+π0)SK,2012 > 1.3 × 1034 years , (33)

together with a pair of speculative Hyper-Kamiokande
(HK) limits that are assumed to be reached by 2025 and
2040, respectively [72]:

τ(p → e+π0)HK,2025 > 9 × 1034 years , (34)

τ(p → e+π0)HK,2040 > 2 × 1035 years . (35)

In all figures of the next section, points obeying these
three limits shall be, consecutively, denoted by light grey,
dark grey and black colours.

b. Scalar-induced d = 6 proton decay: In general,
the scalar-induced d = 6 proton decay operators are ex-
pected to be suppressed with respect to the gauge-driven
ones due to the extra flavour factors associated to the
first generation Yukawa couplings in the relevant baryon-
number-violating currents. In the framework under con-
sideration this expectation is further justified by the fact
that the potentially dangerous colored triplets (∆c) never
fall far from the GUT-scale and, thus, never really com-
pete with the gauge sector. To be on the safe side, we
shall follow the strategy defined in the previous one-loop
analysis [6] and implement a conservative lower bound of
m∆c

& 1014 GeV.

c. d > 6 induced proton decay: Due to the rather
specific shape of the scalar spectrum and, in particular,
the absence of baryon number violation in the H8 cou-
plings, the d > 6 proton decay is expected to be highly
suppressed with respect to the d = 6 type of transitions.
For further comments, the interested reader is deferred
to Sect. III of reference [6].

3. Absolute neutrino mass scale

Another phenomenological issue we shall consider con-
cerns the seesaw mechanism, which, for a potentially
predictive scheme, is implemented at the renormalizable
level via the VEVs of the relevant RH and LH triplets
from 126H . Assuming that the associated Yukawa cou-
pling of 126H is of order 1, the natural size of the seesaw-
scale (i.e., the VEV of the RH triplet) is in the 1013 GeV
ballpark (and larger for smaller 126H Yukawa couplings).
Thus, in what follows, we show our results for two con-
servative regions corresponding to σ & 1012 GeV and
σ & 1013 GeV, respectively. On the other hand, as we
shall see, these limits do not affect the absolute upper
bound for M8 in any substantial manner, cf. Fig. 3.

C. Results

The discussion of the results of the numerical simula-
tion shall be divided into two parts. First, we shall dis-
cuss the shape of the parameter space that remains open
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when the two-loop gauge unification and the proton life-
time constraints in Eqs. (33)–(35) are taken into account.
Secondly, we shall discuss the general upper bounds on
M8 and their possible changes when, e.g., additional re-
quirements related to the absolute neutrino mass scale
in renormalizable implementations of the seesaw are im-
posed, cf. Sect. II B 3. Finally, we shall briefly comment
on the robustness of the results with respect to the vari-
ation of the intermediate matching scales, the possible
effects of an additional 10H in the Higgs sector and other
relevant sources of uncertainties.

1. Consistent two-loop gauge unification

The shape of the relevant part of the parameter space
corresponding to a stable vacuum supporting consistent
gauge unification patterns with a light H8, compatible
with the current proton lifetime limits, is best seen from
the ωBL − σ plane depicted in Fig. 1. The two regimes
associated to the points above and below the ωBL =
σ diagonal correspond to the “shortened” SO(10) →
4C2L1R → SM + H8 → SM symmetry-breaking chain
(upper-left part of Fig. 1) and to the “sliding σ regime”
underpinning the SO(10) → 4C2L1R → 3c2L1R1BL →
SM + H8 → SM symmetry-breaking pattern (lower-right
part of Fig. 1), respectively. The fact that both these
regions can stretch so far from the ωBL ∼ σ diagonal
has to do with the fact that in neither of the two cases
the sub-dominant VEV plays any significant role. This
is quite clear for ωBL < σ because in such a situation
none of the scalar masses is governed by ωBL while in
the opposite case (i.e., for σ < ωBL) the lower VEV gov-
erns only SM-singlet (scalar) states which do not affect
the evolution of the SM gauge couplings.

Let us also notice that the difference between the lat-
ter case and the breaking pattern (9) based on the two
matching scales µ1,2 is just formal because the short hier-
archy between the heavier states driven by ωBL and those
that decouple at σ is well accounted for by the threshold
corrections in the matching equation (29).

2. Color octet scalar mass bounds at two loops

Turning our attention to the allowed range for the mass
of the light colored octet scalar H8, the most general
situation is depicted in Fig. 2. We see that the two-
loop effects, as well as the improved implementation of
the proton lifetime limits shrink the formerly identified
range (see Fig. 6 in ref. [6]) by about four orders of mag-
nitude. Hence, the overall consistency of the minimal
SO(10) GUT, together with the present day bounds on
the matter stability, requires H8 to be lighter than about
2000 TeV. Remarkably enough, this limit gets further re-
duced to about 20 TeV if no proton decay is detected
up to a time scale of 2× 1035 years corresponding to the
maximum foreseen Hyper-K reach, cf. Eq. (35).

FIG. 1. The |ωBL|−σ plane depicting the allowed part of the
parameter space that supports a consistent two-loop gauge
unification with a color octet scalar in the TeV domain (colour
code defined in Sect. II B 2 a). For efficiency reasons, we reject
all points that, in the one-loop approximation, yield σ below
1010 GeV; this leads to a reduction of the plot density in the
uninteresting lowest σ region at two loops.

FIG. 2. The H8 mass range allowed by the two-loop unifi-
cation constraints and matter stability bounds. The present
day bound on matter stability sets an upper bound on the H8

mass of about 2000 TeV. The blurry lower-left boundary of
the allowed region is an artefact of the numerical procedure in
which, for efficiency reasons, we dump all uninteresting points
with σ below 1010 GeV at one-loop. On the other hand, the
upper-right boundary (which is the one that sets the strin-
gent limit on the mass of H8) corresponding to the sharp
upper cut in Fig. 1 is enforced by the unification constraints
and, as such, it is a robust feature of the model.

Note also that these bounds are robust with respect to
the cuts imposed on the B − L scale σ, as discussed in
Sect. II B 3. By looking at Fig. 3 we see that increasing
σ does not affect the colour octet mass upper limit (i.e.,
the rightmost points of a given colour); the reason is that
these points lay in the uppermost part of Fig. 1 and, as
such, they are the last ones to be affected by additional
constraints on σ. Nevertheless, the whole allowed region
is eventually wiped out for σ & 2 × 1014 GeV which sets
a hard upper limit on the seesaw scale in this scenario.
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FIG. 3. The same as in Fig. 2 with the inclusion of the B−L

scale limits specified in Sect. IIB 3 (namely, σ & 1012 GeV
on the left and σ & 1013 GeV on the right). Since these
constraints affect the bottom-left parts of the allowed regions,
they preserve the upper limits quoted in Sect. IIC 2. In all
cases H8 turns out to be lighter than about 2000 TeV. The
bound shrinks to about 20 TeV for a proton lifetime above
1035 years (black area).

3. A specific example

For the sake of illustration, let us detail a specific
solution corresponding to one of the black points in
Figs. 1-3 (i.e., those with the proton lifetime exceed-
ing 2 × 1035 years). The parameter-space coordinates of
this sample point are given in Table I, the full break-
down of the bosonic part of the corresponding spectrum
is given in Table II in Appendix A and, finally, the gauge
unification pattern is depicted in Fig. 4.

FIG. 4. A sample two-loop gauge unification pattern corre-
sponding to one of the allowed solutions in Figs. 1, 2 and 3,
see TABLE I and II for further details. The gauge running
proceeds through four stages corresponding from top down
to the SO(10), SU(4)C ⊗ SU(2)L ⊗U(1)R, the SM+H8 and,
finally, the pure SM settings. The visible discontinuities in
the non-abelian gauge couplings at the upper two matching
points are due to the large threshold corrections generated by
the states decoupled at each scale.

parameter value

ωR 1.62 × 1016 GeV

ωBL 5.41 × 1011 GeV

σ −1.43 × 1013 GeV

a0 0.74

α −0.53

β4 0.65

β′
4 −0.47

γ2 0.09

λ0 −0.36

λ2 0.33

λ4 0.62

λ′
4 0.41

M(8, 2, + 1
2
) 1.90 × 103 GeV

TABLE I. Parameters underpinning the sample spectrum
given in Table II in Appendix A with the corresponding uni-
fication pattern depicted in Fig. 4. The value of the τ para-
meter can be obtained from the requirement that the color
octet scalar has the mass specified in the last row.

4. Further comments and consistency checks

a. Robustness of the two-loop renormalization group

analysis. In order to verify the robustness of our numer-
ical results we checked that, for a given set of the GUT-
scale initial conditions, the results of the two-loop renor-
malization group analysis are only marginally depending
on the particular choice of the matching scales µ1,2 in the
vicinity of the main decoupling thresholds. As an exam-
ple, by varying µi’s by as much as a factor of 3 leads to
just minuscule variations in the low-energy values of αi’s;
by defining ∆i ≡ α−1

i (MZ)perturbed − α−1
i (MZ)reference,

where the latter corresponds to the “standard” choice
of µi’s as in Eq (10), we obtain |∆1 − ∆2| . 0.01 and
|∆2 − ∆3| . 0.15.

b. Effect of an extra 10H in the Higgs sector. Con-
cerning the impact of the so far neglected extra 10-
dimensional scalar representations that represent a mini-
mal extra measure in order to arrange a potentially viable
flavour pattern, cf. Sect. III A, there is actually no need
to undertake the technically demanding task of adding
10H into the scalar potential (1) and redoing the same
analysis from scratch. It is clear that its colored triplet
components (cf. Table III) mix heavily with the other
colored triplets in the potential and, thus, they live near
to or at the GUT-scale. Hence, the leading RGE effect of
an additional 10H comes from the need to mix its dou-
blet component (1, 2, 1

2 )10 with (15, 2, 1
2 )126 in order to

provide the right SM flavor structure. Such a mixing can

5 These numbers can be compared for instance with the low-energy
uncertainties in Eq. (20), yielding ∆(α−1

1 ) ≈ 0.014, ∆(α−1
2 ) ≈

0.018 and ∆(α−1
3 ) ≈ 0.051.
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be significant if and only if both these multiplets survive
down to about the 421 breaking scale and, hence, the ex-
tra (1, 2, 1

2 )10 should be considered among the “active”
states in the relevant part of Sect. II B 1 d.

In order to gauge the effect of such an extra (1, 2, 1
2 )10

we can take advantage of the results obtained in the sim-
ple framework based on the MSH. In this approach, one
ignores the details of the scalar spectrum and assumes a
simple clustering of the minimal set of scalars needed for
the spontaneous symmetry breaking at each given scale.
Having subtracted the ”noise” of the detailed spread of
the scalar spectrum, this approach allows us to assess
(rather reliably) the effects of a given extra state at a
desired stage of the gauge running. Such a simplified
analysis shows that, for a fixed H8 mass, the net effect of
an extra (1, 2, 1

2 ) running throughout the 4C2L1R stage
is a further decrease of the GUT-scale, MG, while in-
creasing the seesaw-scale, MB−L. Quantitatively, for a
O(TeV) H8 the inclusion of a weak doublet between MG

and MB−L, results into a −10% and a +75% shift in MG

and in MB−L, respectively.

The fact that for a fixed M8 the GUT-scale (propor-
tional to ωR) is slightly lowered makes the proton lifetime
constraints more severe. Thus, with the extra doublet at
play, the general upper limit on M8 derived in the previ-
ous sections (see namely Fig. 2) can only get stronger. At
the same time, the seesaw-scale may be increased up to
a factor two, but with essentially no effects on the light
H8 mass constraints (cf. Fig. 3). Considering a more re-
alistic case with the doublet components of 10H lying
somewhere between µ2 and µ1 the net effect of the extra
10H is further weakened.

c. M8 −MG correlation. The M8 −MG correlation
in Fig. 2 can be qualitatively understood by noticing that:
i) the H8 contribution to the one-loop beta-functions is
such that a3 > a2 > a1 (cf. Table II); ii) taking the varia-
tion of the matching condition at µ1, α

−1
1 − 2

5α
−1
C = 3

5α
−1
R

(cf. also Fig. 4), with respect to M8 there is a partial can-
cellation on the left hand side so that ∂α−1

R /∂M8 ≈ 0.
Thus the value of the GUT-scale depends predominantly
on the convergence point of αL and αC . As a con-
sequence, the fact that higher unification scales select
lighter H8 is just a geometrical consequence of a3 > a2.
For a similar discussion of the correlation between the
GUT-scale and the mass of a light (8, 2, 1

2 ) octet in SU(5)
models see e.g. [17, 18, 21].

d. ∆α3(MZ) uncertainty. Among the most promi-
nent sources of systematic errors one should certainly
quote the O(0.6%) uncertainty in α3(MZ) (cf. Eq. (20)),
which translates into a conservative O(10%) uncertainty
in the determination of the seesaw- and the GUT-scales.
The latter is, in turn, responsible for a larger O(50%)
uncertainty in the upper bound on the H8 mass, which
is mainly due to the almost flat slope of the M8 −MG

mass correlation (cf. Fig. 2).

e. Planck-scale physics. Worth of mention is the
general fragility of grand unifications with respect to the
Planck-scale (MPl) effects which, given the proximity of

the GUT-scale and MPl, may not be entirely negligi-
ble. Concerning their possible impact on, e.g., the pro-
ton lifetime estimates, the most important of effect is
the Planck-scale induced violation of the canonical nor-
malization of the SM gauge fields [73, 74] due to the
higher-order corrections to the gauge kinetic term emerg-
ing already at the d = 5 level: L(5) ∋ Tr[FµνHF

µν ]/MPl;
here H is any scalar in the theory which can couple to a
pair of adjoint representations, i.e., any field appearing
in the symmetric part of the decomposition of their ten-
sor product. For a GUT-scale VEV of H , this induces a
percent-level effect which, after a suitable redefinition of
the gauge fields, leads to similar-size shifts in the GUT-
scale matching conditions which, on the other hand, are
comparable to the two-loop effects.

Remarkably, if the GUT-scale symmetry breaking in
SO(10) is triggered by the VEV of 45H , this problem is
absent because Tr[Fµν45HF

µν ] = 0 due to the fact that
45 is not in the symmetric part of the 45⊗45 decomposi-
tion [recall that (45⊗45)sym = 54⊕210⊕770]. Thus, the
minimal SO(10) scheme with the adjoint-driven Higgs
mechanism is uniquely robust with respect to this class
of quantum gravity effects (see also the discussion in
ref. [75]). This makes the symmetry-breaking analysis
more reliable and, hence, admits in principle for a strong
reduction of this type of theoretical uncertainties in the
proton lifetime estimates.

III. FLAVOUR AND ELECTROWEAK
OBSERVABLES

The low-energy phenomenology of a light O(TeV)-scale
color octet scalar which couples directly to the quarks
and the Higgs boson is severely constrained by the flavour
and electroweak precision observables. In this section we
describe such constraints from the point of view of the
minimal SO(10) GUT.

A. Tree-level FCNC

Color octet scalars with the same electroweak quan-
tum numbers as the SM Higgs doublet have rather special
properties since the suppression of the FCNC could nat-
urally follow from the group structure and representation
contents of the theory [13]. One possible way to achieve
this is, indeed, imposing the minimal flavour violation
(MFV) ansatz6 [76–78]. On the other hand, the SO(10)

6 The effective field theory approach to MFV consists in the as-
sumptions that: i) the full effective field theory is formally in-
variant under the SU(3)5 flavour symmetry of the SM and ii) the
SM Yukawas, which are promoted to spurion fields transforming
under the SU(3)5 symmetry, are the only irreducible sources of
flavour breaking. Under these assumptions, only the scalars with
the SM quantum numbers (1, 2,+ 1

2
) and (8, 2, + 1

2
) can couple
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symmetry provides non-trivial constraints on the flavour
sector of the effective SM+H8 theory. As we shall see, the
analysis of the relevant structure reveals the existence of
an intrinsic flavour-protection mechanism even without
any additional “horizontal” assumption like MFV.

In order to proceed further we need to specify the
SO(10) Yukawa sector. At this stage, we shall consider
two minimal, albeit rather different, realizations of the
Yukawa sector which can potentially reproduce the pat-
tern of fermion masses and mixings7. Adding a complex8

10H representation into the Yukawa sector and focussing
only on the mass sum-rules for the up- and down-quark
mass matrices we have:

• Minimal field content [6]

MU = Y ′
10v

∗10
d , (36)

MD = Y10v
10
d + Y126v

126
d , (37)

• Peccei-Quinn (PQ) symmetry [79]

MU = Y10v
10
u + Y126v

126
u , (38)

MD = Y10v
10
d + Y126v

126
d , (39)

where Y10 and Y126 are the usual SO(10) Yukawa cou-
plings while Y ′

10 is an extra Yukawa available in the non-
supersymmetric models with a complex 10H . The pres-
ence of vu,d in (38)-(39) indicates that there are two light
Higgs doublets in the low-energy effective theory in the
PQ case while there is just one Higgs doublet in the min-
imal scenario (36)-(37). Note also that all the Yukawa
couplings above are symmetric in the flavor space due to
the gauge structure of the relevant SO(10) invariants.

The second option is related to the implementation of
the PQ solution to the strong CP problem in SO(10).
The need for an invisible axion requires an additional
Higgs representation in the potential [82–84], minimally
a 16H . In spite of that the PQ symmetry actually reduces
the number of couplings in the scalar potential and in the
Yukawa sector with respect to the first case. In addition
to that, a viable dark matter (DM) candidate, the axion,
is available [85]. It is worth recalling that a DM candidate
can be devised in the “minimal” setting as well, albeit
requiring an extreme fine-tuning [86].

Returning to the issue of the induced FCNCs, the in-
teractions of H8 with the quarks are dictated by the Y126

matrix, namely

Y12616M16M126∗H + h.c.
∋ Y126 (qucH8u + qdcH8d) + h.c.
∋ Y126 (quccθH8 + qdcsθH

∗
8 ) + h.c. . (40)

to the quarks [13] and the amount of flavour violation beyond
the SM is controlled by the standard Yukawas [20].

7 A complete and conclusive analysis on the viability of these set-
tings in the 45H ⊕ 126H model is still missing. For studies par-
tially addressing the problem see e.g. [79–81].

8 The most minimal option of a real 10H (enforcing v10
u = v∗10

d
) is

not phenomenologically viable since it predicts a “wrong” GUT-
scale mass relation mt ≈ mb [79].

Natural flavour conservation in the neutral currents then
requires Y126 to be (almost) diagonal in the same basis

as Mdiag
U and Mdiag

D .
Remarkably enough, in the PQ case (cf. Eqs. (38)–

(39)) the FCNCs turn out to be VCKM-suppressed due
to the special flavour structure of the relevant Yukawa
couplings. This can be intuitively understood as follows:
SO(10) enforces symmetric Yukawa matrices and hence
VuL

= VuR
and VdL

= VdR
where VuL,R

and VdL,R
denote

the bi-unitary transformations which diagonalize the up-
and down-quark mass matrices, respectively. Then any
flavour violation in the quark sector is encoded in the
misalignment between VuL

and VdL
and, thus, the H8-

mediated FCNCs are controlled by the CKM mixing ma-
trix as in the MFV setting [20].

It is perhaps also worth noting that in the minimal
case (cf. Eqs. (36)–(37)) the FCNCs are entirely absent
if [Y10, Y126] = 0. The latter condition is not phenomeno-
logically acceptable in the PQ setting since it would im-
ply a diagonal CKM mixing matrix.

It is also important to stress that while Y126 is cor-
related to fermion masses and mixings, the angle θ
(cf. Eq. (40)) is a function of a few scalar potential
parameters (Eq. (B11) in [6]). Thus, the couplings of
H8 to the fermions are quite constrained and the com-
patibility of a very light octet scalar with the flavour
and electroweak (non-oblique) observables [13, 20], as,

e.g., K0 − K
0

mixing, B → Xsγ and Z → bb, must be
ultimately checked.

Needless to say, the PQ setting requires a detailed
study of fermion masses and mixings, up to date missing
to our knowledge. In particular, one must keep in mind
that the orthogonality of the hypercharge and the PQ
currents further constraints the VEVs of the light Hu,d

doublets by enforcing v2
u = v2

d.

B. Custodial symmetry

The most crucial among the electroweak precision tests
are those related to the breaking of the custodial symme-
try9. Indeed, the Higgs VEV induces a tree-level mass

splitting between the charged H+
8 and neutral HR,I

8 (real
and imaginary) components of H8 which determines a
non-vanishing contribution to the T parameter [13]

∆m2
+,R∆m2

+,I

m2
Wm2

+,R,I

≈ 0.23 ∆T , (41)

where ∆m2
1,2 ≡ m2

1 − m2
2 and m2

+,R,I is the smallest

among the masses. The approximate Eq. (41) holds
with high accuracy even for m+,R,I as light as a few

9 Large contributions to the oblique parameter S can be easily
avoided even for a sub-TeV-scale H8, while retaining at the same
time a sizable impact on the SM H → γγ rate [13].
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hundred GeV with ∆m’s at the 100 GeV level. As
a matter of fact the present experimental fits lead to
T = 0.02± 0.11 [87]; requiring a 1-σ saturation of T and
taking ∆m2

+,R ≈ ∆m2
+,I one obtains ∆m < 140 GeV

for the lightest mass of 300 GeV and ∆m < 250 GeV
for the lightest mass of 1 TeV. Since the mass splitting
between the charged and neutral components is at most
of the order of the electroweak scale such constraints can
be naturally satisfied.

Large contributions to the T parameter can be also
avoided when custodial symmetry limits in the parameter
space of the Higgs doublet and H8 effective scalar poten-
tial is considered10, albeit this generally requires fine-
tuned relations among the scalar couplings. Though the
embedding into SO(10) could make such a limit non-
trivial, a quantitative answer requires an extension of
the 45H ⊕ 126H scalar potential analyzed in [6], includ-
ing those representations which are needed for a realis-
tic description of fermion masses and mixings and have
a non-zero projection on the Higgs doublets, like e.g. a
(complex) 10H . This, however, is beyond the scope of
the present work.

Finally, let us comment on the current experimental
limits on the H8 mass obtained namely from the direct
LHC searches. While the current experimental analysis
based on dijet pair signatures [88, 89] exclude H8 masses
up to about 2 TeV, the low-energy window 200−320 GeV
is not yet ruled out due to a gap in sensitivity to the soft
jets [42].

IV. CONCLUSIONS

As emphasised recently a light (sub-TeV) colored octet
scalar may help in explaining the H → γγ anomaly still
present in the LHC data. In a preceeding paper we scru-
tinized the role of intermediate-scale colored scalar states
in the minimal SO(10) grand unification. The presence of
such states together with the unification constraints and
the associated large threshold effects allow for the scale
of the B−L breaking in the desired ballpark for the neu-
trino mass generation via standard seesaw. Moreover,
the model may be prone to future experimental testabil-
ity due to a relatively rapid proton decay inherent to this
class of scenarios11.

In this paper we provide a significantly refined study
of the setup with a light color octet scalar by includ-
ing the leading two-loop gauge running effects together
with a more detailed analysis of the proton decay width.

10 See refs. [13, 30] for a detailed discussion of precision electroweak
constraints on the scalar octet interactions.

11 Another viable threshold configuration identified in [6] which al-
lows for a large enough seesaw-scale is that of an intermediate-
scale color sextet scalar (6, 3,+ 1

3
). Preliminary results indicate

that two-loop effects further lower the GUT-scale thus reducing
the physically allowed domain of this class of solutions [90].

Focusing on the interesting anti-correlation between the
proton lifetime and the mass of the light H8 we find that
the present data on the matter stability require M8 be-
low about 2000 TeV; yet stronger limits at the level of
few tens of TeV are expected if proton decay is not ob-
served even at the next generation facilities. In all cases
a sizeable fraction of the parameter space allows for H8

masses within the reach of the LHC.
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Appendix A: A sample scalar spectrum

Details of the scalar spectrum corresponding to the
sample two-loop solution displayed in Fig. 4 are given in
Table II. For the sake of brevity, for each multiplet Q
therein we present only its contribution to the one-loop
part of the gauge beta function (∆aQ) which is enough
to reconstruct the ASL,SR factors (32) governing the one-
loop evolution of the effective d = 6 proton decay oper-
ators and, hence, the proton partial width (31); in the
sample case one has Γ(p→ π0e+) ≈ (2.0× 1035years)−1.
In Table II the acronyms CS, RS, VB, GB stay for com-
plex scalars, real scalars, vector bosons and would-be
Goldstone bosons, respectively.
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Appendix B: One-loop matching

For completeness, we report the detailed form of
the structures entering the matching of the gauge cou-
plings at the SO(10) − 4C2L1R threshold µ2 and at the
4C2L1R − SM +H8 threshold µ1, respectively.

The SO(10) → 4C2L1R matching at µ2:

λC =
1

48π2

[
4 − 44 log

M(3, 2,+ 1
6 )VB

µ2
+ 2 log

M(3, 2,+ 1
6 )GB

µ2

−44 log
M(3, 2,− 5

6 )VB

µ2
+ 2 log

M(3, 2,− 5
6 )GB

µ2

+ log
M(3, 1,+ 2

3 )
(2)
CS

µ2
+ log

M(3, 1,− 4
3 )CS

µ2

+2 log
M(3, 2,+ 1

6 )
(2)
CS

µ2
+ 2 log

M(3, 2,+ 7
6 )

(2)
CS

µ2

+ log
M(3, 1,+ 1

3 )
(1)
CS

µ2
+ log

M(3, 1,+ 1
3 )

(2)
CS

µ2

+ log
M(3, 1,+ 1

3 )
(3)
CS

µ2
+ 3 log

M(3, 3,+ 1
3 )CS

µ2

+5 log
M(6, 1,+ 1

3 )CS

µ2
+ 5 log

M(6, 1,− 2
3 )CS

µ2

+15 log
M(6, 3,− 1

3 )CS

µ2
+ 3 log

M(8, 1, 0)RS

µ2

+12 log
M(8, 2,+ 1

2 )
(2)
CS

µ2

]
,

λL =
1

48π2

[
6 − 66 log

M(3, 2,+ 1
6 )VB

µ2
+ 3 log

M(3, 2,+ 1
6 )GB

µ2

−66 log
M(3, 2,− 5

6 )VB

µ2
+ 3 log

M(3, 2,− 5
6 )GB

µ2

+3 log
M(3, 2,+ 1

6 )
(2)
CS

µ2
+ 3 log

M(3, 2,+ 7
6 )

(2)
CS

µ2

+12 log
M(3, 3,+ 1

3 )CS

µ2
+ 4 log

M(1, 3,+1)CS

µ2

+ 1
2 log

M(1, 2,+ 1
2 )

(1)
RS

µ2
+ 1

2 log
M(1, 2,+ 1

2 )
(2)
RS

µ2

+24 log
M(6, 3,− 1

3 )CS

µ2
+ 2 log

M(1, 3, 0)RS

µ2

+8 log
M(8, 2,+ 1

2 )
(2)
CS

µ2

]
,

λR =
1

48π2

[
8 − 44 log

M(1, 1,+1)VB

µ2
+ 2 log

M(1, 1,+1)GB

µ2

−66 log
M(3, 2,+ 1

6 )VB

µ2
+ 3 log

M(3, 2,+ 1
6 )GB

µ2

−66 log
M(3, 2,− 5

6 )VB

µ2
+ 3 log

M(3, 2,− 5
6 )GB

µ2

+3 log
M(3, 2,+ 1

6 )
(2)
CS

µ2
+ 3 log

M(3, 2,+ 7
6 )

(2)
CS

µ2

+ 1
2 log

M(1, 2,+ 1
2 )

(1)
RS

µ2
+ 1

2 log
M(1, 2,+ 1

2 )
(2)
RS

µ2

+12 log
M(6, 1,− 2

3 )CS

µ2
+ 8 log

M(8, 2,+ 1
2 )

(2)
CS

µ2

+6 log
M(3, 1,− 4

3 )CS

µ2
+ 2 log

M(1, 1,−2)CS

µ2

]
.

The 4C2L1R → 3c2L1R1X → 3c2L1Y matching at µ1:

λc =
1

48π2

[
1 − 22 log

M(3, 1,+ 2
3 )VB

µ1
+ log

M(3, 1,+ 2
3 )GB

µ1

+2 log
M(3, 2,+ 1

6 )
(3)
CS

µ1
+ 2 log

M(3, 2,+ 7
6 )CS

µ1

+5 log
M(6, 1,+ 4

3 )CS

µ1

]
,

λL =
1

16π2

[
log

M(3, 2,+ 1
6 )

(3)
CS

µ1
+ log

M(3, 2,+ 7
6 )CS

µ1

]
,

λRR =
1

48π2

[
2 log

M(1, 1, 0)GB

µ1
+ 6 log

M(3, 1,+ 2
3 )GB

µ1

+3 log
M(3, 2,+ 1

6 )
(3)
CS

µ1
+ 3 log

M(3, 2,+ 7
6 )CS

µ1

+12 log
M(6, 1,+ 4

3 )CS

µ1

]
,

λRX = λXR = − 1

8
√

6π2

[
log

M(1, 1, 0)GB

µ1

+ log
M(3, 1,+ 2

3 )GB

µ1
− 2 log

M(6, 1,+ 4
3 )CS

µ1

+2 log
M(3, 2,+ 1

6 )
(3)
CS

µ1
+ 2 log

M(3, 2,+ 7
6 )CS

µ1

]
,

λXX =
1

48π2

[
4 − 88 log

M(3, 1,+ 2
3 )VB

µ1
+ log

M(3, 1,+ 2
3 )GB

µ1

+8 log
M(3, 2,+ 1

6 )
(3)
CS

µ1
+ 8 log

M(3, 2,+ 7
6 )CS

µ1

+2 log
M(6, 1,+ 4

3 )CS

µ1
+ 3 log

M(1, 1, 0)GB

µ1

]
.
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Few comments are in order. First, a generic analytic
identification of the hierarchy of the mass-eigenstates of
the mass matrices larger than 2×2 is very difficult due to
possible accidental cancellations and, thus, in some cases,
the actual mass ordering of the eigenstates labelled by
1, 2, 3, . . . in the third column of TABLE II may be dif-
ferent than what is expected from the ordering in the for-
mulae above (where the different eigenstates are labeled
by upperscripts)12. Although this may look contrived, it
is readily verified that to a very good accuracy the only
effect of such a “misidentification” is an overall shift of
some of the “segments” of the gauge running curves be-
tween µ2 and µ1 in figures like Fig. 4, with a negligible
effect on the low-energy values of the gauge couplings13.

Secondly, we may further simplify the matching formu-
lae by taking advantage of the fact that in the Feynman
gauge the masses of the Goldstones equal those of the cor-
responding vectors; hence, the contributions from these
two sources can be collapsed into a single log term.

Finally, a comment on the artificial “reality” of the two

SM-Higgs scalars (1, 2,+ 1
2 )

(1,2)
RS entering the formulae for

λL,R at the µ2 matching scale. As a matter of fact, be-
sides the lightest eigenstate playing the role of the SM

Higgs doublet, all the heavy complex (1, 2,+ 1
2 )

(i)
CS eigen-

states of the relevant doublet mass matrix should be inte-
grated out at µ2. However, the spectrum of the doublet-
like scalars is unavailable unless all the extra scalars, re-
quired for a realistic Yukawa sector (minimally, a com-
plex 10H ; cf. also Sect. III A), are consistently taken into
account.

Fortunately, such a detailed study is not needed as one
can approximate the effect of a light complex doublet
by “averaging” over the eigenvalues of the 2 × 2 doublet
mass matrix in the 45H ⊕ 126H sector, namely by tak-
ing the two “heavy” doublets as real fields so that the
heavy doublet degrees of freedom are counted correctly.
As rough as it may sound conceptually, this “escamo-
tage” has essentially no effect on the numerical results
due to the generally very small impact of the scalar dou-
blets on the evolution of the gauge couplings as well as
on the associated threshold corrections. The interested
reader can find a more detailed discussion of these issues
in Section II C4 b and in ref. [6].

Appendix C: SO(10) Higgs representations

The decomposition of the 10H , 45H and 126H repre-
sentations with respect to all relevant intermediate sym-
metries is detailed in Tables III, IV and V.

12 Notice, for instance, that in the specific example in TABLE II

the mass of M(3, 2,+ 1
6
)
(2)
CS entering the matching factor λC at

µ2 is smaller than M(3, 2, + 1
6
)
(3)
CS entering λc at µ1.

13 Indeed, log MA/µ1 + log MB/µ2 = log MA/µ2 + log MB/µ1.

multiplet Q type eigenstate ∆aQ mass [GeV]

(8, 2, +1

2
) CS 1 (2, 4

3
, 4

5
) 1.9 × 103

(3, 1,− 2
3
) VB 1 (− 11

6
, 0,− 44

15
) 1.2 × 1013

(3, 1, + 2
3
) VB 1 (− 11

6
, 0,− 44

15
) 1.2 × 1013

(3, 1,− 2
3
) GB 1 ( 1

6
, 0, 4

15
) 1.2 × 1013

(1, 1, 0) VB 1 (0, 0, 0) 2.7 × 1013

(1, 1, 0) GB 1 (0, 0, 0) 2.7 × 1013

(3, 2, + 1
6
) CS 2 ( 1

3
, 1

2
, 1

30
) 8.2 × 1013

(3, 2, + 7
6
) CS 1 ( 1

3
, 1

2
, 49

30
) 1.1 × 1014

(1, 2, + 1
2
) RS 1 (0, 1

12
, 1

20
) 1.1 × 1014

(1, 1, 0) RS 2 (0, 0, 0) 4.2 × 1015

(3, 1,− 2
3
) CS 2 ( 1

6
, 0, 4

15
) 4.2 × 1015

(6, 1,− 4
3
) CS 1 ( 5

6
, 0, 32

15
) 5.4 × 1015

(1, 1, 0) RS 3 (0, 0, 0) 5.4 × 1015

(8, 1, 0) RS 1 ( 1
2
, 0, 0) 6.2 × 1015

(6, 3, + 1
3
) CS 1 ( 5

2
, 4, 2

5
) 7.4 × 1015

(3, 3,− 1
3
) CS 1 ( 1

2
, 2, 1

5
) 7.4 × 1015

(1, 3,−1) CS 1 (0, 2
3
, 3

5
) 7.4 × 1015

(1, 3, 0) RS 1 (0, 1
3
, 0) 8.4 × 1015

(3,2, +5

6
) VB 1 (− 11

3
,− 11

2
,− 55

6
) 9.7 × 1015

(3, 2,−5

6
) VB 1 (− 11

3
,− 11

2
,− 55

6
) 9.7 × 1015

(3, 2,−5

6
) GB 1 ( 1

3
, 1

2
, 5

6
) 9.7 × 1015

(3,2,−1

6
) VB 1 (− 11

3
,− 11

2
,− 11

30
) 9.7 × 1015

(3, 2, +1

6
) VB 1 (− 11

3
,− 11

2
,− 11

30
) 9.7 × 1015

(3, 2, +1

6
) GB 1 ( 1

3
, 1

2
, 1

30
) 9.7 × 1015

(3, 1, + 1
3
) CS 1 ( 1

6
, 0, 1

15
) 1.2 × 1016

(3, 1, + 1
3
) CS 2 ( 1

6
, 0, 1

15
) 1.8 × 1016

(1, 1,−1) VB 1 (0, 0,− 11
5

) 1.9 × 1016

(1, 1, +1) VB 1 (0, 0,− 11
5

) 1.9 × 1016

(1, 1, +1) GB 1 (0, 0, 1
5
) 1.9 × 1016

(1, 1, +1) CS 2 (0, 0, 1
5
) 2.0 × 1016

(3, 1, + 1
3
) CS 3 ( 1

6
, 0, 1

15
) 2.0 × 1016

(6, 1,− 1
3
) CS 1 ( 5

6
, 0, 2

15
) 2.0 × 1016

(3, 2, + 7
6
) CS 2 ( 1

3
, 1

2
, 49

30
) 2.3 × 1016

(1, 2, + 1
2
) RS 2 (0, 1

12
, 1

20
) 2.3 × 1016

(8, 2, + 1
2
) CS 2 (2, 4

3
, 4

5
) 2.3 × 1016

(3, 2, + 1
6
) CS 3 ( 1

3
, 1

2
, 1

30
) 2.3 × 1016

(1, 1, +2) CS 1 (0, 0, 4
5
) 3.3 × 1016

(3, 1, + 4
3
) CS 1 ( 1

6
, 0, 16

15
) 3.3 × 1016

(6, 1, + 2
3
) CS 1 ( 5

6
, 0, 8

15
) 3.3 × 1016

(1, 1, 0) RS 4 (0, 0, 0) 5.6 × 1016

TABLE II. A sample spectrum featuring a light (8, 2, + 1
2
)

multiplet. The relevant scalar potential parameters are given
in Table I. ∆aQ indicate the shifts in the one-loop beta-
function entering formula (31) due to a given multiplet Q .
The light threshold and the vector bosons defining the GUT-
scale are in boldface. As a consistency check, aSM +

P

∆aQ =
(− 37

3
,− 37

3
,− 37

3
).
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4C 2L 2R 4C 2L 1R 3c 2L 2R 1BL 3c 2L 1R 1BL 3c 2L 1Y 5 1Z 5′ 1Z′

(6, 1, 1) (6, 1, 0)
`

3, 1, 1,− 2
3

´ `

3, 1, 0,− 2
3

´ `

3, 1,− 1
3

´

(5,−2) (5,−2)
`

3, 1, 1, + 2
3

´ `

3, 1, 0, + 2
3

´ `

3, 1, + 1
3

´ `

5, +2
´ `

5, +2
´

(1, 2, 2)
`

1, 2, + 1
2

´

(1, 2, 2, 0)
`

1, 2, + 1
2
, 0

´ `

1, 2, + 1
2

´

(5,−2) (5, +2)
`

1, 2,− 1
2

´ `

1, 2,− 1
2
, 0

´ `

1, 2,− 1
2

´ `

5, +2
´ `

5,−2
´

TABLE III. Decomposition of the fundamental representation 10 with respect to the various SO(10) subgroups. The definitions and

normalization of the abelian charges are given in Sect. II.

4C 2L 2R 4C 2L 1R 3c 2L 2R 1BL 3c 2L 1R 1BL 3c 2L 1Y 5 1Z 5′ 1Z′

(1, 1, 3) (1, 1, +1) (1, 1, 3, 0) (1, 1, +1, 0) (1, 1, +1) (10,−4)
`

10, +4
´

(1, 1, 0) (1, 1, 0, 0) (1, 1, 0) (1, 0) (1, 0)

(1, 1,−1) (1, 1,−1, 0) (1, 1,−1)
`

10, +4
´

(10,−4)

(1, 3, 1) (1, 3, 0) (1, 3, 1, 0) (1, 3, 0, 0) (1, 3, 0) (24, 0) (24, 0)

(6, 2, 2)
`

6, 2, + 1
2

´ `

3, 2, 2,− 2
3

´ `

3, 2, + 1
2
,− 2

3

´ `

3, 2, + 1
6

´

(10,−4) (24, 0)
`

6, 2,− 1
2

´ `

3, 2,− 1
2
,− 2

3

´ `

3, 2,− 5
6

´

(24, 0) (10,−4)
`

3, 2, 2, + 2
3

´ `

3, 2, + 1
2
, + 2

3

´ `

3, 2, + 5
6

´

(24, 0)
`

10, +4
´

`

3, 2,− 1
2
, + 2

3

´ `

3, 2,− 1
6

´ `

10, +4
´

(24, 0)

(15, 1, 1) (15, 1, 0) (1, 1, 1, 0) (1, 1, 0, 0) (1, 1, 0) (24, 0) (24, 0)
`

3, 1, 1, + 4
3

´ `

3, 1, 0, + 4
3

´ `

3, 1, + 2
3

´ `

10, +4
´ `

10, +4
´

`

3, 1, 1,− 4
3

´ `

3, 1, 0,− 4
3

´ `

3, 1,− 2
3

´

(10,−4) (10,−4)

(8, 1, 1, 0) (8, 1, 0, 0) (8, 1, 0) (24, 0) (24, 0)

TABLE IV. Same as in Table III for the 45 representation.

4C 2L 2R 4C 2L 1R 3c 2L 2R 1BL 3c 2L 1R 1BL 3c 2L 1Y 5 1Z 5′ 1Z′

(6, 1, 1) (6, 1, 0)
`

3, 1, 1, + 2
3

´ `

3, 1, 0, + 2
3

´ `

3, 1, + 1
3

´ `

5, +2
´ `

5, +2
´

`

3, 1, 1,− 2
3

´ `

3, 1, 0,− 2
3

´ `

3, 1,− 1
3

´

(45,−2) (45,−2)

(10, 3, 1) (10, 3, 0) (1, 3, 1,−2) (1, 3, 0,−2) (1, 3,−1)
`

15,−6
´ `

15,−6
´

`

3, 3, 1,− 2
3

´ `

3, 3, 0,− 2
3

´ `

3, 3,− 1
3

´

(45,−2) (45,−2)
`

6, 3, 1, + 2
3

´ `

6, 3, 0, + 2
3

´ `

6, 3, + 1
3

´ `

50, +2
´ `

50, +2
´

`

10, 1, 3
´ `

10, 1,−1
´

(1, 1, 3, +2) (1, 1,−1, +2) (1, 1, 0) (1, +10)
`

50, +2
´

`

10, 1, 0
´

(1, 1, 0, +2) (1, 1, +1) (10, +6) (10, +6)
`

10, 1, +1
´

(1, 1, +1, +2) (1, 1, +2)
`

50, +2
´

(1, +10)
`

3, 1, 3, + 2
3

´ `

3, 1,−1, + 2
3

´ `

3, 1,− 2
3

´

(10, +6) (45,−2)
`

3, 1, 0, + 2
3

´ `

3, 1, + 1
3

´ `

50, +2
´ `

50, +2
´

`

3, 1, +1, + 2
3

´ `

3, 1, + 4
3

´

(45,−2) (10, +6)
`

6, 1, 3,− 2
3

´ `

6, 1,−1,− 2
3

´ `

6, 1,− 4
3

´ `

50, +2
´ `

15,−6
´

`

6, 1, 0,− 2
3

´ `

6, 1,− 1
3

´

(45,−2) (45,−2)
`

6, 1, +1,− 2
3

´ `

6, 1, + 2
3

´ `

15,−6
´ `

50, +2
´

(15, 2, 2)
`

15, 2,− 1
2

´

(1, 2, 2, 0)
`

1, 2,− 1
2
, 0

´ `

1, 2,− 1
2

´ `

5, +2
´

(45,−2)
`

15, 2, + 1
2

´ `

1, 2, + 1
2
, 0

´ `

1, 2, + 1
2

´

(45,−2)
`

5, +2
´

`

3, 2, 2,− 4
3

´ `

3, 2,− 1
2
,− 4

3

´ `

3, 2,− 7
6

´

(45,−2)
`

15,−6
´

`

3, 2, + 1
2
,− 4

3

´ `

3, 2,− 1
6

´ `

15,−6
´

(45,−2)
`

3, 2, 2, + 4
3

´ `

3, 2, + 1
2
, + 4

3

´ `

3, 2, + 7
6

´ `

50, +2
´

(10, +6)
`

3, 2,− 1
2
, + 4

3

´ `

3, 2, + 1
6

´

(10, +6)
`

50, +2
´

(8, 2, 2, 0)
`

8, 2,− 1
2
, 0

´ `

8, 2,− 1
2

´ `

50, +2
´

(45,−2)
`

8, 2, + 1
2
, 0

´ `

8, 2, + 1
2

´

(45,−2)
`

50, +2
´

TABLE V. Same as in Table III for the 126 representation.
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